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Aim 
A useful source of information on the default risk of an obligor are the market prices of bonds 
and other defaultable securities that were issued by this obligor, and the prices of CDSs 
referencing this obligor’s credit risk. To analyze the relationship between the prices of 
defaultable bonds and the default risk of the obligor, we will need to find a method to 
construct a term structure of credit spreads from observed market prices. Such a term 
structure of credit spreads has a direct interpretation in terms of a simple default risk model 
and is essential for pricing simple credit derivatives.  
 
We will see that the prices of zero-recovery defaultable and default-free bonds contain all the 
information on the distribution of the time of default that we need. However, the prices of 
such a set of zero-recovery defaultable ZCB prices are not available in real market. Hence we 
would like to construct such a term structure from real traded assets. In order to do so, we will 
first construct a simple method to calculate a model price for real traded assets such as 
defaultable coupon bonds or CDSs for a given term structure of defaultable ZCBs. Then we 
invert this pricing relationship in order to find the term structure of defaultable ZCBS that 
yield model prices which equal the observed market prices. This term structure is then the 
implied term structure of default risk.  
 

Bond Price Based Model 
 
• Notation:  - price of default-free zero-coupon bond (ZCB) price ( TtB , )
             ( TtB , )  - defaultable ZCB price 

    Clearly ( ) ( ) 1,,0 ≤≤< TtBTtB . 
 
• Assumptions: 

- No recovery if default occurs 
- Risk-free interest rate dynamics in independent of default time 
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where is the implied probability of survival between t and T. ( )TtP ,
 
The implied default probability over  is ],[ Tt ( ) ( )TtPTtPdef ,1, −= .  
It is reasonable to assume that ( ) 1, =ttP and ( ) 0, =∞tP .  
Then the conditional probability of survival given that there is no default before  is   1T

 2



( ) ( )
( )1

2
21 ,

,,,
TtP
TtPTTtP =

 
where . 21 TTt <≤
 

Hazard Rates 
• Discrete implied hazard rate of default over ],[ tTT ∆+  as seen from time t: 
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• Continuous implied hazard rate of default at time T: 
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This is analogous to the definition of simply and continuously compounding forward rates  
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It easily follows from the definitions above that 
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Probability of default in [ ]tTT ∆+, is proportional to t∆  with the coefficient    
( ) ( ) ( TtfTtfTth ,,, −= ) , or locally (if t=T) 

( ) ( ) ( ) ( )( ) ( ) ttttrtrttthtttp ∆=∆−=∆≈∆+ λ,, . 
 

Recovery Modelling 
Recovery is assumed to take place at the time of default.  
If default occurs in [ ]tTT ∆+,  then the value of recovery payment at t 
 

( ) ( ) ( ) ( )( )[ ] ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( )tTTtHtTtBt

tTtP
TtPtTtB

tTtB
TtPtTtBtTtB

tTtBTtPtTtBtTITItTtBEtTTte t

∆+∆+∆=

⎥
⎦

⎤
⎢
⎣

⎡
−

∆+
∆+=⎥

⎦

⎤
⎢
⎣

⎡
−

∆+
∆+

∆+=

∆+−∆+=ℑ∆+−∆+=∆+

,,,

1
,

,,1
,

,,,

,,,,,,

 

 
Taking  we obtain 0→∆t
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So if a security pays ( )sπ  if defaulting at s its value at t will be     
 

( ) ( ) ( ) ( ) ( )∫∫ =
T

t

T

t

dssthstBsdsstes ,,, ππ  

 
If in addition the recovery amount is a random variable 'π  and     
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is conditional (on default at T ) distribution then  
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Pricing Credit Derivatives 
For discrete version we assume the payments dates are time grid points{ }nTTT ,...,,0 10= .  
The prices of default-free ZCBs: 
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The prices of defaultable ZCBs with zero recovery: 
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The value of $1 at  if a default occurred in : 1+kT ],[ 1+kk TT
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• Defaultable fixed-coupon bond 
 

If coupons are paid on { }NiT
ik ,...,1, = , which is the subset of time grid points, then 
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• Credit default swaps 
   Fixed leg: payment of ( )
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When the deal is done the spread s is chosen so that the value of the swap is 0. 
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This is similar to the interest rate swap rate which is a weighted sum of forward rates. 
 

Calibration. 
From the previous section we know that the default-free forward rate , 
the recovery and the credit forward spread 

( )KFFFF ,,, 21 K=
H  are input parameters in credit derivative 

pricing models. Unfortunately, these quantities are not directly observable in the market for a 
wide range of maturities. They must, therefore, be estimated from existing bond prices or 
yields. 
  
Calibration procedures: 

1. Default-free interest rate calibration: We want to find F  such that  ( ) ( ) ( )FCC
ii =

)
 

where ( )iC
)

 is the observed market price of the  security and thi
( )i

C  is the 
corresponding model price. There are a number of estimation methodologies for deriving 
forward curves from observed data. Each technique, however, can provide surprisingly 
different shapes for these curves. As a result, the selection of a specific estimation 
technique depends on its final use. For example, Bank of Canada utilizes the Super-Bell 
model for extracting the forward interest rates from Government of Canada bond yields.  

 
2. Recovery rate π  must be estimated separately to the calibration procedure. This is 

because recoveries and hazards rates have almost the same influence on the price of 
defaultable bonds, which result in a identification problem. Sometimes this problems can 
be solved by a joint calibration under inclusion of additional calibration securities. But 
this always produces unstable values. So we usually calibrate the recovery rate separately.  

 
 
3. Spread (hazard rate) calibration: After obtaining F and π , our final task is to find H  

such that ( ) ( ) ( ) min,, →−∑
∈Ii

ii
i HFCCw π
)

, where I  is the set of defaultable 

calibration securities.  are weights and can be chose to be iw ( )iC
)

/1  or 1/(bid-ask 
spread) etc depending on our need.  

 
Now we will illustrate the spread calibration.  
 
Spread calibration methods: 
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• Parametric forms: 
When calibrating the spreads,  a functional form of ( )TH ,0  is assumed and some 
measure (e.g. mean-square) of deviation of the market prices from the calculated prices is 
minimized. The following are some popular choices of parametric forms: 

   Constant(one parameter):   ( ) 0,0 β=TH  
   Constant offset to a given function(one parameter):  
   Linear (two parameters): ( ) TTH 10,0 ββ += . 

   Quadratic (three parameters): ( ) 2
210,0 TTTH βββ ++=  

   Nelson and Siegel (Four parameters): ( ) ( ) λ
γ

β
γ

βββ /
2

/

210 /
1,0 T

T

e
T

eTH −+
−

++=  

After choose a specific function form of the spread, we use some optimization method 
mentioned in calibration procedure 3 to calibrate the parameters of the form and hence obtain 
the spread.  
 
The advantage of using parametric forms of spread curves is that the number of variables in 
the optimization problem is greatly reduced and one has full control over the possible shapes 
of the resulting spread curves. Regularity and smoothness of the resulting spread curve are 
ensured.  
 
• Bootstrap 
 
The bootstrap method is a popular method to extract the default-free forward rate curves from 
observed coupon bond prices which can also be applied to spread curve construction. It 
produces a piecewise constant spread curve.  
 
We assume the spread curve is piecewise constant. By starting from the shortest maturity, the 
spread is ‘bootstrapped’ similarly to the bootstrapping procedure for the interest rate term 
structure:  
1. Assume ( ) iHTH =,0  iff ii tTt <<−1 , where  is the maturity date of the  
calibration security.  

it
thi

2. When , we find  such that the first bond price is calibrated: 1=i 1H
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3. Step:  ii →−1
  Given , we find  such that 121 ,,, −iHHH K iH
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i
CHHHHC ˆ;,,, 121 =−K .  

 
The bootstrapping technique does not require the solution of a minimization problem, and it 
imposes less structure on the shape of the spread curve than a parametric function.  
 
In the following section we will give an example of calibrating spread using bootstrap 
technique under the intensity based model.   
 
Bootstrapping spread curve under the Intensity Based Model 
 
Assume the intensity follows inhomogeneous Poisson process, i.e.λ  is a function of time 
( )tλ . It has the same properties as the homogenous Poisson process (λ  is a constant) and  
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We also assume the constant recovery rule, i.e. a fixed fraction R (recovery rate) of bond’s 
face value is paid at maturity date T.  
The equivalent value at T is equal to ( ) { } { }TT RTTB ≤> += ττ 11, . Then the zero-coupon bond 
price at time t is  
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   ( ) ( ) ( )( )[ ]TPRTPTB >−+>= ττ 1,0  
                        ( ) ( ) ( )[ ]TPRRTB >−+= τ1,0 , 
 
where  denotes the default-free ZCB price at time 0.  ( TB ,0 )
Then we obtain the credit spread: 
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Now we want to calibrate the spread curve using bootstrapping technique by assuming ( )tλ  
is a piecewise constant function: 
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We now determine the coefficient  by 1a ( )1,0 TB ,  by 2a ( )2,0 TB , and so on. Here we 
assume r  to be a constant. For instance, 
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allows us to compute first , then ,…, . Hence our piecewise constant intensity 
model is fully calibrated to market bond prices.  

1a 2a na

 
In the implementation, since defaultable ZCB prices are not available for wide range of 
maturities, we will simulate those prices. We assume that the intensity follows CIR model, i.e.  
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where  is the risk-neutral measure.  Q

The defaultable bond price is given by ( ) ( )∫=
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under the CIR model, we can obtain  
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After we calculated the defaultable bond price, we then use the bootstrapping technique 
introduced above to strip the intensity, and therefore spread is obtained by 
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The spread curve is shown in Figure 4.  
 

 
Figure 1: Simulation of intensity under CIR model with parameters: 04.0=σ , 05.0=θ , 

04.0=k , 05.0=r . 
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Figure 2: Defaultable ZCB prices with parameters: 04.0=σ , 05.0=θ , ,       04.0=k

05.0=r . 
 
 
 

 
Figure 3: Bootstrapping the intensity with parameters: 04.0=σ , 05.0=θ , ,       04.0=k

05.0=r . 
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Figure 4: Credit spread curve (in bp) with the piecewise linear intensity.  

Parameters: 04.0=σ , 05.0=θ , 04.0=k , 05.0=r . 
 
 
Figure 3 shows that the intensity is a decreasing step function. Figure 4 shows the 
corresponding spread curve is a decreasing function of time. This can happen in reality when 
we assume the intensity is constant or piecewise constant.  
 

Term Structure of Credit Spreads 
Now we will show some examples of using parametric forms of credit spreads: 
 
• Example 1: We assume that the intensity is linear: ( ) btat +=λ . Fixing the baseline 
intensity , we plot the credit spreads 005.0=a ( )TS ,0  as a function of horizon T for 
varying intensity slopes , 001.0=b 002.0=b , 01.0=b . 
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Figure 5: Credit spread curve with linear intensity form. 
Parameters: , 005.0=a 001.0=b 002.0=b 01.0=b  

 
 
Example 2: We assume that the intensity is quadratic: ( ) cbtatt ++= 2λ . Fixing 

,  we plot the credit spreads 002.0=b 001.0=c ( )TS ,0  as a function of horizon T for 
varying , , 001.0=a 002.0=a 003.0=a . 
 

  
Figure 6: Credit spread with quadratic form of intensity. 

Parameters: ,002.0=b 001.0=c , 001.0=a , 002.0=a , . 003.0=a
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Appendix A 
 
function a=bondprice 
 
%Parameters 
N=120; 
dt=1; 
sigma=0.04; 
theta=0.05; 
k=0.04; 
lamda(1)=theta; 
gamma=sqrt(k^2+2*sigma^2); 
r=0.05; 
 
for i=1:N 
    t(i)=i/12; 
end; 
 
Var(1)=theta*sigma^2/(2*k); 
 
for i=1:N-1 
      Var(i+1) = sigma^2*(1-exp(-k*dt))/k*(0.5*theta*(1-exp(-k*dt))... 
        +exp(-k*dt)*lamda(i)); 
     if Var(i+1)<0 
        Var(i+1) = 0; 
     end 
     lamda(i+1) = theta*(1-exp(-k*dt)) + exp(-k*dt)*lamda(i) + ... 
        randn*sqrt(Var(i+1)); 
end; 
 
for i=1:N 
    A(i)= 
(2*k*theta/(sigma^2))*log(2*gamma*exp((k+gamma)*t(i)/2)/(2*gamma+(k+gamma)*(exp(t(
i)*gamma)-1))); 
    B(i)=2*(1-exp(t(i)*gamma))/(2*gamma+(k+gamma)*(exp(t(i)*gamma)-1)); 
    P(i)=exp(A(i)+B(i)*lamda(1)-r*t(i));      
end; 
 
figure(1); 
plot(t,lamda); 
 
figure(2); 
plot(t, P); 
 
for i=1:10 
    tnew(i)=i; 
end; 
 
for i=1:10 
    Q(i)=P(i*12); 
end; 
 
a(1)=-log(Q(1)*exp(r*dt))/dt; 
 
for i=2:10 
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    temp=0; 
    for j=1:i-1 
        temp=temp+(i+1-j)*dt*a(j);    
    end; 
    a(i)=(-log(Q(i)*exp(i*r*dt))-temp)/dt; 
end; 
 
for i=1:10 
       b(i)=0; 
end; 
 
for i=1:10 
    for j=1:i 
       b(i)=b(i)+a(j); 
    end; 
end; 
 
figure(3); 
plot(tnew,b); 
 
for i=1:100 
    tnewnew(i)=0.1*i; 
end; 
 
for j=10:10:100 
   for i=(j-10+1):j 
      c(i)=b(j/10); 
   end; 
end; 
 
figure(4); 
plot(tnewnew,c); 
 
for i=1:10 
    temp=0; 
    for j=1:i 
        temp=temp+a(j)*(i+(1-j)); 
    end; 
    s(i)=temp/i; 
end; 
 
figure(5); 
plot(tnew,s); 
 
 
Appendix B 
 
function crshape 
 
a=0.005; 
b=0.001; 
for i=1:10 
    T(i)=i; 
    s(i)=a+b*T(i)/2; 
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end; 
s=s*10000; 
plot(T,s); 
hold on 
 
b=0.002; 
for i=1:10 
    s(i)=a+b*T(i)/2;     
end; 
s=s*10000; 
 
plot(T,s); 
hold on 
 
b=0.01; 
for i=1:10 
    s(i)=a+b*T(i)/2; 
     
end; 
s=s*10000; 
plot(T,s); 
 
 
Appendix C 
 
function crshapequadratic 
a=0.001; 
b=0.002; 
c=0.001; 
for i=1:10 
    T(i)=i; 
    s(i)=b*T(i)/2+a*(T(i)^2)/3+c;   
end; 
s=s*10000; 
plot(T,s); 
hold on 
 
a=0.002; 
for i=1:10 
    s(i)=b*T(i)/2+a*(T(i)^2)/3+c; 
end; 
s=s*10000; 
 
plot(T,s); 
hold on 
 
a=0.003; 
for i=1:10 
    s(i)=b*T(i)/2+a*(T(i)^2)/3+c;     
end; 
s=s*10000; 
plot(T,s); 
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