Assignment 2 - Math 799 Numerical Methods for Finance

$$
04 / 02 / 2003
$$

Consider the following stochastic differential equations:

$$
\begin{align*}
d X_{t} & =\mu X_{t} d t+\sigma X_{t} d W_{t} \tag{1}\\
d X_{t} & =\mu X_{t} d t+\sigma d W_{t} \tag{2}\\
d X_{t} & =\left(\mu-X_{t}\right) d t+\sigma d W_{t}, \tag{3}
\end{align*}
$$

where $\mu \in \mathbf{R}$ and $\sigma \geq 0$ are constants and W_{t} is a standard Brownian motion starting at zero (these equations define a geometric Brownian motion, an Ornstein-Uhlenbeck process and a mean-reverting Ornstein-Uhlenbeck process, respectively). For each equation:

- find the solution X_{t} (and use Ito's formula to show that it satisfies the given SDE);
- obtain $E\left[X_{t}\right]$ and $\operatorname{Var}\left[X_{t}\right]$;
- simulate 500 different paths of X_{t}, using a time horizon $T=1$ (a year) and time increments $\delta t=1 / 365$ (a day), and store the result on a 500×365 matrix;
- plot two of your simulated paths, as well as the function $E\left[X_{t}\right]$, on the same figure;
- for each $i=1, \ldots, 365$, calculate the sample mean $\bar{\mu}$ of the random variable X_{i} over the 500 simulated paths and plot the result together with the fucntion $E\left[X_{t}\right]$. Repeat the procedure for the sample variance $\bar{\sigma}^{2}$ and the fucntion $\operatorname{Var}\left[X_{t}\right]$.

