Assignment 2 - Math 799 Numerical Methods for Finance

04/02/2003

Consider the following stochastic differential equations:

$$dX_t = \mu X_t dt + \sigma X_t dW_t \tag{1}$$

$$dX_t = \mu X_t dt + \sigma dW_t \tag{2}$$

$$dX_t = (\mu - X_t)dt + \sigma dW_t, \tag{3}$$

where $\mu \in \mathbf{R}$ and $\sigma \geq 0$ are constants and W_t is a standard Brownian motion starting at zero (these equations define a geometric Brownian motion, an Ornstein-Uhlenbeck process and a mean-reverting Ornstein-Uhlenbeck process, respectively). For each equation:

- find the solution X_t (and use Ito's formula to show that it satisfies the given SDE);
- obtain $E[X_t]$ and $\operatorname{Var}[X_t]$;
- simulate 500 different paths of X_t , using a time horizon T = 1 (a year) and time increments $\delta t = 1/365$ (a day), and store the result on a 500 × 365 matrix;
- plot two of your simulated paths, as well as the function $E[X_t]$, on the same figure;
- for each i = 1, ..., 365, calculate the sample mean $\bar{\mu}$ of the random variable X_i over the 500 simulated paths and plot the result together with the function $E[X_t]$. Repeat the procedure for the sample variance $\bar{\sigma}^2$ and the function $\operatorname{Var}[X_t]$.