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Abstract

This is a short comparison of two models, the mean-reverting jump and CIR
processes from the affine class of affine jump models in the intensity based
approach to credit risk. This report is not written at the level of a paper
submitted to a journal, its tone being more informal. We briefly survey for
some theoretical and numerical results stemming from the work of Duffie
and Singleton [1]. The field of affine jump models and their simulation is
far too large to summarize in a short paper and we have opted to highlight
issues regarding forward default rates and yeild spreads and the conditions
that produce similar results from these different models.

Some important theoretical concepts for affine models are presented
and practical results regarding simulation are demonstrated which lay the
groundwork for more complex diffusions1. We note here that some deriva-
tions are not shown line-by-line in order to keep the presentation short,
but without sacrificing the content. We chose to work in one dimensional
space for the processes for simplicity and ease of presentation, extending the
results to n dimensional is a staightforward exercise.

We apologize in advance for any typing errors found and non-optimal
placement of figures, although the paper has been checked for typing errors,
some may remain.

1Matlab code is available upon request
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1 Introduction

Roughly stated, a jump-diffusion process Xt is termed affine if the drift,

volatility and the jump arrival intensities have a constant plus linear depen-

dence on a state random variable Xt. This defines a large class of processes

that are practical for modeling and well-studied. Examples of popular affine

processes are the Vasicek, Geometric Brownian Motion, and the two under

study in this paper, the mean-reverting jump process (MRJ) and the CIR.

The simple assumption on the diffusion coefficents being affine may limit the

processes we consider to study, but this is far outweighed by the analytical

tractability of the affine class of models.

The presentation of the paper starts with a very brief introduction of

key results for the intensity based approach to credit risk in section 2. We

introduce some basic definitions for the default intensity, survival probability

and forward default rate, and set our notation. In section 3 we show how the

affine stucture of the state process with an application of the Feynman-Kac

formula reduces to a coupled system of two Riccati equations to determine

the affine coefficients. The case for a MRJ diffusion is calculated explicitly,

and the results only presented for the CIR process. In section 4 we build

on the results of section 3 and derive the forward default rates for the MRJ

and the CIR processes and investigate the parameter dependence of these

processes. Section 5 begins a thorough comparison of the MRJ and CIR

process by investigating their first and second moments. As stated in [1], a

proper identification of parameters between the two models yields practically

indistinguishable forward default rate curves, and here we present the main

result of this paper by deriving this inter-parameter dependence by equating

the moments. We also examine the free parameter depedence between the

two models and its consequences for the forward default rate curves. Section

6 gives some concluding remarks about why the MRJ and CIR enjoy their

special relationship within the affine framework and we also give potential

pairs of candidates that may also give similar results but with considerably

more effort.

2 Probability Preliminaries

It is not our intention to give a full presentation of Poisson processes used

in defining the survival and default probabilities since there is a wealth of
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excellent references dealing with this subject2. We will set our notation and

definitions here to hold for the remainder of the report.

We define the conditional survival probability to be the probability of

survival after t years given survival up to s. Mathematically this is stated

as

P[τ > t|Fs] = Es

[

e
�

t

s
λudu

]

(2.1)

where τ is the random variable

τ = inf {t > 0 : Nt} (2.2)

which measures the first jump in the counting process Nt. The intensity

λt is a process that measures the waiting time between jumps and is a

compensator for the counting process Nt. That is, we define

Λt =

t
∫

0

λudu (2.3)

such that Nt − Λt is a martingale. In this report we will mostlCay be

concerned with the forward default rate which is defined as

f(s, t) = −∂t ln P[τ > t|Fs] = Es

[

e
�

t

s
λudu

]

(2.4)

and is an instanteous measure of the conditional survival probability at time

t. The above definitions can be mapped to, or from, interest rate theory

provided we identify the default intensity process λt with the stochastic

interest rate rt. In this fashion one may define a credit spread (yield spread)

as

Y S(s, t) = −1

t
∂t ln P [τ > t|Fs] . (2.5)

These above definitions will be put to use in the next sections and we now

move on to introducing affine processes.

3 The Riccati Equations with Jumps

By imposing that the conditional survival probability has an exponential

affine structure we introduce a substantial amount of analytical tractabililty

2The Math 772 course notes as an example.
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but also restricts the intensity processes that one may consider. For a ex-

tensive discussion of affine processes and the limitations implied for the

processes see [2]. We will consider processes of the form

dXt = µ(Xt)dt + σ(Xt)dWt + dJt . (3.6)

where the jump term has a Poisson counting process and a jump size distri-

bution given by ν. We will consider the case where the jumps arrive with a

Poisson intensity c and the distribution given the exponential distribution

with mean jump size J 3. More complicated jump terms may be considered

and are presented in [3],[4]. In general the survival probability and generator

for the above process can be written as

P[τ > t|Fs] = Es

[

e
�

t

s
Λ(Xu)du

]

(3.7)

and

Af(x) = µ(x)∂xf(x) +
1

2
σ2(x)∂2

xf(x) + λ(x)

∫

R

[f(x + z) − f(x)] dν(z)

(3.8)

where λt is a stochatic intensity for the counting process Nt. The require-

ment that the functions µ, σ, λ,Λ are affine

µ(Xt) = K0 + K1Xt (3.9)

σ(Xt) = H0 + H1Xt (3.10)

λ(Xt) = l0 + l1Xt (3.11)

Λ(Xt) = ρ0 + ρ1Xt (3.12)

will decouple the equations for the exponential affine terms in the conditional

survival probability. We require that the conditional survival probability

satisfies the partial differential equation via the Feynman-Kac technique

AP − ΛP = ∂tP (3.13)

and we subsitute the affine forms above to obtain after cancelling the com-

mon factor P = exp(α+βλ) and arrive at the coupled set of Riccati equations

3This is a very simple case, but illustrates the use of affine models without clouding
the presentation with complicated jump measures and Levy processes. We also note that
since the jump size is exponentially distributed the jumps are positive or ‘up’ only.
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for α(t) and β(t) with the inclusion of jumps

dα(t)

dt
= −ρ0 + K0β(t) +

1

2
H0(t)β

2(t) + l0 {θ [β(t)] − 1} (3.14)

dβ(t)

dt
= −ρ1 + K1β(t) +

1

2
H1(t)β

2(t) + l1 {θ [β(t)] − 1} (3.15)

θ [β(t)] =

∫

R

eβ(t)zdν(z) , (3.16)

where the boundary conditions are β(t = 0) = 0 and α(t = 0) = 0, and

the equation for the function θ [β(t)] can be viewed as a jump transform.

Note that since the transform theta involves the measure of the jump size

distribution, this integral may be difficult to evaluate analytically if the dis-

tribution is not chosen with care. For the models presented in this paper this

is not the case, as we choose the jump sizes to be exponentially distributed.

dν(z) =
1

J
e−z/J (3.17)

=⇒ θ [β(t)] =

∞
∫

0

eβ(t)zdν(z) =

∞
∫

0

eβ(t)z 1

J
e−z/δ =

1

1 − Jβ(t)
. (3.18)

This short calculation gives us the jump transform for the exponential jump

distribution and therefore gives us the last term in the Ricatti equations for

α(t) and β(t)

θ [β(t)] − 1 =
Jβ(t)

1 − Jβ(t)
(3.19)

so that the Riccati equations for exponential jumps take the form

dα(t)

dt
= −ρ0 + K0β(t) +

1

2
H0(t)β

2(t) +
l0Jβ(t)

1 − δβ(t)
(3.20)

dβ(t)

dt
= −ρ1 + K1β(t) +

1

2
H1(t)β

2(t) +
l1Jβ(t)

1 − Jβ(t)
. (3.21)

3.1 Mean-Reverting Jumps

We now specialize to the case of a mean-reverting process + jumps where

the jumps occur at Poisson arrival times with an intensity c and the jump

sizes are exponentially distributed with a mean jump size J . The SDE for

the process is

dλt = κ (γ − λt) dt + dJt (3.22)
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We can now identify the parameters in the general Ricatti equations as

(ρ0, ρ1) = (0, 1) (K0,K1) = (κγ,−κ) (3.23)

(H0,H1) = (0, 0) (l0, l1) = (0,−c) (3.24)

and solve the following system of equations

dα(t)

dt
= κγβ(t) − cJβ(t)

1 − Jβ(t)
(3.25)

dβ(t)

dt
= −1 − κβ(t) . (3.26)

The absence of a volatility term in the SDE simplifies the generator and

leaves us with a simple version of the Ricatti equations, net the jump term.

The equation for β(t) can be solved easily and gives

βmrj(t) =
1

κ

(

e−κt − 1
)

(3.27)

while the equation for α(t) requires a little work. Substituting the result for

β(t) into the α(t) equation gives

αmrj(t) = γ

(

e−κt − 1

κ
+ t

)

− cJ

J + κ

t
∫

0

e−κs − 1

1 − J
J+κe−κs

ds . (3.28)

But above integral can be evaluated with a simple change of variables giving

the final expression

αmrj(t) = −γ

(

e−κt − 1

κ
+ t

)

− c

J + c

{

Jt − ln

[

1 − J

(

e−κt − 1

κ

)]}

(3.29)

or in terms of β(t) we have

αmrj(t) = −γ (βmrj(t) + t) − c

J + c
{Jt − ln [1 − Jβmrj(t)]} (3.30)

which agrees with [1] pg.65.4

4Note to the reader, by trying to solve the Ricatti equations from the Appendix A
in [1] may prove difficult. There is a negative sign error for the right-hand-sides of the
equations for α and β and the correct result on pg. 65 is incompatible with this sign error.
The correct signs are given here and in [5].
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3.2 CIR Process

The same procedure can be done with the CIR process albeit slightly more

comlicated due to the volatility term, but no jump term needs to be consid-

ered. We only quote the result

dXt = κ (θ − Xt) dt + σ
√

XtdWt (3.31)

αcir(t) =
2κθ

σ2
ln

[

2Γe(κ+Γ)t/2

2Γ + (κ + Γ) (eΓt − 1)

]

(3.32)

βcir(t) =
−2
(

eΓt − 1
)

2Γ + (κ + Γ) (eΓt − 1)
(3.33)

where

Γ2 = κ2 + 2σ2 . (3.34)

4 Forward Default Rates and Credit Spreads

With the derivation of the solutions for α(t) and β in the previous section,

it is a simple task to derive the forward default probability (FDR) and yield

spreads (YS) for the MRJ and CIR processes. The exponential affine form

is particularly suited to this caculation and is very simple due to its form.

From the definition of the forward default rate

f(s, t) = −∂t ln P [τ > t|Fs] = −∂te
α̇(t)+β̇(t)λ(s) = − [α(t) + β(t)λ(s)]

(4.35)

and the credit spread (yield spread to borrow from interest rate theory)

Y S(s, t) = −1

t
∂t ln P [τ > t|Fs] = −1

t

[

α̇(t) + β̇λ(s)
]

. (4.36)

To simplify matters we choose s = 0 and give the expressions for the FDRs

and YSs for the MRJ and CIR cases which are obtained via simple differen-

tiation w.r.t ’t’ designated by (·) = ∂t. Below we plot some graphs in order

to get a feeling for the forward default rates. Consider the CIR case first.

4.1 CIR Forward Default Rate

The expressions needed for the FDR in this case are

α̇cir(t) =
−2κθ(eΓt − 1)

[2Γ + (κ + Γ)(eΓt − 1)]
(4.37)

7



0
5

10
15

20

0

0.1

0.2

0.3

0.012

0.014

0.016

0.018

0.02

0.022

time (yrs)

Forward Default Rate CIR Varying Volitilty

sigma

Fo
rw

ar
d 

D
ef

. R
at

e 
(%

)

Figure 1: CIR Forward Default Rate Varying σ
Parameters: λ0 = θ = 0.02, κ = 0.25.

β̇cir(t) =
−4Γ2eΓt

[2Γ + (κ + Γ)(eΓt − 1)]2
(4.38)

and the yield spread is given as Y SCIR = −(α̇CIR + β̇CIRλ0)/t. The FDR

for the CIR case is parametrized by the set (κ,Γ, σ, λ0).

We see that an increase in volatility gives a decrease in the FDR or an

increase in the survival probability which can be seen as a consequence of

Jensen’s inequality for convex functions (probability of survival ∼ eX) or

by power counting α ∼ 1/σ which decreases for increasing σ (see Figure

1). The next figure is for varying the mean-reversion speed κ holding all

other parameters fixed. We see that an increase in κ flattens out the FDR.

Again by power counting we find that the FDR ∼ e−
√

κt which flattens out

fast for larger κ. Both cases can be analysed by looking at the asymptotic

behaviour of the FDR. A quick calculation for large t reveals that

FDRCIR ∼ θ

(

1 − σ2

2κ2

)

(4.39)

and we see that for increasing σ the asymptote decreases to zero, while

for increasing κ the asymptote increases towards θ. The next figure is for

varying the initial intensity λ0 and we can see that for a high initial default
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Figure 2: CIR Forward Default Rate Varying κ
Parameters: λ0 = θ = 0.02, σ =

√
λ0 ≈ 14%.

intensity above the asymptotic value given above, the forward default rate

decreases suggesting that a firm’s credit quality will improve conditional

on survival. The opposite is true for firms with a low initial default rate

compared to the asymptotic value. In this case there is an increase in the

forward default intensity. It should be noted that the graphs of the credit

spreads look very similar except for a dialation in the time axis due to the

1/t coefficient.

4.2 MRJ Forward Default Rate

The expressions for this case needed for the evaluation of the FDR are

˙αmrj = γκβmrj −
cJ

κ + J

(

1 +
˙βmrj

1 − Jβmrj

)

(4.40)

˙βmrj = −e−κt = − (κβmrj + 1) (4.41)

and we observe that the FDR is parametrized by the set (κ, γ, c, J, λ0).

Below we give graphs to investigate the role of the parameters. As in the

case it is helpful to find the asymptotic behaviour of the FDR

large t FDRmrj ∼ γ +
cJ

κ + J
= FDR∞ (4.42)
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Figure 3: CIR Forward Default Rate Varying λ0

Parameters: κ = 0.25, θ = 0.02, σ =
√

θ ≈ 14%.

which is similar the long-run mean of the MRJ process. We see that in-

creasing κ lowers the long-run mean as well as increasing the convexity (if

λ0 > FDR∞) and concavity (if λ0 < FDR∞) of the FDR curve (see Fig-

ure 4). The γ parameter is somewhat boring as it has a linear change in

the FDR∞ level of the FDR curve and a slight enhancement to the convex-

ity/concavity as it decreases (see Figure 5). More intersting is what happens

when we increase the jump intensity c from zero (no jumps) to c = 1 (a mean

jump arrival rate of once per year, see Figure 6). For large initial default

intensites (say λ = 0.08) and large jump intensities we see a hump develop

in the FDR curve and for large times the curve flattens out above the initial

default intensity. This implies that a firm’s credit quality will degrade and

then improve slightly over the long run. In the same case but with low jump

intensities we see that the FDR curves are convex suggesting an imporve-

ment in a firm’s credit quality. If the initial default intensity is low (say

λ = 0.01), the hump in the curve eventually appears at later times for all

values of c, indicating an inevitable degradation in the firm’s credit quality.

If we now consider the case of varying the jump sizes we see that for large

initial default intensities the FDR decays to the FDR∞ for all J , but for

small initial default intensities, it is the opposite, we see an increase in the

FDR to FDR∞ for all J (see Figures 7,8).
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Figure 4: MRJ Forward Default Rate Varying κ
Parameters: c = 0.02, J = 0.2, γ = 0.02, , λ0 = 0.08.

Although the both the CIR and MRJ model are simple in form, they

posses a certain degree of complexity with regards to their parameter spaces

and some similarities in their FDR curves. We now turn to investigating

the relationship between the two models and what this relationship implies

for the FDR curves.

5 Moments of the MRJ and CIR Processes

Here we present how the two different process, the MRJ and CIR, can be

related by investigating the mean and variance and making a suitable choice

of parameters. With a proper choice of interparameter dependence we look

at the implications for the FDR curves for both the MRJ and CIR. We

also attempt to find similar relationship between other pairs of processes,

and investigate what conditions must be satisfied in order for the parameter

identification via moment matching technique to work.

5.1 Moment Matching

To arrive at the conditional moments for a diffusion process there are two

equally valid methods. One can take derivatives of the characteristic func-
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Figure 5: MRJ Forward Default Rate Varying γ
Parameters: c = 0.02, J = 0.2, κ = 0.25, λ0 = 0.08
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Figure 6: MRJ Forward Default Rate Varying c
Parameters: J = 0.2, κ = 0.25, γ = 0.02, λ0 = 0.08.

tion or by taking expectations of the process itself. Although the character-

istic funcition is mathematically elegent in some cases it may be difficult to
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Figure 8: MRJ Forward Default Rate Varying J
Parameters: c = 0.02, κ = 0.25, γ = 0.02, λ0 = 0.08.

obtain5. Taking expectations is almost always straightforward but leads to a

5For examples on calculating the characteristic function see [6]
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Parameters: c = 0.02, κ = 0.25, γ = 0.02, λ0 = 0.01.

matrix of ODEs that must be solved recursively for higher order conditional

moments [7],[8]6 . In the case of the MRJ and CIR we opted for the second

approach and present it below.

Here we outline a method of obtaining the conditional moments for a

general class of jump-diffusion process. Consider the process jump-diffusion

process

dλt = µ(λt)dt + σ(λt)dWt + JtdN(ρtt) (5.43)

where Wt is standard Brownian motion, Jt is the jump size distribution with

density function ν(J), and N(ρtt) is a Poisson driving process with intensity

fucntion ρt, and the jumps are independent of the Brownian term. To derive

the conditional moments for all orders up to including the k th order for the

above diffusion one employs the generalized Ito formula for jumps on powers

of λt through to λk
t and then taking expectations. The result is

Es(λ
k
t ) = λk

t + Es





t
∫

s

(

kµ(λu)λk−1
u +

1

2
k(k − 1)σ2(λu)λk−2

u

)

du





6There is an error in this paper regarding the system of ODEs for the jump case. The
correct version is presented here
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+Es





t
∫

s

ρuEJ

[

(λu + Ju)k − λk
u

]

du



 .

Assuming we have enough regularity to interchange the order of integration

with the expectation , and then take derivatives w.r.t t we obtain the system

of non-linear ODEs

dEs(λ
k
t )

dt
= Es

[

kµ(λu)λk−1
u +

1

2
k(k − 1)σ2(λu)λk−2

u + ρuEJ

[

(λu + Ju)k − λk
u

]

]

(5.44)

with boundary conditions Es(λ
k
s) = λk

s . The above formula for the con-

ditional moments is extremely useful in general, and takes on even more

appeal if the processes under study have affine coefficients. Both the MRJ

and the CIR have affine coefficients and we now turn to the evaluation of

their first and second moments. In the following calculations we will take

s = 0 and E0(ρt) = c, a constant intensity from the exponential distribution,

and Jt independent of time for simplicity.

5.2 Moments of CIR+Jumps

Here we show how the above method can be applied to a CIR + jumps

model (CIRJ)

dλt = κ(θ − λt)dt + σc(λt)dWt + JtdN(ρtt) . (5.45)

The regular CIR is retrieved in the limit that the jumps go to zero (cc → 0)

and the MRJ by setting the volatility to zero (σc → 0). To obtain the first

and second moments we use k = 1, 2 in the above to obtain the system

ṁ1 = −κm1 + κθ + cE(Jc) (5.46)

ṁ2 = −2κm2 +
[

2κθ + σ2
c + 2ccE(Jc)

]

+ ccE(J2
c ) (5.47)

where m1 = Et(λt),m2 = Et(λ
2
t ) are the first and second moments, cc is the

intensity of the jumps for the CIRJ process, and Jc is the jumps in CIRJ,

the density is general. The above system of equations can easily be solved

with the use of intergrating factors, and we pass over the derivation and

only quote the result

E0(λt) = λ0e
−κt + θ̄

(

1 − e−κt
)

(5.48)
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E0(λ
2
t ) = λ2

0e
−2κt +

ccE(J2
c )

2κ
(5.49)

+ 2

(

θ̄ +
σ2

c

2κ2

)[

λ0

(

e−κt − e−2κt
)

+
θ̄

2

(

1 − e−κt
)2
]

=⇒ V ar(λt) =
λ0σ

2
c

κ
e−κt

(

1 − e−κt
)

+
σ2

c θ̄

2κ

(

1 − e−κt
)2

(5.50)

+
ccE(J2

c )

2κ

(

1 − e−2κt
)

where θ̄ = θ + ccE(J2
c )/κ. This is just the usual CIR mean and variance but

with θ → θ̄ and an additional term due to the variance of the jumps. The

large t limit gives

t → ∞ E0(λt) = θ +
ccE(Jc)

κ
(5.51)

t → ∞ V ar(λt) =
σ2

cθ

2κ
+

cc

2κ

(

σ2
c

κ
E(Jc) + E(J2

c )

)

(5.52)

so that the mean and variance of the CIRJ are enhanced by the mean and

variance of the jumps relative to the regular CIR process.

5.3 Moments of MRJ + Volatility

If we add a Brownian term σm

√
λtdWt to the MRJ process the new process

is the same as the CIR considered above but with different parameters for

the volatility σm, the mean-reversion level γ, and jump parameters cm, Jm.

We could have added a constant or geometric Brownian term, but we would

like to keep the process positive since we will make a comparision to the CIR

process. Although we have imposed a restriction on the Brownian term, we

have not imposed the same jump size distribution, this is free to choose as

long as the jumps are positive. The form of the results apply here and we

give the large t form for the mean and variance

t → ∞ E0(λt) = γ +
cmE(Jm)

κ
(5.53)

t → ∞ V ar(λt) =
σ2

mγ

2κ
+

cm

2κ

(

σ2
m

κ
E(Jm) + E(J2

m)

)

. (5.54)

5.4 Moment Matching MRJ and CIR

By ignoring the higher order moments which generate skewness and kurtosis

we can make a rough parameter equivalence bewteen the two processes pro-
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vided we have enough initial information regarding their jump processes. As

simple case, suggested by Duffie [1] is to consider a MRJ process with expo-

nentially distributed jumps and compare it to a CIR. Equating the first and

second moments above and setting σm = cc = 0 and σc,= σ, cm = c, Jm = J

immediately gives

γ = θ − cJ

κ
(5.55)

J =

√

σ2θ

2c
. (5.56)

If we are given the intensity c then we have completely specified the MRJ

parameters in terms of the CIR parameters which we assume are known,

and recall that κ is the same for both processes. We now investigate what

this parameter identification implies for the forward default rates for both

MRJ and CIR.

6 Moment Matching and the Forward Default Rate

In section 3.5.3 of Duffie’s book ‘Credit Risk’, the claim is made that after

choosing the jump parameters c and J of MRJ to match the moments of

λt for CIR there is little difference in the forward default rate curves. This

paper has been building to prove this claim in the affirmative and we are

in a position to give quantitative support. From section 4, we have definite

values for the CIR parameters

κ = 0.25, θ = 0.02, σ =
√

θ, λ0 = free parameter (6.57)

and for the MRJ we have the intensity c = 0.02 which gives the moment

matching conditions as

J =

√

θσ2

2c
= 0.1 and γ = θ − cJ

κ
= 0.012 . (6.58)

Below are plots which give the forward default rate and credit spread

for different λ0 showing an exact agreement with the graphs in [1]. The two

processes are pratically identical for small values of λ0 deviating less than 5

basis points over the 20 year time frame and for larger values, say λ0 = 0.06,

the deviation is less than 20 basis points over the same time period. A

similar statement can be said about the credit spread as well (see Figures
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10-13). Differences to start to appear once we change the parameters c, J, κ.

Let us first consider the role that κ has in altering the near-perfect fit. As

stated previously, increasing κ is equivalent to increasing the FDR∞ of both

processes. We provide plots of the FDR curves for κ = 0.1, 0.15, 0.25, 0.5 for

a λ0 = 0.3 and c = 0.02, J = 0.1 and note the increase in the long-run mean

(see Figures 14-17). As well, the striking feature in this set of graphs is the

hump shaped and decaying FDR for the MRJ model under the particular

choice of of κ <≈ 0.1 (verifed by simulation). In this case there is also a

large deviation between the two curves. As we increase κ this deviation

lessens to a negligable amount at κ = 0.5.

This behaviour sprurred the question of whether the particular choice of

the parameters c = 0.02 and κ = 0.25 used for deriving the similarities of the

MRJ and CIR forward default rate curves was somehow chosen by luck or

carefully selected to achieve a positive result. Rather than trying to optimize

all three parameters c, J, κ simultaneously we chose a quick first-order ap-

proximation by optimizing to each one seperatly while holding the other two

fixed at their given values. We calcuated the RMSE between the MRJ and

CIR forward default rate curves for different λ0 ∈ [0, 0.1] with a ∆λ0 = 0.002

as we iterated through the parameter space under consideration, and aver-

aged in the 50 year period. Below are three plots (Figures 18-20) which

show that under this approximation to the full simultaneous optimization

of all three parameters, we obtain c = 0.0225, J = 0.0173, κ = 0.2490 ,

which compares well with the values of c = 0.02, J = 0.1, κ = 0.25. Since

the RMSE is convex for each case and has an quadratic-type dependence

we could be almost safe to say that this is a stable point in the parameter

space. It would seem that this choice of parameters in [1] was serendipity.

7 Conclusions

The choice of a mean-reverting jump model with exponential jump sizes

and jump intensity is possibly the simplest case to consider when compar-

ing it to a CIR process. Both are members of the affine class and have closed

form solutions for the survival probabilities, forward default rates and credit

spreads which we have shown explicitly. Since both are strickly positive and

mean-reverting we expect some similarities to appear after a analysis of the

moments. We may try to consider more complex diffusions with the ad-

dition of a Brownian term, but this would introduce complications on two
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Figure 10: FDR for MRJ and CIR
Parameters:λ0 = 0.01, 0.02, 0.06

levels. The diffusion may go to negative values which is an unattractive fea-

ture for modeling intensity processes and leads to non-sensical probabilities

and secondly, the procedure of moment matching would only become more

complicated with another parameter to match. Another possbile extension

is to change the jump distribution for only positive jumps. Potential candi-

dates could be the Gamma(α, β) or Weibull(α, β) distributions. Although

the moment matching equations were derived for general distributions, the

drawback in using more complicated jump distributions is that the variance

of the distribution would have to be matched. This is incompatible with a

straight CIR process, but may be possible if a positive jump term is added

(CIRJ). In addition we have shown that for the MRJ and the CIR a par-

ticular parameter identification leads to almost equivalent forward default

rates. The choice of remaining parameters, in particular the mean-reversion

rate κ does not uphold this property uniformly in its parameter space. A

numerical investigation showed that the choice κ = 0.25 used initially is an

optimal point.
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