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A simple model for the project value

I Assume that the total value of a project follows a geometric
Brownian motion

dVt = αVtdt + σVtdzt , (1)

where α and σ are positive constants and zt is a standard
Wiener process for a probability P.

I The current value V0 > 0 of the project is know. Future
values Vt are lognormally distributed with mean and variance
increasing linearly in time.

I Ignores possibility of temporary shut down or complete
abandonment.

I Project value remains positive.

I We consider a finite time interval [0,T ].



Good old tree approximation

I Recall now our binomial tree approximation with parameters

p =
1 + α∆t − d

u − d
, u = eσ

√
∆t , d = e−σ

√
∆t . (2)

I This can be rewritten as

Vj+1 = Vje
σκj

√
∆t ≈ Vj(1 + σκj

√
∆t) (3)

where

κj =

{
1, with probability p
−1, with probability 1− p

I We then obtain an approximation based only on
√

∆t
increments but with the correct properties, since (up to order
∆t) we have that

E [σκj

√
∆t] = α∆t

Var[σκj

√
∆t] = σ2∆t.



From a tree to a rectangular grid

I We see from the previous discussion that each trajectory of a
project values following the GBM model (1) can be
approximated by one particular path on a multi–period
binomial tree with parameters (2).

I Instead of considering just one tree originating from a single
point V0, we can envisage several superposed trees starting
from neighbouring points of the form

V0e
±kσ

√
∆t , k = 1, 2, . . .

I If we then chop these superposed trees at sufficiently high and
sufficiently low starting points, what we obtain is a
rectangular grid of project values with m rows (with
i = 1, . . . m) and (n + 1) columns (with j = 1, . . . , n + 1).



Project Values on the Rectangular Grid

I Effectively, the grid will consist of (n + 1) repeated columns,
each containing the following project values:

V (i) = V (m̄)e(m̄−i)σ
√

∆t , i = 1, . . . m,

where m̄ = m+1
2 corresponds to the middle row.

I That is, the top row consists of the highest possible project
value, while as we move down each column the project values

decrease by multiplicative increments of size e−σ
√

∆t .

I We might as well add a row in the bottom of the grid with
the lower bound for project values, that is, V (m + 1) = 0.

I Our final grid then has dimension (m + 1)× (n + 1).



A model for the investment opportunity

I Let I > 0 be the sunk cost of investing in the project
described by (1).

I Investment in the project is an opportunity, not an obligation.

I Assume that the decision to invest is irreversible and can be
taken at any time τ ∈ [0,T ] in the future.

I The pay-off for investing at time τ is (Vτ − I )+.

I Therefore the option to invest is equivalent to a call option on
the project value with strike price I .



The spanning asset assumption

I We want to value the option to invest using the techniques of
option pricing.

I Need to use replication and arbitrage arguments.

I In financial mathematics this only make sense if the
underlying asset is trade in the market.

I Therefore we assume that the project value is perfectly
correlated to a traded financial asset.

I That is, we assume that

dXt = µXtdt + αXXtdzt , (4)

describe the price of the so called spanning asset.



The cost of waiting

I According to the Capital Asset Pricing Model (CAPM), the
equilibrium rates of return for the traded asset Xt and the
project Vt should satisfy

µ− r

σX
=

ᾱ− r

σ
= ρλ, (5)

where λ is the market price of risk for the economy and β is
the correlation between Xt (and thereofre Vt) and the market
portfolio.

I We define the difference between the equilibrium rate ᾱ and
the actual rate α as the below equilibrium shortfall rate
δ = ᾱ− α, which we assume to be positive.

I When σX = σ, this reduces to δ = µ− α, which corresponds
to a “convenience yield” generated by having invested in the
project, such as a cash–flow rate.

I Therefore δ represents the cost of delaying the project.
I This should be compared to a call option on a stock that pay

no dividends.



Valuing the option to invest

I We can now value the option to invest as a call option with
strike price I on an underlying asset following a geometric
Brownian with drift µ and volatility σ and paying a constant
dividend yield δ.

I If we denote by F (i , j) the value of the option to invest at
time tj when the underlying project value is V (i), then we can
calculate it everywhere on the grid using the formula

F (i , j) = max{e−r∆t [qF (i+1, j+1)+(1−q)F (i−1, j+1)],V (i)−I ].

I In the formula above, we need to use the risk–neutral measure

q =
1 + (r − δ)∆t − e−σ

√
∆t

eσ
√

∆t − e−σ
√

∆t



Boundary values

I For the formula above to work, we need to specify the values
of the option to invest at the boundaries of the grid.

I At the bottom of the grid it is clear that the option to invest
should be worthless, since the project itself is not worth
anything.

I Therefore, we set F (m + 1, j) = 0 for all j = 1, . . . , n + 1.

I Conversely, at the top of the grid the project value should be
much larger than both the sunk cost and the value of waiting,
so that investment should certainly be the preferred policy.

I This leads to F (1, j) = V (1)− I for all j = 1, . . . , n + 1.

I Finally, at the final time, there is no more opportunity to wait,
so investment should be made whenever the project value is
greater than the sunk cost I .

I Therefore F (i , n + 1) = (V (i)− I )+, for i = 1, . . . ,m.



Investment threshold

I The values F (i , j) obtained on the grid correspond to the
value of the option to invest when time equals tj and the
project value equals V (i).

I That is F (i , j) = F (V (i), tj), which is the discrete version of
the function F (V , t).

I If we fix a particular time t = tj , then we can obtain a graph
of the option to invest as a function of the underlying project
value at that time, that is Ft(V ).

I This graph has the typical shape of a convex function lying
above the piecewise linear function (V − I )+.

I As the project value increase, Ft(V ) approaches the line
(V − I ).

I The two graphs then “smoothly paste” at a point V ∗
t .

I This point (which depends on time only) is called the
investment threshold.



The investment rule

I After we determine the investment threshold V ∗
t as a function

of t, our investment rules reduces to comparing it with the
observed project value Vt at any time t.

I Explicitly, if at time t we have that Vt < V ∗
t , then it is

because Vt − I < F (t,Vt) and we should not invest.

I Conversely, if at time t we have that Vt ≥ V ∗
t , then it is

because Vt − I = F (t,Vt) and we should invest.

I This should be contrasted with the Marshallian rule, according
to which investment should occur whenever the NPV, given in
this case by Vt − I is positive.

I In other words, the exercise threshold in the simple NPV rule
is just the sunk cost I .



Stationarity

I As you can observe by running several examples in a
spreadsheet, the function F (i , j) becomes stationary (that is,
independent of j) as we move away from the maturity date T .

I As a result, the exercise threshold V ∗
t tends to a constant

(independent of time) V ∗.
I This is the motivation behind the popular method of valuing

an option to invest as a perpetual call option.
I Such method (not pursued here) leads one to deduce that the

(necessarily time–independent) investment threshold is given
by the analytical formula

V ∗ =
β

β − 1
I , (6)

where

β =
1

2
− r − δ

σ2
+

√[
r − δ

σ2
− 1

2

]2

+
2R

σ2
.



Properties of the investment rule

I First observe that V ∗ > I , so our investment decision will be
always delayed in comparison to an investor following a NPV
rule.

I By running our discrete–time valuation for several different
parameters (or by analyzing the expression (6) if we want to
be slick), we can observe the following properties of the
exercise threshold:

I ∂V ∗

∂I > 0 (lower sunk, more investment).

I ∂V ∗

∂σ > 0 (higher volatility, less investment).

I ∂V ∗

∂δ < 0 (higher cash-flows, more investment).

I ∂V ∗

∂r > 0 (higher interest rates, less investment).


