Business V703 Financial Modeling

Lecture 4 - Dividends and option pricing

M. R. Grasselli
Mathematics and Statistics
McMaster University

January 25, 2007

American calls on non-dividend-paying stock: a one-period binomial model argument

- Suppose that u and d are such that $u S_{0}>K$ and $d S_{0}<K$ (since the other cases are trivial).
- Let c_{0} be the continuation value for the call option at time zero, obtained by risk-neutral expectations, and let $e_{0}=\left(S_{0}-K\right)^{+}$be its exercise value at time zero.
- It is then easy to see that

$$
\begin{aligned}
c_{0} & =\frac{1}{1+R} q\left(u S_{0}-K\right) \\
& =\frac{1}{1+R}\left[q u S_{0}+(1-q) d S_{0}\right]-\frac{1}{1+R}\left[q K+(1-q) d S_{0}\right] \\
& >\frac{1}{1+R}\left[q u S_{0}+(1-q) d S_{0}\right]-\frac{1}{1+R} K \\
& =S_{0}-\frac{1}{1+R} K>S_{0}-K \geq e_{0} .
\end{aligned}
$$

- Therefore it is never optimal to exercise such option prior to maturity, confirming what we had already concluded based on

Incorporating dividends to the one-period model

- We now consider the case where the stock pays a known dividend yield D at time $t=0$.
- That is, if the cum-dividend price of the stock at time $t=0$ is S_{0}, then the owner of one share receives a dividend equal to $D S_{0}$.
- After the dividend is paid, the stock drops to its ex-dividend price $(1-D) S_{0}$
- Finally, at time $T=1$, the stock either rises to $u S_{0}$ with probability p or drops to $d S_{0}$ with probability $(1-p)$.
- As before, the specific value of p will be irrelevant for option prices, whereas the values for u and d will need to be determined in order to match the continuous time distribution of S_{0}, which we will do later.

Replicating portfolio for a call option with dividends

- As before, let us try to replicate the option by holding a shares and invest b dollars in the bank at time zero.
- Accounting for the presence of dividends, we have that the portfolio replicates the call option at time $T=1$ if and only if

$$
\begin{aligned}
& a\left(u S_{0}+(1+R) D S_{0}\right)+b(1+R)=c^{u}:=\left(u S_{0}-K\right)^{+} \\
& a\left(d S_{0}+(1+R) D S_{0}\right)+b(1+R)=c^{d}:=\left(d S^{0}-K\right)^{+}
\end{aligned}
$$

- Solving this equations for a and b gives

$$
a=\frac{c^{u}-c^{d}}{(u-d) S_{0}}
$$

and

$$
b=\frac{1}{1+R} \frac{u c^{d}-d c^{u}}{(u-d)}-D \frac{c^{u}-c^{d}}{(u-d)} .
$$

Pricing a European call with dividends

- Having found a self-financing replicating portfolio, the law of one price dictates that

$$
c_{0}=a S_{0}+b
$$

- Substituting the previous values we obtain

$$
c_{0}=\frac{1}{1+R}\left(\frac{(1+R-D)-d}{u-d} c^{u}+\frac{u-(1+R-D)}{u-d} c^{d}\right) .
$$

- This is the same as

$$
c_{0}=\frac{1}{1+R}\left[q c^{u}+(1-q) c^{d}\right]
$$

where $q=\frac{(1+R-D)-d}{u-d}$ defines the risk-neutral probability in the presence of a constant dividend yield D.

Numerical Example 1

- Let $S_{0}=100, K=70, u=1.2, d=0.8 R=0.04$, $D=0.035$.
- The risk-neutral probability for this problem (with dividends) is given by

$$
q=\frac{(1+R-D)-d}{u-d}=\frac{1.01-0.8}{0.4}=0.5125
$$

- Taking discounted risk-neutral expectations gives

$$
c_{0}=\frac{0.5125 \times 50+0.4875 \times 10}{1.04}=29.3269
$$

- On the other hand, the exercise value for the American call option at time zero is $S_{0}-K=30$, so that we conclude that early exercise is optimal in this case.
- Just for comparison, putting $D=0$ gives $c_{0}=32.6923$, which confirms that optimal exercise is not optimal in the absence of dividends.

Geometric Brownian Motion with dividends

- An annualized dividend rate δ paid at every time step results in the increments of a stock price being described by

$$
\begin{equation*}
\Delta S \approx(\mu-\delta) S_{i} \Delta t+\sigma S_{i} \epsilon_{i} \sqrt{\Delta t} \tag{1}
\end{equation*}
$$

- The novelty here is that, whereas μ is the expected growth-rate of total capital invested in the stock (shares+dividends), the actual growth-rate for the stock price itself is given by $\alpha=\mu-\delta$.
- The continuous-time limit for these approximations is giving by

$$
\begin{equation*}
d S_{t}=(\mu-\delta) S_{t} d t+\sigma S_{t} d z_{t} \tag{2}
\end{equation*}
$$

Parameters for the binomial tree with constant dividend

 yield- Suppose now that we are given a time period T (in years), the volatility σ, the mean rate of return μ and the dividend rate δ for a stock S_{t} following a Geometric Brownian Motion (2).
- Putting $\Delta t=T / n$, the exact same arguments used before lead us to the parameters

$$
\begin{equation*}
p=\frac{1+(\mu-\delta) \Delta t-d}{u-d}, \quad u=e^{\sigma \sqrt{\Delta t}}, \quad d=e^{-\sigma \sqrt{\Delta t}} . \tag{3}
\end{equation*}
$$

- As before, the historical probability p is irrelevant for the calculations of option prices.
- Instead, we need to use the risk neutral probability

$$
q=\frac{1+(r-\delta) \Delta t-d}{u-d} .
$$

Binomial tree for American calls with dividends

- Suppose we have determined the parameters $0<d<(1+r \Delta t)<u$ according to (3).
- To price an American call on a dividend-paying stock, we compare at each node of the tree the continuation value of the option with its exercise value.
- That is, we proceed exactly as before, but use the following expression for the value of the option at each the node

$$
f^{(i, n-1)}=\max \left\{\frac{1}{1+r \Delta t}\left[q f^{(i, n)}+(1-q) f^{(i+1, n)}\right], K-S^{(i, n-1)}\right\}
$$

where $q=\frac{1+(r-\delta) \Delta t-d}{u-d}$.

Numerical Example 2

- Let us use a binomial tree to compute the price of a 5 -months American call option with strike price $K=50$ on a stock with volatility $\sigma=0.4$, initial price $S_{0}=50$ and annualized dividend rate $\delta=0.04$ assuming that the annualized interest rate is $r=0.10$.
- Let's try this on an Excel spreadsheet.

