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Let H0 _> I be a self-adjoint operator and let V be a form-small perturbation such that 

lieU, :ffi " - -~R~/2+eVRg/2-e < oo, where e E (0, 1/2) and R 0 = n o  1. Suppose that there 

exists a positive • < 1 such that Z0 := Tre -#H° < e~. Let Z := Tre -(Ho+v). Then we 
show that the free energy qJ = log Z is an analytic function of V in the sense of Fr~,cbet, 
and that the family of density operators defined in this way is an analytic manifold. 

Introduction 

The use of differential geometric methods in parametric estimation theory is by 
now a fairly sound subject, whose foundations, applications and techniques can be 
found in several books [1, 7, 10]. The nonparametric version of this information 
geometry had its mathematical basis laid down in recent years [4, 16]. It is a gen- 
uine branch of infinite-dimensional analysis and geometry. The theory of quantum 
information manifolds aims to be its noncommutative counterpart [6, 11-13]. 

In this paper we generalise the results obtained by one of us [18, 19] to a 
larger class of potentials, In Section 1 we introduce e-bounded perturbations of a 
given Hamiltonian and review their relation with form-bounded and operator-bounded 
perturbations. In Section 2 we construct a Banach manifold of quantum mechani- 
cal states with (+l)-afline structure and (+l)-connection, using the e-bounded per- 
turbations. Finally, in Section 3 we prove analyticity of the free energy ~Px in 
sufficiently small neighbourhoods in this manifold, from which it follows that the 
( -  1)-coordinates are analytic. 

1. ~-bounded perturbations 

We recall the concepts of operator-bounded and form-bounded perturbations [8]. 
Given operators H and X defined on dense domains :D(H) and :D(X) in a Hilbert 
space ~ ,  we say that X is H-bounded if 
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(i) ~D(H) C D(X) and 
(ii) there exist positive constants a and b such that 

Ilxv, II-< allH 'll ÷ bll*ll, for all lp ~ /~(H) .  

Analogously, given a positive self-adjoint operator H with associated form qn and 
form domain Q(H), we say that a symmetric quadratic form X (or the symmetric 
sesquiform obtained from it by polarization) is qn-bounded if 

(i) Q(H) C Q(X) and 
(ii) there exist positive constants a and b such that 

[X(~, ~)1 < aqH(~t, ~) + b(~, ~), for all ~ E Q(H). 

In both cases, the infimum of such a is called the relative bound of X (with 
respect to H or with respect to qH, accordingly). 

Suppose that X is a quadratic form with domain Q(X) and A, B are operators on 
such that A* and B are densely defined. Suppose further that A* :/~(A*) ~ Q(X) 

and B : D(B) ~ Q(X). Then the expression A X B  means the form defined by 

qb, ¢t ~-, X(A*qb, B~t), qb E ~(A*), ~t ~ I~(B). 

With this definition in mind, let us specialise to the case where H0 > I is 
a self-adjoint operator with domain :D(Ho), quadratic form q0 and form domain 
Qo = Z~(H1/2), and let Ro = H0 -1 be its resolvent at the origin. Then it is easy 
to show that a symmetric operator X : ~(Ho) ~ ~ is H0-bounded if and only if 
[IxR0ll < o0. The following lemma is also known [18, lemma 2]. 

LEMMA 1. A symmetric quadratic form X defined on Qo is qo-bounded if and 
1/2 1/2 only if R o X R  o is a bounded symmetric form defined everywhere. Moreover, if 

IIC2xRY211 < then the relative bound a of X with respect to qo satisfies 
a < II 1/2 1/2 _ Ro X Ro I1" 

The set T~(0) of all H0-bounded symmetric operators X is a Banach space with 
norm IIXL,(0):= IIxR011, since the map a ~-, aHo from B(H) onto 7"o(0) is an 
isometry. 

The set TO(0) of all q0-bounded symmetric forms X is also a Banach space with 
norm IlXll0(0):= IIR1/2XRg/2II, since the map a ~ HI/2AH 1/2 from the set of all 
bounded self-adjoint operators on ~ onto T0(0) is again an isometry. 

Now, for e E (0, 1/2), let T6(0) be the set of all symmetric forms X defined 

on Q0 and such that IlXll~(0):= IIRg/2+'XRg/2-'ll is finite. Then the map A 

H~/2-~AH T M  is an isometry from the set of all bounded self-adjoint operators on 
onto T~(0). Hence T~(0) is a Banach space with the e-norm I1" L(0). We note 

that :D(Ho 1/2) C :D(Hol/2-'), for all 0 < 8 < 1/2. 
We can now prove the following lemma. 
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LEMMA 2. For fixed symmetric X, Ilxll ,  is a monotonically increasing function 
of. e E [0, 1/2]. 

Proof: We have to prove that IIRgXRI-Yll is increasing for y E [1/2, 1] and 

decreasing for y E [0, 1/2]. Let ½ < 8 < 1 and suppose that IIRgXRg-'ll < oo. Inter- 

polation theory for Banach spaces [17] and the fact that IIRgXRg-'ll = [IRg-'XRgl[ 
then give 

[IRgXRl-xll <_ IlRgXRg-'ll, for all x E [ 1 - & d ] ,  

and particularly for ½ < y < 8 < 1, we have 

IIRgXR•-Yll <_ URgXRg-'II. 
1 On the other hand, for 0 < 1 - 8 < y < ~, 

HRYXRI-Y u <_ IlRgXRg-'ll = IIRg-'XRgl[. D 

2. Construction of the manifold 

2.1. The first chart 

Let Cp, 0 < p < 1, denote the set of compact operators A : 7/~-~ ~ such that 
IAI p E Ch where Cl is the set of trace-class operators on 7~. Define 

0<p<l 

We take the underlying set of the quantum information manifold to be 

.M = C<I tq ~7, 

where E _c Ct denotes the set of  density operators. We do so because the next step 
of our project is to look at the Orlicz space geometry associated with the quantum 
information manifold [4] and the quantum analogue of classical Orliez space L log L 
seems to be 

CllOgC1 :-- {p E CI :S (p )  -- -~_aXi  log~.i < OO}, 

where {~i} are the singular numbers of p. With this notation, the set of normal 
states of finite entropy is Cl logCINE and we have C<1 C CllogC1. At this level, A4 
has a natural affine structure defined as follows: let Pl ~ Cp~ ~ E and P2 E C~ N E;  
take p = max{p1, P2}, then pl,/32 E Cp N ~ ,  since p < q implies C~, _ Cq [15]; 
define ")~Pl + (1 - )~)P2, 0 < )~ < 1" as the usual sum of operators in Cp. This is 
called the ( -  1)-affine structure. 

We want to cover A4 by a Banach manifold. In [18] this is achieved defining 
hoods of p ~ .M using form-bounded perturbations. The manifold obtained there 
is shown to have a Lipschitz structure. In [19] the same is done with the more 
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restrictive class of operator-bounded perturbations. The result then is that the mani- 
fold has an analytic structure. We now proceed using e-bounded perturbations, with 
a similar result. 

To each po ~ C~o n 27, flo < 1, let Ho = - I o g p 0  + cI  > I be a self-adjoint 
operator with domain /~(Ho) such that 

PO = Z o l e  -H° = e -(H°+%). (1) 

In Te(0), take X such that IIXlls(0) < 1 - ~ .  Since IIXIIo(0) _< IlXlls(O) < 1 - ~ ,  
x is also q0-bounded with bound ao less than 1 -  ~0. The KLMN theorem then 
tells us that there exists a unique semi-bounded self-adjoint operator Hx with form 
qx = q0 + X and form domain Qx = Qo. Following an unavoidable abuse of 
notation, we write Hx = H0 + X and consider the operator 

Px = Z x  le-(H°+x) = e -(H°+x+*x). (2) 

Then Px ~ ClJx O ~7, where ~x = ~ < 1 [18, lemma 4]. The state Px does not 
change if we add to Hx a multiple of the identity in such a way that Hx + cI  >_ I, 
so we can always assume that, for the perturbed state, we have Hx > I. We take as 
a hood Ado of P0 the set of all such 'states, that is, Ado = {Px : IIXIIs(0) < 1 -#o} .  

Because Px = Px-~l,  we introduce in T~(0) the equivalence relation X ~, Y 
iff X - Y  = o t I  for some a ~ R. We then identify Px in Ado with the line 
{Y ~ T~(0): Y = X + o t l ,  ot ~ 1R} in Te(0)/~. This is a bijection from Ado onto the 
subset of T~(0)/~ defined by {{X + ~I}aea : IlXll~(0) < 1 -/50} and Ado becomes 
topologised by transfer of structure. Now that Ado is a (HausdortD topological space, 
we want to parametrise it by an open set in a Banach space. By analogy with the 
finite dimensional case [14, 5, 11], we want to use the Banach subspace of centred 
variables in T~(0); in our terms, perturbations with zero mean (the 'scores'). For 
this, define the regularised mean of X ~ T~(0) in the state Po as 

po.X := Tr(p~Xp~-x), for 0 < ~. < 1. (3) 

Since P0 ~ C~o n ~ and X is qo-bounded, lemma 5 of [18] ensures that po 'X 
is finite and independent of ~., It was shown there that Po" X is a continuous 
map from T0(0) to R, because its bound contained a factor IlXllo(0). Exactly the 
same proof shows that po.X is a continuous map from Tt(0) to R. Thus the set 
J ~  

T~(0) := {X e Te(0) : po.X = 0} is a closed subspace of Te(0) and so is a Banach 
space with the norm 11"118 restricted to it. 

To each Px ~ Ado, consider the unique intersection of the equivalence class 
of X in Te(0)/~ with the A set TE(0), that is, the point in the line {X +~I}~,ea 
with a = -p0"X.  Write X = X - p o ' X  for this point. The map Px ~ X is a 
homeomorphism between Ado and the open subset of Te(0) defined by : X = 

x -  ,o.X. IIxL < 1 - , o 1 : .  The map px ~ X is then a chart for the Banach 
manifold Ado modelled by Te(0). As usual, we identify the tangent space at /9o 
with '~(0), the tangent curve {P00 = Z~e- (n°+xx) ,L  ~ [ -8 ,8]}  being identified 

with X = X - po'X. 
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2.2.  Enlar~o'ng the  m a n i f o l d  

We extend our manifold by adding new patches compatible with Ado. The idea 
is to construct a chart around each perturbed state Px as we did around P0. Let 
Px ~ Ado with Hamiltonian Hx >_ I and consider the Banach space Tt(X) of all 

1/2+e l~l/2-e j symmetric forms Y on Q0 such that the norm JJYJJ~(X):= JJR x Y " x  is 

finite, where Rx = H x  I denotes the resolvent of Hx at the origin. In ~ ( X ) ,  take 
Y such that IIYlls(X) < 1 - / ~ x .  From Lemma" 2 we know that Y is qx-bounded 
with bound ax less than 1 - f i x .  Let Hx+r be the unique semi-bounded self-adjoint 
operator, given by the KLMN theorem, with form qx+r = qx + Y = qo + X + Y and 
form domain Qx+Y = Qx = Qo. Then the operator 

Px+r = Z x l r e  -~x+Y 7-1 ,,-(H0+x+r) = ~ x + r  ~ (4 )  

is in Cpy A/7,  where /~y = Px 
1-ax " 

We take as a neighbourhood of Px the set Adx of all such states. Again Px+~" = 
Px+r-~1, so we furnish Tt(X) with the equivalence relation Z ~, Y iff Z - Y = a I  
and we see that T~(X) is mapped bijectively onto the set of lines 

{{Z = Y + u I } ~ ,  IIYII,(X) < 1 - /~x} 

in ~ ( X ) / ~ .  In this way we topologise Adx, by transfer of structure, with the 
quotient topology of T~(X)/~. 

Again we can define the mean of Y in the state Px by 

P x ' Y  := Tr(p~Yp~-X), for 0 < ~. < 1. (5) 

and notice that it is finite and independentof ~.. This is a continuous function of Y 
with respect to the norm II" IJ,(X), hence T~(X) = {Y ¢ T~(X) : Px'Y = 0} is closed 
and so is a Banach space with the norm I1" L(X) restricted to it. Finally, l e t  
be the unique intersection of the lineA{Z = Y + c t l } ~ R  with the hyperplane T~(X), 
given by u = -&x'Y. Then Px+Y ~ Y is a homeomorphism between Adx and the 
open subset of T~(X) defined by {?  ~ ~ ( X )  : Y = Y - Px'Y,  IIYII,(x) < 1 - /~x}.  

We obtain that px+r ~ Y is a chart for the manifold Adx modelled by ~ (X) .  
The tangent space at Px is identified with ~ ( X )  itself. 

We now lo0k to the union of .Ad0 and Adx. We need to show that our two 
previous charts are compatible in the overlapping region .Ad0 N Adx. But first we 
prove the following series of technical lemmas. 

1/2 1/2 LEMMA 3. Let X be a symmetric form defined on Qo such that JJ R 0 XR o II < 1 
Then ~ ( H  1/2-~) = ~D(H1/2-~), for any e ~ (0, 1/2). 

Proof: We know that 29(Ho/2) = ~(Hx/2), since X is qo-small. Moreover, Hx 
and Ho are comparable as forms, that is, there exists c > 0 such that 

c- lq0(~)--< q x ( ~ )  <_ cq0(~t), for all lp E Q0. 
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Using the fact that x ~ x"  (0 < ot < 1) is an operator monotone function [3, 
Lemma 4.20], we conclude that 

c - . - ~ )  HI-~ <_ ~I:~ -~  <_ cl-~ H 1-~,  

which implies that  D ( H  T M )  = D(H1/2-8) .  [] 

The conclusion remains true if we now replace Hx by Hx + I, if necessary in 
order to have Hx > I. This is assumed in the next corollary. 

COROLLARY 1. The operator /../1/2-8 ~1/2-8 " 'x  "'0 is bounded and has bounded inverse 
H01/2-8171/2-8 

Proof: "'0Pl/2-8 is bounded and maps 7~ into ~D(H~/2-e) = ~D(HxU2-8). Then 
HX1/2-e liJ1/2-8 M1/2-8 • "o is bounded, since --x is closed. By exactly the same argument, 

/_/1/2-8101/2-8 1/2-8 1/2-8 1/2-8 1/2--e 
we obtain that "'o " x  is bounded. Finally, (H o R x )(H x R o ) = 

1/2-8 1/2-8 1/2-8 1/2-8 
(H x R o )(H~ R x ) = I. [] 

LEMMA 4. For e ~ (0, 1/2), let X be a symmetric form defined on Qo such 
1/2+8 1/2--8 ]~ 1/2+8 14 1/2+8 

that IIRo XRo II < 1. Then--o --x is bounded and has bounded inverse 
R /2+8ul/2+8 Moreover, ~D(H TM) ---- 1~(H1/2+8). 

X "'0 • 
1/2 1/2 

Proof: From Lemma 2, we know that IIR0 X R  o H < 1, so Lemma 3 and its 
corollary apply. We have that 

1/2+8 1/2-8 o 1/2+. r_r D1/2--8 1 > IIRo XRo II = IIRg/=+'(Hx- Ho)R~/2-sII = ,,0 ,~x,,o - zll, 
II Dl/2+e r_r D1/2--8 thus I " o  n x " 0  H < cx~. We write this as 

1/2+. 1/2+8 1/2-8 1/2-8 IIRo n;~ HA Ro I1<~ .  

p1/2+'t41/2+8 Finally, the ul/2-8~1/2-" is bounded and invertible, so is "'0 --x • Since --x "'0 
fact that II Rol/2+" Hx1/2+8 II < cx~ and II Rxl/2+  Hol/2+8 II < oo implies that "-xi/112+8 and 
./01/2+" are comparable, hence 7~(H~/2+8) = ~D(Hx1/2+6). [] 

The next theorem ensures the compatibility between the two charts in the over- 
lapping region .Mo tq .Mx. 

THEOREM 1. II" L ( X )  and I1" 118(0) are equivalent norms. 

Proof: We need to show that there exist positive constants m and M such that 
mllYIIs(0) _< IIYL(X) < MIIYIIs(0). We just write 

101/2+8 I41/2+e 1~ 1/2+e V I01/2--e 141/2--8 ~ 1/2-e 
UYL(X)  = " 'x "'o "'o - " o  - o  " 'x I[ 

1/2+e 1/2+8 1/2-8 1/2-e <-HRx I-lo II rll~<o) IIHo Rx IIII 
= MIIYI]~(0) 
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and, for the inequality in the other direction, we write 

1[ Y II ~ (0) = [[ *'0/71/2+e **X/'41/2+e *'X/71/2+e ""xV 17 l/2-e "'XT'/1/2-e *'017 l/2-e ]] 

1/2+e 1/2+e /41/2-e I~ 1/2-e -<llRo Hx ll[l-x - 0  llllrll <x) 
= m-lllYIl~(X). [] 

We see that Te(0) and T~(X) are, in fact, the same Banach space furnished with 
two equivalent norms, and observe that the quotient spaces T~(0)/~ and ~ ( X ) / ~  
are exactly the same set. The general theory of Banach manifolds does the rest [9]. 

We continue in this way, adding a new patch around another point Px' in A40 or 
around some other point in .Mx but outside .M0. Whichever point we start from, 
we get a third piece .Mx with chart into an open subset of the Banach space 

1/2+e 1/2-~ 
{Y ~ Te(X'): P x " Y  = 0 } ,  with norm IIYll~(X'): :  IIRx, rRx, II equivalent to 
the previously defined norms. We can go on inductively, and all the norms of any 
overlapping regions will be equivalent. 

DEFINITION 1. The information manifold A4(Ho) defined by H0 consists of all 
states obtainable in a finite number of steps, by extending A40 as explained above. 

These states are well defined in the following sense. If, for two different sets 
of perturbations X1 . . . . .  Xn and Y1 . . . . .  Ym, we have X1 + . . .  + Xn = Y1 + " "  + Ym 
as forms on /9(H~/2-6), then we arrive at the same state either taking the route 
X1 . . . . .  Xn or taking the route Y1 . . . . .  Ym, since the self-adjoint operator associated 
with the form q0 + Xl + . . .  + Xn = qo + Y1 + " "  + I'm is unique. 

2.3. Affme geometry in • (Ho) 
A A I The set A = ~ ~(O) : X = X - ~ X, IIXL(O) < 1 - fl0 is a convex subset 

of the Banach space T6(O) and so has an affine structure coming from its linear 
Astructure. We provide .~0 with an affine structure induced from A using the patch 
X ~-~ Px and call this the canonical or (+l)-affine structure. The (+l)-convex 
mixture of Px and Pr in A40 is then Pxx+(1-x)Y, (0 < ~. < 1), which differs from 
the previously defined (-1)-convex mixture )~Px + ( 1 -  3.)pr. 

Given two points Px and Pr in .M0 and their tange~ spaces ~ ( X )  and ~(Y) ,  
we define the (+D-parallel transport UL of (Z--pjcZ) ~ Te(X) along any continuous 
path L connecting Px and Pr in the manifold to be the point ( Z -  pr .Z)  ~ ~(Y) .  
Clearly UL(O) = 0 for every L, so the (+l)-afline connection given by UL is 
torsion free. Moreover, UL is independent of L by construction, thus the (+ l ) -  
aftine connection is flat. We see that the (+l)-parallel transport just moves the 
representative point in the line {Z + otl}c, eR from one hyperplane to another. 

Now consider a second piece of the manifold, say A4x. We have the (+ l ) -  
afline~.structure on it again by transfer of structure from Ts(X). Since both T~(0) 
and T~(X) inherit their a/fine structures from the linear structure of the same set 
(either Ts(0) or Te(X)), we see that the (+l)-affine structures of A4o and A4x are 
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the same on their overlap. We define the parallel transport in 34x again by moving 
representative points around. To parallel transport a point between any two tangent 
spaces in the union of the two pieces, we proceed by stages. For instance, if U 
denotes the parallel transportAfrom P0 to Px, it is straightforward to check that U 
takes a convex mixture in T~(0) to a convex mixture in T~(X). So, if Pr ~ 340 
and Pr, ~ 34x are points outside the overlap, we parallel transport from Pr to pr, 
following the route Pr ---> P0 --+ Px ---> Pr,. Continuing in this way, we furnish 
the whole 34(H0) with a (+l)-affine structure and a fiat, torsion free, (+l)-affine 
connection. 

Although each hood in 34(H0) is clearly (+D-convex, we have not been able 
to prove that 34(H0) is itself (+l)-convex. 

3. Analyticity of the free energy 

The free energy of the state Px = Zx  le-ttx ~ C~x C 34, fix < 1, is the function 
qJ • 34 ---> IR given by 

Ol(px) := log Zx.  (6) 

In this section we show that Olx -- qJ(Px) is infinitely Fr6chet differentiable and 
that it has a convergent Taylor series for sufficiently small hoods of Px in 34. 

We say that Y is an e-bounded direction if Y ~ T~(X). The n-th variation of 
the partition function Zx in the e-bounded directions V1 . . . . .  II, is given by (n!) -1 
times the Kubo n-point function [2] 

f01 f01 f01 o/1 o/2 O/n Tr da  1 da2-- ,  dotn-l[Px VlPx V2""Px  Vn], (7) 

where an = 1 -or1 . . . . .  an-1. Our first task is to show that this is finite. Since 
for an operator of trace class A we have [TrA[ < IIAI[1, we only need to check 
that the multiple integral is of trace class. 

r Otl 1[/ 0~2 Otn We begin by estimating the trace of tPx rlPx V2"" "PX Vn] as written as 

-~ ! BX i r u  l-Sn +81 _ ( l-flX)~! Jt  j / ' f R  8, I'1 r~1--811r el2flX . . . .  1--81+82 (1--,SX)ff21 [px J t n x  Px Vl~x ]LPx  J inx  Px l 
t~2 1--32 r , ~ g " ' B x l r u l - ~ " - l + ' ~ "  r,(1-'SX')etn'lr D ~" V /;71-~n1 

[gxV2gx ] " ' t ~ ' x  J t " x  ~'x JL"X " . " X  ,, 

with 8j ~ [ 1 / 2 -  e, 1/2 + el to be specified soon. In this product, we have n factors 
• 8j 1-8j 

of  the form [pxJBX], n factors of  the form [R x FiR x ], and n factors of the form 
1- -~ j - l J c ' $ j  _ ( ] - -~X)Ot j  l 

[Hx Px j, with 80 standing for 8n. 

For the factors [pxJ/~x], putting pj = 1/aj, HOlder's inequality leads to the trace 
norm bound 

/~x g l . . .  px~X = -< Ilpx II, II I17 IIp Xll, < (8) 
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. J j .  _ l - s j .  
By virtue of  Lemma 2, we know that the factors lR x vjR x / are bounded in 

operator norm by 

8j 1-~j 1/2+e 1/2--E 
R~VjR~ II -< IIRx VjR~ II = IlvJll~(x) < ~ .  (9) 

In both these cases, the bounds are independent of  t~. The hardest case turns 

out to be the factors [H1-SJ-~+sJ^O-#x)'~J], where the estimate, as we will see, X PX 
does depend on ot and we have to worry about integrability. For them, the spectral 
theorem gives the operator norm bound 

II z-z~ ' - ' j - '+' j  p~-~">=J II - Zx °('i(1-'Sx) sup {x1% -'+sj e -(1-'Ox)°tjx } 
x>_l 

ZX~J(1-flx) (1 -- 8j_ 1 "~- 8j ~ 1-sj-I+~j e_(l_Sj_l..t..~j). 
< - (1 - - f l - x~ '  ] (10) 

Apart from a j  -(1-~j-~+gj), the other terms in (10) will be bounded independently 

of  a .  To deal with the integral of  ~.(1-gJ-~%)d~j, we divide the region of  in- 
tegration in n (overlapping) regions Sj :=  {a • ~j _> l /n}  (since ~ a j  = 1). For 
the region S.,  for instance, the integrability at aj = 0 is guaranteed if we choose 
8j such that 8j < 8j-1. So we take 8n -- 80 > 81 > "'" > 8n--1. We must have 

1 8 j ~ [ 1 - e ,  1/2 + e], then w e c h o o s e S .  = ~ + e ,  81 = ½ +e-2*-n-, 8 2 = ½ + e - - ~ - , 4 6  
1 2e . . . .  8.-1 = ~ - e  + --.. Then each of  the ( n -  1) integrals, for j = 1, . . .  , n - 1, is 

fO (1-Sj_l+SJ) dolj n 0/;  = ( 8 J - 1 -  8J)--I = 2e 

resulting in a contribution of  ( ~ ) . - 1 .  The last integrand in S. is ot~ -(1-~"-1+~") < n 2. 
The same bound holds for the other regions Sj, j = 1 . . . . .  n -  1, giving a total 
bound 

[-I~010l;(1-Sj-l+SJ)do[j< F n2nn-1 ] n2n n 
j=l _ n L ( 2 - ~ l  ---- (~-~-L1 . (11) 

Now that we have fixed By, the promised bound for the other terms in (10) is 

f-iZxaJ(1-~x) (1--SJ-l"4-sj)l-Sj-l+SJ <4Zx(1-~x)(1--3x)-"e-n (12) 
j=l  1 - 3x - 

since (1 - 8j-1 + 8j) < 1 except for one term, which is less than 2. 
Collecting the estimates (8), (9), (11) and (12), we get the following bound for 

the n-point function 

F !v_Jll~(x) (13) 4[[ p~xX lll Zx(1-#x) (2e)n2nn e -n H 
1~1 U 2e(1 - ' x )  
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Thus the n-th variation of Zx exists for any e-bounded directions and is an n- 
linear bounded map. Hence [21, Prop. 4.20], Z has an n-th Gat~aux derivative at X. 
Since this holds for any n, we see that Z is infinitely often Gat~aux differentiable 
at X. Moreover, when using Duhamel's formula [18, Theorem 9] to deduce the 
expression (7) for the n-th variation (as in [19, Theorem 3]), we actually find 
that the limit procedure is uniform in V, thence [20, Theorem 3.3] the Gat~aux 
derivatives of Z at X are, in fact, Frtchet derivatives. 

Therefore, Z is infinitely Frtchet differentiable with convergent Taylor expansion 
for Z ( X +  V) if IIVll,(X)< ( 1 - ~ x ) 2 e .  Since Zx is positive, the same is true for 
its logarithm, the free energy qJx. Notice that the condition IIVIl,(X)< (1-/~x)2s 
is stronger than to require that Pv+x lie in an e-hood of Px. 

Finally, let us say that a map ~ : / /  ~ /R, on a hood L/ in At, is ( + l ) -  
analytic i n / / i f  it is infinitely often Frtchet differentiable and ¢P(X+V) -- ¢P(Px+v) 
has a convergent Taylor expansion for Px+v in this hood. In particular, the ( - 1 ) -  
coordinates Ox = P .X (mixture coordinates) are analytic, since they are derivatives 
of the free energy qJx. This specification of the sheaf of germs of analytic functions 
defines a real analytic structure on the manifold. 
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