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1 Introduction

2 Malliavin Calculus

2.1 The Derivative Operator

Consider a probability space (€2, F, P) equipped with a filtration (F;) generated by a one-
dimensional Brownian motion W; and let L?*(2) be the space of square integrable random
variables.

Let L?[0, T| denote the Hilbert space of deterministic square integrable functions h : [0, T] —
R. For each h € L?[0,T], define the random variable

W (h) = /0 ' h(t)dW,

using the usual Ito integral with respect to a Brownian motion. Observe that this is a Gaussian

random variable with E[W(h)] = 0 and that, due to the Ito isometry,

E[W (h)W(g)] = / h(t)g()dt =< h,g > 1201,

for all h,g € L*0,T).
The closed subspace H; C L*(2) of such random variables is then isometric to L?[0,T] and

is called the space of zero-mean Gaussian random variables.
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Now let C3°(R") be the set of smooth functions f : R* — R with partial derivatives of

polynomial growth. Denote by & the class of random variables of the form
F = fW(hi), ... W(hn))
where f € C>° and hy, ..., h, € L*([0,T]). Note that S is then a dense subspace of L*(Q).

Definition 2.1 : For F' € S, we define the stochastic process

QF:i:W

i=1

(W (h1), ..., W(hy,))hi(t)

X

One can then show that DF € L?(Q2 x T).
So for we have obtained a linear operator D : S C L*(Q2) — L*(Q2 x T'). We can now extend

the domain of D by considering the norm
[ F |12 = [|F||z2) + [|DeF || 22 (x)
We then define D2 as the closure of S in the norm || - ||;2. Then
D:D"2CL*(Q) — L*(QxT)
is a closed unbounded operator with a dense domain D'2.

Properties:
1. Linearity: D;(aF + G) = aD;F + DG, VF,G € D'?
2. Chain Rule: D,(f(F)) =3 fi( F)D,F, VYfeCrR), F; e D"?

3. Product Rule:D(FG) = F(D,G)+G(D,F), VF,Ge D" st. Fand ||DF||12@qxr) are
bounded.

Simple Examples:

1. Dy( [ h(t)dW;) = h(t)

2. DtWS = ]-{tgs}



3. Dif(Wy) = f (Wy)lges

Exercises: Try Oksendal (4.1) (a), (b), (c), (d).

Fréchet Derivative Interpretation

Recall that the sample space €2 can be identified with the space of continuous function

C(]0,T]). Then we can look at the subspace

={yeQ:y= /Oth(s)ds,h c L?[0,T]},

that is, the space of continuous functions with square integrable derivatives. This space is
isomorphic to L?[0,7] and is called the Cameron-Martin space. Then we can prove that
fOT(Dt)Fh(t)dt is the Fréchet derivative of F' in the direction of the curve v = f(fh s)ds
that is

d
/ D,Fh(t) = —F(w+ e7)le=0

2.2 The Skorohod Integral

Riemann Sums

Recall that for elementary adapted process
= Z Fil(ti,twﬂ(t)a F; e fti

the Ito integral is initially defined as

/utth ZF Wit — Wi)

Since ¢ is dense in L3(2 x T'), we obtain the usual Ito integral in LZ(Q x T') by taking limits.
Alternatively, instead of approximating a general process u; € L*(£2 x T') by a step process
of the form above, we could approximate it by the step process

00 =3 i ([ Blul s ) T

i—0 tz—i—l - tz




and consider the Riemann sum

n

1

— titn — 4

tit1
([ Bl Fenarlds ) )02, = 0
t;

If these sums converge to a limit in L?*(€2) as the size of the partition goes to zero, then the
limit is called the Skorohod integral of w and is denoted by §(u). This is clearly not a friendly

definition!

Skorohod Integral via Malliavin Calculus

An alternative definition for the Skorohod integral of a process u € L*[T x Q] is as the
adjoint to the Malliavin derivate operator.

Define the operator 6 : Dom(8) C L*[T x Q] — L*(Q) with domain
T
Dom(d8) = {u € L*[T x Q] : |E(/ Dy Fuydt)| < c(w)||F||r2(, VF € D"?}
0
characterized by
E[Fé(u)] = Elint} Dy Fuydt]

that is,

< F,0(u) >2=< DiF,u >121749

That is, d is a closed, unbounded operator taking square integrable process to square integrable

random variables. Observe that E[é(u)] = 0 for all u € DomJ.

Lemma 2.0.1 :Let u € Dom(d), F € DY? s.t. Fu € L*[T x Q]. Then

~—

d(Fu) :F(S(u)—/OTDtFutdt (1

in the sense that (Fu) is Skorohod integrals iff the right hand side belongs to L*(£2).

Proof:Let G = g(W(Gy, ..., Gy,)) be smooth with g of compact support. Then from the product

rule



ElGFS(w)] = E| / C Dy(CF ) und]
e / " Dy Fudt] + BIF / ' DGud]

~ B / " DyFuydt] + E[G6(Fu)

For the next result, let us denote by L2[T x ] the subset of L?[T x Q] consisting of adapted

processes.

Proposition 2.0.1 : L2[T'xQ] C Dom(d) and § restricted to L? coincides with the Ito integral.
Exercises: Now do Oksendal 2.6, 2.1 (a),(b),(c),(d), 4.1 (f), as well as examples (2.3) and (2.4).

3 Wiener Chaos

Consider the Hermite polynomials

Ho(o) = (-1 e () = 1

which are the coefficients for the power expansion of

2
F(z,t) = e T

It then follows that we have the recurrence relation

d

(‘73 - %)HH($) = Hn+1(x)~



The first polynomials are

Hy=1
lex
Hy(z) =2% —1

{ .
Lemma 3.0.2 : Let x,y be two random variables with joint Gaussian distribution s.t. E(x) =

E(y) =0 and E(z*) = E(y*) = 1. Then for all n,m > 0,

0, ifn#m
nlE(zy)" ifn=m
Proof: From the characteristic function of a joint Gaussian random variable we obtain

2 2 2y
E[esX—l—vY] — e +svE[XY]+%5 = E[ sX 5 eV vY -4 ] _ est[XY]

Taking the partial derivative on both sides gives

a na ™
0, ifn#m
nlE(zy)” ifn=m

Let us now define the spaces

H,, = span{H, (W (h)), h € L*0,T]}

These are called the Wiener chaos of order n. We see that H, corresponds to constants while
H; are the random variables in the closed linear space generated by {W(h) : h € L?[0,T]} (as
before).

Theorem 3.1 : L*(Q, Fr,P) =", Hn

Proof: The previous lemma shows that the spaces H,, H,, are orthogonal for n # m.



Now suppose X € L*(Q, Fr, P) is such that E[X H, (W (h))] = 0,Vn,Vh € L?[0,T]. Then
EXW(h)"| =0, Vn,Vh
= E[Xe"W] =0, VA
= E[XeX=tWh) =0 Vi, . t, €R Vhy,...,hm €R

X=0

Now let O, = {(t1,...,t,) € [0,T]",0 < t; <ty <...<t, <T}. We define the iterated

integral for a deterministic function f € L%[O,] as

T tn to
Jn(f) - \/0 /0 . /0\ f(tl, [P ,tn)thl st thn—lthn

Observe that, due to Ito isometry,

(D2 @) = l1f] 2004

So the image of L?[S,] under J, is closed in L?(2, Fr, P). Moreover, in the special case where
f(ty,... . t,) = h(ty)...h(t,), for some h € L?[0,T], we have

nl (Rt h(ts) . . h(ty)) = HhH”H(%%

as can be seen by induction. Therefore, H,, C J,(L?*[O,]). Finally, a further application of Ito
isometry shows that

0, if n#m

< g,h>p20,) ifn=m ‘

Therefore J,,(L?[0,,]) is orthogonal to H,, for all n # m. But this implies that H,, = J,(L*[O,]).

We have just given an abstract proof for the following theorem.

Theorem 3.2 (time-ordered Wiener Chaos): Let F € L*(Q, Fr, P). Then

F= Z Jm(fm)

m=0

for (unique) deterministic function f,, € L*[O,,]. Moreover,

1l 2ie) = D 1 fml 2210,
m=0



Example: Find the Wiener chaos expansion of F' = W2. Solution: We use the fact that Ho(z)

z?—1. So writing Wr = fOT Ly<rydW, = fo (t)dWr we obtain ||h|| = (fo 1y dt)'/? = T2,
SO
W W2
Hy( ) = 2T -
|pl” T
From
T to W/]Q_'
2/ / 1{t§T}1{t§T}th1th2 - T(T - )
o Jo
We find

Wi =T +2Jy(1).
The connection between Wiener chaos and Malliavian calculus is best explained through
the symmetric expansion, as opposed to the time- ordered expansion just presented
We say that a function g : [0, 7]" — R is symmetric if
9( Xy Xo,) = 9(Xq, .., X))
for all permutations o of the set {1,...,n}. The closed subspace of square integrable symmetric

functions is denoted LZ([0,T]"). Now observe that O, occupies only the fraction < of the box

Therefore, for a symmetric function we have

[P / / / (.. t)dbdt,
= n!/ / / G (ty,. .. ty)dtydt,
0 0 0

= n!||9||%2[on]

[0, 7"

Try to do a two dimensional example to convince yourself of this
We can now extend the definition of multiple stochastic integrals to function g € L2[0, T

// / (tr, ... ta)dW,, - - - dWV,,

= nlJu(

:m// / (b1, )Wy, AW,

by setting



It then follows that

E[L(9)] = En*J5(9)] = nl|lgl|r2(0,) = n!llgll 2o,z

so the image of L2[0,T|" under I, is closed. Also, for the particular case g(ty,...,%,)

h(ty)...h(t,), the previous result for the time-ordered integral gives

W)

Therefore we again have that H,, C I,(L?). Moreover, the orthogonality relation between

integrals of different orders still holds, that is
0, if n#m
n!l<g,h> ifn=m

Therefore I,,(L?) is orthogonal to all H,,, n # m, which implies I,,(L?) = H,,.

Theorem 3.3 (symmetric Wiener chaos) Let L*(Q2, Fr, P). Then

F:Z[m<g )

m=0

for (unique) deterministic functions g, € L2[0,T]". Moreover, ||F||r2(5) = > ve_o M| gml | 200,77

To go from the two ordered expansion to the symmetric one, we have to proceed as following.

Suppose we found

F= iJm fm)s fm € L2[00)]

m=0

First extend f,(t1, ..., t,) from O, to [0, T]™ by setting

fn(tr, o stm) =0 if  (t1,...,tm) €[0,T]™\Op,

Then define a symmetric function

g (tlﬂ m‘me a1y O'm)

Then
L (9m) = MV (Gm) = T (fim)
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Example: What is the symmetric Wiener chaos expansion of F' = Wy (Wy — W,;)? Solution:

Observe that

W, (W(T)—-W,;) = t/T AW,

— / / th1 thz
= / / 1{t1 <t<t2}dI/Vt1 th2
0 Jo

Therefore F' = J(1{, <t<t,}). To find the symmetric expansion, we have to find the symmetriza-

tion of f(tla t2) = 1{t1<t<t2}- This is

otnt) = 3lf(tata) + (e 1)

1
- §[l{t1<t<tz} + 1{t2<t<t1}]

Then F = L[5 (1p,<t<ts} + Lita<t<ti})]

Exercises: Oksendal 1.2(a),(b),(c),(d).

3.1 Wiener Chaos and Malliavin Derivative

Suppose note that F' € L?(Q2, F, P) with expansion
F= Z Im(gm>a Im € L?[OvT]m
m=0
Proposition 3.3.1 F € D2 if and only if

o
Z mm!||gm||%z(Tm) < 00

m=1
and in this case

DiF = il 1(gm(-1)) (2)

m=1

Moreover HDtFHL2 OxT) = D=t mm!|| g |[72-
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Remarks:

1. If F € D'? with D,FF = 0 Vt then the series expansion above shows that F' must be
constant, that is F' = E(F').

2. Let A € F. Then
Dy(14) = Dy(14)* = 214D,(1,).

Therefore

Di(14) = 0.

But since 14 = E(14) = P(A), the previous item implies that

P(A)=0or1

Examples:(1) (Oksendal Exercises 4.1(d)) Let

T to

F = / / cos(ty + to)dWy, dW,,
o Jo

1 T T
= — / / COS(h + t2)th1th2
2 0 0

Using the (2) we find that

1 T T
D,F = 25/ cos(ty +1t) = / cos(ty +t).
0 0

(2) Try doing D;W# using Wiener chaos.

Exercise: 4.2(a),(b).

3.2 Wiener Chaos and the Skorohod Integral

Now let u € L?(2 x T'). Then it follows from the Wiener-Ito expansion that

o0

U = Z Im(gm(-7t>), gm(.’t) c Lg[()’T]m
m=0
Moreover
el 2oery = > Mgl 22107741
m=0
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Proposition 3.3.2 : u € Domé if and only if

oo

>+ DGl 32y < 00

m=0

in which case

6(u) = Z L1 (Gm)
m=0
Examples: (1) Find 6(Wr) using Wiener Chaos. Solution:

T
WT:/ 1th1 :Il(l), fOIO, f1:1, fn:O anZ
0

Therefore
S(Wr) = L(1)=2J1) =W =T

(2) Find 6(W?2) using Wiener Chaos. Solution:

W2=T+1L,(1), fo=T, fi=0, fo=1f,=0 ¥n>3

S(W2) = L(T)+ I,(0) + I3(1)

= TWT+T3/2H3(M;$/1;))
W(T)?  3W(T)
T3/2  T1/2 )
= TWy+W(T)* - 3W(T)T

= TWy+ T%%(

= W(T)> - 2TW(T)

3.3 Further Properties of the Skorohod Integral
The Wiener chaos decomposition allows us to prove two interesting properties of Skorohod

integrals.

Proposition 3.3.3 : Suppose that u € L*(Q x T). Then u = DF for some F € DY? if and

only if the Kernels for
u =Y Ln(fn(-,1))
m=0

18 symmetric functions of all variables.
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Proof: Put F =3 —tli1(f(-51)).

Proposition 3.3.4 : Every processu € L*(Q2xT) can be uniquely decomposed asu C DF+u°,
where F € DY? and E([ D,Guddt) = 0 for all G € DY?. Furthermore, v € Dom(§) and
§(u?) = 0.

Proof: It follows from the previous proposition that an element of the form DF, F € D'/?

form a closed subspace of L?(2 x T).

4 The Clark-Ocone formula (Optional)
Recall from Ito calculus that any F' € L?(w) can be written as
T
0

for a unique process ¢ € L?(Q1 x T). If F € D'/?  this can be made more explicit, since in this

case

T
F=B(F)+ / E[D,F|F)dW,
0

We can also obtain a generalized Clark-Ocone formula by considering
AWE = dW + \dt

and the measure % — Zp = e~ Jo MAWi=3 [ Mt Then for F € DY/? with additional technical

conditions we obtain

F = Eg[F] + / ' Eo[(DiF — / ' D)\ dWE)|F,]dw e
Exercises: 5.2 (a),(b),(c),(d),(e),(f) 5.3 (a),(b),(c)

5 The Malliavin Derivative of a Diffusion

Let us begin with a general result concerning the commutator of the Malliavin derivative and

the Skorohod integral.
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Theorem 5.1 : Let u € L*(Q x T) be a process such that u, € DY? for each s € [0,T].
Assume further that, for each fized t, the process Dyus is Skorohod Integrable (Dyus € Dom(9)).
Furthermore, suppose that §(Dyu) € L*(Q x T). Then 6(u) € DY? and

Dy(d(u)) = ur + d(Dyu) (3)

Proof: Let us =Y °_ In(fm(+,s)). Then

= Z ]m+1(f )

where f,, is the symmetrization of f,,(-,s). Then

m=0
Now note that
Fnlte, .o tmst) = mLH[fm(tl,...,tm,t) + [t toy ooty b)) + oo fon(trs e b1, G )]

= mLH[fm(tl, cost ) f(t, ot b)) + fon (B tay oo b1, £ 1) +

oo fn(t, ot t )]

Therefore o .
u)) = Z Ln(fn (- 1)) + Z mdy (symmfu (-, t,-).
m=0

m=0

On the other hand

5(Dtu) = 5[Dt(zlm(fm('a5)))]
= 5[ijmfl(ﬁn<'7t78))]

= Z mly(symmfu (-, t,-))
m=0
Comparing the two expressions now gives the result.

Corollary 5.1.1 : If, in addition to the conditions of the previous theorem, ug is Fs adapted,

we obtain

T T
Dt(/ usdWy) = uy +/ D,ugdW,
0 ¢
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Now suppose that
dXt = b(t, Xt)dt + O'(t, Xt)th

for functions b and o satisfying the usual Lipschitz and growth conditions to enssure existence

and uniqueness of the solution in the form
t t
X = Xp +/ b(u, Xu)du—i-/ o(u, X,,)dW,
0 0

It is then possible to prove that X; € D2 for each t € [0, T]. Moreover, its Malliavian derivative

satisfies the linear equation
t t
Di(X)) = D / b(u, X, )du) + Dy / o (u, X,)dIV,)
0 0

t t
— / b (u, Xu) D Xydu + o (s, X,) + / o (u, Xo) D, X, dW,

That is,
LV b
DX, = U(S,Xs)exp[/ (b — 5(0 )?)du +/ o dW,]

In other words,

Y,
DX, = ?ta(s,Xs)l{sgt}

s

where Y} is the solution to

dY; = b (t, X,)Yydt + o (t, X)Y,dW,, Yy =1.
This is called the first variation process and plays a central role in what follows.
Examples: (1) dX; = r(t) Xidt + o(t) XedWs, Xo ==

— dY; = r(t)Y,dt + o(t)Y,dW,

(2) dXt = <9<t> — kXt)dt + Uth, XO =X
— dY, = —kY,dt = Y, ="

15



DX, = e Fi=9g
(3) dXt = k(@ — Xt)dt + g/ Xtth7 XQ =T

1
dY, = —kY,dt
rat + = Woe

¢
lo
DSXt:U\/XSexp[—/(k’ ixX du—i—

Ytth

[T

6 Malliavin Weighted Scheme

Suppose now that we want to calculate E[¢ (X)G] where X is an underlying asset, ¢ is a pay-off
=X

using the chain rule for the Malliavin derivative we have that, for an arbitrary process hg,
Gh.Dy(¢(X)) = Gheo (X)Dy. X
Integrating both sides of the equation gives
- [ "G, D,(6(X))ds = G (X) / "h.D.xds
0 0

That is
Voo GhyDy(¢(X))ds

Go' (X
0 Jy heD X ds

Ghs

TThiD.Xds" Then from duality
o sls S

Define u, =

= B[ D.(6(X)uds] = Blo(X)5(0)

Therefore E[¢ (X)G] = E[¢(X)n], where
Ghy

= (foT hSDSde)' (4)

™

(72
Example: Let Sy = Soe"= )T + Wy, Then its delta is given by

A = Ele7"¢(Sr)]

OST

= B¢ (Sr) 5 )
e_rT ’

= So E[<Z5 (ST)ST]

16



Using (4) with hy = 1 we get

St
T
fO DSSTdS
(et )
o§rintl 115=T}ds
1
= §(—
(—F)
Wr
ol

T = 0 )

Therefore

For the vega we have

v = L gy

0o
: a5
= ¢ "TE[9(51) 5 ]

= e "TE[¢ (Sp)(Wr — oT)Sy]

Again, applying (4) with hs = 1 we obtain

(WT - O'T)ST)

r = 5

that is

17



Finally, for the gamma we have to evaluate a second derivative. That is

r = 2o gy
032 r
et )

~ Bl snsi

We begin by applying (4) to this last exapression. This gives

El¢"(Sr)S7] = E[¢ (Sr)mi]

B Sz Sty StWr
7T1_5(UTST _5<O'_T>_ oT 7

That is

/

E[¢'(Sr)S7] = E[¢

We now use the formula again for

Wr_ 1
_ ol
m = o ol )
W 1
- 5(0'2T2) - 6(?)
B Wi-—T Wy
o277 ol
e T W2 1
= St [¢(ST)(U—T - Wr — )]

such that v = o=
0

To formalize our discussion, suppose f € D2 and denote by W the set of random variables

7 such that
Elp (F)G] = E[p(F)¢], V ¢€Crf

Proposition 6.0.1 : A necessary and sufficient condition for a weight to be of the form ™ =

d(u) where uw € Dom(9), is that
T
B / Dy Fudt|F(F)) = EIGIF(F)]  (+)
0
Moreover, w1y = E[w|F(F)| is the minimum over all weights of the correct functional

/

Var = E[(¢(F)r — E[¢ (F)G])?]

18



Proof: Suppose that u € Dom(8) satisfies
B /O * D Fusdtlo(F)] = E[Glo(F)]
Then
E[¢'(F)G] = E[E[¢ (F)Glo(F)]

= E[¢'(F)EG|o(F)]

— E[¢'(F)E| /0 Dy Fugdt|o(F)]]

B / Dyb(F)ugdt]
E[B(F)5(u)df]

so ™ =d(u) is a weight.

Conversely, if 7 = §(u) for some u € Dom(9) is a weight, then

El¢'(F)G] = [¢6§ )]
— B / Di(F)und]

= El¢(F) /O TDtFutdt]

Therefore,

E| /0 Dy Fugdt|o(F)] = E[G|o(F)).

To prove the minimal variance claim, observe first that for any two weights 7, 7y we must
have E[m|o(F)] = Elm|o(F)]. Therefore, setting mo = E[n|o(F')] for a generic weight m we

obtain

var" = E[(¢(F)r — E[¢ (F)G])’]



But

! !

E[p(F)(m — mo)(¢(F)mo — E[¢ (F)G])] = E[E[¢(F)(m — 70)(¢(F)mo — E[¢ (F)G])]|o(F)] = 0.

Therefore the minimum must be achieved for © = mg.

7 Generalized Greeks

Consider now

dXt = T(t)Xtdt -+ O'(t, Xt>th, XO =X

where r(t) is a deterministic function and o+, -) satisfies the Lipschitz, boundedness and uniform
ellipticity condition. Let 7(t), 6(-,-) be two directions such that (r + et) and (o + €5) satisfy
the same conditions for any e € [—1,1].
Define
dX;t = (r(t) + ) X + o(t, X;1)dW,
dX? =r(t) X7 + [o(t, X[?) + €6 (t, X?)|dW,
Consider also the price functionals, for a square integral pay-off function of the form ¢ : R™ —

R.
P(z) = EQe~Jo "®dty(x, .. X, )]

P (z) = E9e” foT(T’(t)+E1F(t))dt¢(X€1

t1 9

o Xl

pee (:L’) _ ES [67 fOT r(t)dt(b(XeQ

to

X))

Then the generalized Greeks are defined as

_ 0P(z) _O?P
A== =gz
_ope

opP
= 5 le1=0,7» V_—EZ&
P 861|1 0, 862‘2 0,

The next proposition shows that the variations with respect to both the drift and the
diffusion coefficients for the process X; can be expressed in terms of the first variation process

Y, defined previously.

Proposition 7.0.2 : The following limits hold in L?-convergence

20



Xl-xy thf(S)XSdS
€1 —Jo Ys

1. limq_@

. X2-X; [t 6(s,Xs tyr o (5,Xs)5(s,Xs)
2. lim, o =~ = I Yi%dWs—fOYt ( 525( ds

8 General One—Dimensional Diffusions

Now we return to the general diffusion SDE
dXt = b(t, Xt)dt + U(t, Xt)th

where the deterministic functions b, o satisfy the usual conditions for existence and uniqueness.
We will find several ways to specify Malliavin weights for delta: similar formulas can be found
for the other greeks. An important point not addressed in these notes is to understand the
computational issues when using Monte Carlo simulation. This will involve the practical prob-
lem of knowing which processes in addition to X, itself need to be sampled to compute the
weight: the answer in general is to compute the variation processes Y;, Yt(Q), Yt(3), e

Recall the conditions for m = d(w;) to be a weight for delta:

B[ Fhwdtlo(X,)] = ElYiolo(X,)

t0

Our solutions will solve the stronger, sufficient conditions:

T
/ ﬁwtdt = YTO
0

We investigate in more detail two special forms for w. We will see the need from this to

look at higher order Malliavin derivatives: the calculus for this is given in the final section.

1. We obtain a t independent weight analogous to the construction in Ben-hamou (2001) by

T —1
Ot
Wy = Wp = —dt
ot {/o Yio 1

To compute d(w) use (1) to give o(w) = wWp — fOT Dywdt. From the quotient rule

letting

Dy(A™Y) = —A"'D;A A7! and the commutation relation (3) we obtain

T D SY; - SDY;
th _ _U)QY;to_l/ { t0 tY2U t t:| ds (5)
t st

T
D sYs B sDYs
_ _w2Y;tol/t { t0 ty%J t t‘| ds (6)
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where we use the general formula for D,Y}; derived in the next section. This yields the

T T /
— Yo — 0sD,Y
w:_/ / w2yt0—1["5"t TS s dt
0 J, Y2

final formula

Computing this weight will be computationally intensive: in addition to sampling X, one

needs Y;, Y;(z).

2. We obtain a t dependent weight analogous to the construction in Ben-hamou (2001) by

letting
Yo

Wy = —
TO't

. This yields the weight as an ordinary Ito integral:

T
Yo
= —dW,
T /0 TUt !

Numerical simulation of X, Y; will be sufficient to compute this weight.

9 Higher Order Malliavin Derivatives

In this section, we sketch out the properties of the higher order variation processes

W O"X,

= , t<s
ot oxk

and use them to compute multiple Malliavin derivatives Dy, ... Dy, Xs;. These formulas are
usually necessary for higher order greeks like v. But as seen in the previous section it may also
enter formulas for delta when certain weights are chosen.

Here are the SDEs satisfied by the first three variation processes:

A, = WYt +olY,dW, (
av,® = [y ] de+ (o ® + o] aw, 9
t - tit t-t ttt tot 3

av,® = [y vy, ® 40P de 4 |01 4 301V oV aw

—_
@)
~—_  — ~— =
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One can see that the pattern is
aY,? = oy, Pat + oy Faw, + FPat + ¢Paw,

where F*), G,Sk) are explicit functions of ¢, X, (Y9)),_;. This particular form of SDE can be

integrated by use of the semigroup defined by Y.
Proposition 9.0.3
v = v, / t Yol [(FP — GPo,)du+ GPaw,]
0
Proof: From the product rule dXY = dX(Y + dY) + XdY for stochastic processes

d(RHS)

[b,Yiodt + 0, Yi0d W] [Ytglyt(’“) LY HER — aWolydt + GWaw,
Yo |V (ER — ¢W o dt + Gg’”dwt]

— Y+ oy Paw, + ¢Poldt + (FP — ¢Wo')dt + P aw,

— d(LHS)

O
Since the higher variation processes have the interpretation of higher derivatives of X with
respect to the initial value x, we can extend the notion to derivatives with respect to X;, any

t. For that we define

and then note

Yo' =Y = / Y [(F® — 6Wo,)du + GRaw,]
t

If we define

Vi) = YalVig) = Vi)
then lz,(tk) solves (9.0.3) for s > ¢, subject to the initial condition fftik) = 0. Therefore ﬁ(tk) has

X,
axk -

the interpretation of

The following rules extend the Malliavin calculus to higher order derivatives:

1. Chain rule:
DF(X,) = F'(X,)D:X,, t<s;
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Examples:

3. Fort<s<T:

4. Fort < s < T:

Dy[Ds Xr]

X, .
X, = Yullt <s) = VIt < s);

a};;(tk) Skt o+ X,

= =0 p <
aXt st ath.H_l ’ 55
- (k — k k
Vil =iy - vy
DtXt = O¢.
X
DXy = 8—XthXt by chain rule

= Yo by (2), (5)

DYy = (DY) Yy = Y (D X)) Yo

= 8?( YrsosI(s < T)] DX, by chain rule

S

= [?jgi)a—t‘{'YTsU; Yo

D,[D X7 = D,[Y1.Yuoi| = VD0, Yo,
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