Assignment 4 - V703
 Financial Modeling Valuation

01/02/2007

1. This problem aims to compute the value for the option to invest in a project over the next $T=10$ years. The underlying value of the project is assumed to follow a Geometric Brownian motion with volatility σ and pays dividends at an annualized rate δ. Assume that the investment sunk cost is $I=100$ (in millions of dollars) and that the annualized risk free interest rate is $r=0.04$. In each of the following items, use the Excel macro from lecture 5 to obtain a 26×101 grid of option values $F(i, j)$:
(a) Create an Excel chart which graphs the option values as a function of the project value when $t=0$ (the first column in the grid), using a fixed $\delta=0.03$ and three different values $\sigma=0.2,0.25,0.3$ (make sure to plot the three functions on the same chart). Still on the same chart, graph the function $(V-I)^{+}$. Based on the graphs, explain how the exercise threshold varies with the volatility of the underlying project.
(b) On a separate chart, repeat the previous item for a fixed $\sigma=0.2$ and three different values $\delta=0.03,0.05,0.07$. Explain how the exercise threshold varies with the dividends paid by the project.
