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Using duality methods, we prove several key properties of the indifference price π for
contingent claims. The underlying market model is very general and the mathematical
formulation is based on a duality naturally induced by the problem. In particular, the
indifference price π turns out to be a convex risk measure on the Orlicz space induced
by the utility function.

KEY WORDS: indifference price, utility maximization, non locally bounded semimartingale, random
endowment, incomplete market, Orlicz space, convex duality, convex risk measure.

1. INTRODUCTION

The main purpose of this paper is to study the indifference pricing framework in markets
where the underlying traded assets are described by general semimartingales which are
not assumed to be locally bounded. Following Hodges and Neuberger (1989), we define
the (seller) indifference price π (B) of a claim B as the implicit solution of the equation

sup
H∈HW

E
[

u
(

x +
∫ T

0
Ht d St

)]
= sup

H∈HW
E
[

u
(

x + π (B) +
∫ T

0
Ht d St − B

)]
,(1.1)

where x ∈ R is the constant initial endowment, T < ∞ is a fixed time horizon
while S is an R

d -valued càdlàg semimartingale defined on a filtered stochastic basis
(�,F, (Ft)t∈[0,T], P) that satisfies the usual assumptions. The R

d -valued portfolio pro-
cess H belongs to an appropriate classHW of admissible integrands defined in Section 2.1
through a random variable W that controls the losses incurred in trading. B is an FT-
measurable random variable corresponding to a financial liability at time T and satisfies
the integrability conditions discussed in Section 3.1.

Throughout the paper, the utility function u is assumed to be an increasing and concave
function u : R → R satisfying limx→−∞u(x) = −∞. Neither strict monotonicity nor strict
concavity are required, but we exclude the case when u is constant on R.
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In principle, a general way to compute the indifference price in (1.1) is to solve the
two utility maximization problems, in the sense of finding the optimizers in the class of
admissible integrands. Such optimizers then correspond to the optimal trading strategies
that an investor should follow with or without the claim B, therefore providing a corre-
sponding notion of indifference hedging for the claim. However, it is generally possible
to employ duality arguments to obtain the optimal values for utility maximization prob-
lems under broader assumptions than those necessary to find their optimizer. Since these
values are all that is necessary for calculating the indifference price itself, the main goal
here is the pursuit of such duality results rather than a full analysis of the indifference
hedging problem which is deferred to future work (even though some partial results in
this direction are provided in Proposition 3.11).

The key to establish such duality results is to choose convenient dual spaces as the
ambient for the domains of optimization. Our approach is to use the Orlicz space Lû—
and its dual space L�̂—that arises naturally from the choice of the utility function u
and was previously used in Biagini and Frittelli (2008) for the special case of B = 0, as
explained in Section 2.

We then use this general framework for the case of a random endowment B in
Section 3 and prove in Theorem 3.8 a duality result of the type

sup
H∈HW

E
[

u
(

x +
∫ T

0
Ht d St − B

)]
(1.2)

= min
λ>0, Q∈MW

{
λx − λQ(B) + E

[
�

(
λ

d Qr

d P

)]
+ λ‖Qs‖

}
,(1.3)

where � : R+ → R is the convex conjugate of the utility function u, defined by

�(y) := sup
x∈R

{u(x) − xy} ,(1.4)

while MW is the appropriate set of linear pricing functionals Q, which admit the decom-
position Q = Qr + Qs into regular and singular parts. The penalty term in the right-hand
side of (1.3) is split into the expectation E[�(λ d Qr

d P )], associated only with the regular part
of Q, and the norm ‖Qs‖, associated only with its singular part.

From the previous results Biagini and Frittelli (2008) in the case B = 0, we expected
the presence of the singular part ‖Qs‖, due to the fact that we allow possibly unbounded
semimartingales. In general, in the presence of a claim B that is not sufficiently integrable,
an additional singular term appears in the formula above from Q(B) = EQr [B] + Qs(B)
(as shown explicitly in Section 3.5.1).

Regarding the primal utility maximization problem with random endowment, in The-
orem 3.8 we also prove the existence of the optimal solution in a slightly different set
than {∫ T

0 Ht d St | H ∈ HW}. As it happens in the literature for B = 0, this optimal solu-
tion exists under additional assumptions on the utility function u (or equivalent growth
conditions on its conjugate), which are introduced in Section 3.3.

Since the most well-studied utility function in the class considered in this paper is the
exponential utility, we specialize the duality result for this case in Section 3.5, thereby
obtaining a generalization of the results in Bellini and Frittelli (2002), the “Six Authors
paper” Delbaen et al. (2002), and Becherer (2003). An interesting example of exponen-
tial utility optimization with random endowment, where the singular part shows up, is
presented in Section 3.5.1. This example is simple and one period market model, but
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surprising since it displays a quite different behavior from the locally bounded case,
which is thoroughly interpreted.

Armed with the duality result of Theorem 3.8, we address the indifference price of a
claim B in Section 4. The Orlicz space duality framework enables us to establish the prop-
erties of the indifference price π summarized in Proposition 4.2, including the expected
properties of convexity, monotonicity, translation invariance, and volume asymptotics.
More interestingly, in (4.3) we provide a new and fairly explicit representation for the
indifference price, which is obtained applying recent results from the theory of convex
risk measures developed in Biagini and Frittelli (2009). In fact, in Proposition 4.2 it is
also shown that the map π , as a convex monotone functional on the Orlicz space Lû , is
continuous and subdifferentiable on the interior of its proper domain B. In Corollary 4.4
we show that when B and the loss control W are sufficiently integrable, the indifference
price π also has the Fatou property. The regularity of the map π itself allows then for a
very nice, short proof of some bounds on the indifference price π (B) of a fixed claim B
as a consequence of the Max Formula in Convex Analysis.

The results above extend the existing literature on utility maximization with random
endowment when u is finite on the entire real line in several respects. First of all, we do not
require the semimartingale S to be locally bounded, and as far as we know ours is the first
paper in this direction. Secondly, even though we admit price processes represented by
general semimartingale, our assumptions on the claim B are weaker than those assumed
in the literature for the locally bounded case—a nice consequence of the selection of the
Orlicz space duality.

While the notion of the indifference price was introduced in 1989 by Hodges and
Neuberger (1989), the analysis of its dual representation in terms of (local) martingale
measures was performed in the late 1990s. It started with Frittelli (2000) and Bellini and
Frittelli (2002), and was considerably expanded by Delbaen et al. (2002) and, in a dynamic
context, by El Karoui and Rouge (2000) and Becherer (2003). An extensive survey of the
recent literature on this topic can be found in Carmona (2009). The classical approach of
Convex Analysis—basically the Fenchel-Moreau Theorem—was first applied in Frittelli
and Rosazza Gianin (2002) to deduce the dual representation of convex risk measures on
Lp spaces. Based on the duality results proven in Frittelli (2000), in Frittelli and Rosazza
Gianin (2002) it is also shown that, for the exponential utility function, the indifference
price of a bounded claim defines—except for the sign—a convex risk measure. In recent
years this connection has been deeply investigated by many authors (see Barrieu and El
Karoui 2008 and the references therein).

Finally, let us remark that Owen and Zitkovich (2009) also consider unbounded claims
B for a general utility u defined on R, but for locally bounded semimartingales. Moreover,
their assumption 1.6 on the claim is also of a different type, since it is a joint condition
on B and the admissible strategies. This condition is not easy to verify in practice, since it
requires the prior knowledge of the dual measures. Also, for economic reasons, we believe
that it is better to state the conditions on the claim only in terms of the compatibility
with the utility function.

2. THE SETUP FOR UTILITY MAXIMIZATION

We briefly recall the setup of Biagini and Frittelli (2008) for the utility maximization
problem, namely the extended class of admissible strategies and the Orlicz duality. The
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same framework is used in the next section for the optimization problem in the presence
of a random endowment.

2.1. Admissible Strategies

Given a fixed, nonnegative random variable W ∈ FT, the domain of optimization for
the primal problem (1.2) is the following set of W-admissible strategies

HW :=
{

H ∈ L(S) | ∃c > 0 such that
∫ t

0
Hs d Ss ≥ −cW, ∀t ∈ [0, T]

}
,(2.1)

where L(S) denotes the class of predictable, S-integrable processes. In other words, the
random variable W controls the losses in trading of the wealth process

∫
Hd S.

In order to build a reasonable utility maximization, the loss control W should satisfy
two extra assumptions. The first depends only on the market S and guarantees that the
set of W-admissible strategies is rich enough for trading purposes.

DEFINITION 2.1. A random variable W ≥ 1 is suitable (for the process S) if for each
i = 1, . . . , d, there exists a process Hi ∈ L(S i ) such that

P
({

ω | ∃t ≥ 0 such that Hi
t (ω) = 0

}) = 0(2.2)

and ∣∣∣∣
∫ t

0
Hi

s d Si
s

∣∣∣∣ ≤ W, ∀t ∈ [0, T].(2.3)

The second condition depends exclusively on the utility function and reflects to what
extent the investor accepts the risk of large losses:

DEFINITION 2.2. A positive random variable W is strongly compatible with the utility
function u if

E[u(−αW)] > −∞ for all α > 0(2.4)

and it is compatible with u if

E[u(−αW)] > −∞ for some α > 0.(2.5)

When S is locally bounded, W = 1 is automatically suitable and compatible (see
Biagini and Frittelli 2005, proposition 1), and we recover the familiar set of admissible
trading strategies, namely those with wealth process bounded below by a constant. For
the non locally bounded case, the existence of a suitable and compatible loss variable
is not automatically guaranteed, and is related to integrability restrictions on the jumps
of the semimartingale S. From now on, we assume the existence of a fixed suitable and
compatible W and work with the associated class of strategies HW.

The first step to apply duality arguments to problem (1.2) is to rewrite it in terms of
an optimization over random variables, as opposed to an optimization over stochastic
processes. To this end, we define the set of terminal values obtained from W-admissible
trading strategies as

KW =
{∫ T

0
Ht d St | H ∈ HW

}
,(2.6)
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and consider the reformulated primal problem

sup
k∈KW

E[u(x + k)].(2.7)

The next step is to identify an appropriate dual system. Classically, the system (L∞, ba)
has been successfully used when dealing with locally bounded traded assets. In order to
accommodate more general markets and inspired by the compatibility conditions above,
in the next section we argue instead for the use of an appropriate Orlicz spaces duality,
naturally induced by the utility function.

2.2. The Orlicz Space Framework

Orlicz spaces are generalizations of Lp spaces, and a reference book on the topic is Rao
and Ren (1991). Their use in mathematical finance is quite new, as it was first introduced
by Biagini (2008) in the context of utility maximization and then considerably expanded
in Biagini and Frittelli (2008). The key point is that the function û : R → [0, +∞)

û(x) = −u(−|x|) + u(0),

is a Young function (i.e., even, convex, and finite in a neighborhood of 0) and can
therefore be used to define the corresponding Orlicz space

Lû(�,F, P) := { f ∈ L0 | E[̂u(α f )] < +∞ for some α > 0},

which is a Banach space when equipped with the Luxemburg norm

N̂u( f ) = inf
{

c > 0 | E
[̂

u
(

f
c

)]
≤ 1
}

.(2.8)

Given the standing assumptions on the utility u, it consists of integrable random variables
and it contains all the bounded variables, that is L∞ ⊆ Lû ⊆ L1. The elements in the
Morse subspace Mû of Lû satisfy a stronger integrability condition

Mû := { f ∈ Lû | E[̂u(α f )] < +∞ for all α > 0}.

The space Mû also contains L∞ (see, e.g., Rao and Ren 1991, chapter III for extra details
and closure properties), but is in general strictly contained in Lû . For example, for an
exponential utility u(x) = −e−x, we have û(x) = e|x| − 1, and Lû is the space of random
variables with a finite absolute exponential moment, while Mû is the subspace of those
random variables with all finite absolute exponential moments. A random variable X
exponentially distributed with parameter λ > 0: X ∼ E(λ) is in Lû but not in Mû .

Moreover a positive random variable W is strongly compatible (resp. compatible) with
the utility function u if and only if W ∈ Mû (resp. W ∈ Lû). When W belongs to either of
these spaces, the negative part of any element in k ∈ KW belongs to the same space, since
the control k ≥ −cW implies k− ≤ cW.

The convex conjugate of û, called the complementary Young function in the theory of
Orlicz spaces, is denoted here by �̂ , since it admits a representation in terms of �

�̂(y) = (�(|y|) − �(β)) 1{|y|>β},(2.9)
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where β ≥ 0 is the right derivative of û at 0. It then follows that �̂ is also a Young
function, which induces the Orlicz space L�̂. As before, L∞ ⊆ L�̂ ⊆ L1 and in addition
L�̂ is the topological dual of the Morse space Mû ,

(Mû)∗ = L�̂.(2.10)

The description of the topological dual for the Orlicz space Lû is more demanding. Each
element Q ∈ (Lû)∗ admits a unique decomposition Q = Qr + Qs (see, e.g., Rao and
Ren 1991, corollary IV.2.9), where the regular part Qr is a signed measure and thus
can be represented by its density d Qr

d P , which belongs to L�̂, while the singular part Qs

satisfies

Qs( f ) = 0, ∀ f ∈ Mû .(2.11)

2.3. Dual Variables

The dual system (Lû, (Lû)∗) is now ready, but the domain of the utility maximization
KW is not yet a subset of Lû . The standard trick is to consider

CW = (KW − L0
+
) ∩ Lû,

instead of KW. The cone CW corresponds to random variables that can be super-
replicated by admissible strategies in HW and belong to Lû , i.e., satisfy the same type of
integrability condition as W. The polar cone of CW is the domain of the auxiliary dual
problem and it is defined

(CW)0 := {Q ∈ (Lû)∗ | Q( f ) ≤ 0, ∀ f ∈ CW} .(2.12)

Since (−Lû
+) ⊆ CW, all functionals in (CW)0 are positive. The subset of normalized

functionals in (CW)0 is

MW := {Q ∈ (CW)0 | Q(1�) = 1}.(2.13)

This normalization condition reduces to Qr (1�) = 1, since Qs vanishes on any bounded
random variable from (2.11). In other words, the regular part of any element in MWis a
true probability measure with density in L�̂

+. It was shown in Biagini and Frittelli (2008,
proposition 19), that the subset of true probabilities in MW has nice properties. It is
independent of the specific W and has a clear financial interpretation

{Q ∈ MW | Qs = 0} = Mσ ∩ L�̂,(2.14)

where Mσ := {Q � P | S is a σ − martingale w.r.t. Q} consists of all the P −absolutely
continuous σ -martingale measures for S. When S is continuous or locally bounded, Mσ

are simply the local martingale measures for S. For the relevance of σ -martingales in
mathematical finance as pricing measures when S is non locally bounded, the reader is
referred to Delbaen and Schachermayer (1998).
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3. UTILITY OPTIMIZATION WITH RANDOM ENDOWMENT

The main result in this section is Theorem 3.8, establishing a duality result for utility
optimization with a random endowment B. When B = 0 such duality is proved in Biagini
and Frittelli (2008), and the goal of this section is to show that the same arguments still
apply in the presence of B.

3.1. Conditions on the Claim

Consider then the problem

sup
H∈HW

E
[

u
(

x +
∫ T

0
Ht d St − B

)]
.(3.1)

Set x = 0, since as the case with nonnull initial capital can be recovered by replacing B
with (B − x). In view of the replacement of terminal wealths

∫ T
0 Ht d St ∈ KW by random

variables f ∈ CW ⊂ Lû , we introduce the following:

DEFINITION 3.1. Let B be the set of claims B ∈ Lû satisfying

E[u(−(1 + ε)B+)] > −∞, for some ε > 0.(3.2)

The two requirements above can both be regarded as well-posedness conditions. If
B ∈ Lû , then E[u( f − B)] < +∞ for all f in the maximization domain CW ⊂ Lû ,
because

E[u( f − B)]
Jensen≤ u(E[ f − B]) < +∞,

since ( f − B) ∈ Lû ⊆ L1. The requirement (3.2) is an Orlicz type condition on the seller’s
loss B+, enabling the application of variational arguments for the maximization. In
particular, such requirement implies that E[u(−B)] > −∞, so that B does not lead to
prohibitive punishments when the seller chooses the trading strategy H ≡ 0 ∈ HW, which
in turn implies that sup f ∈CW E[u( f − B)] > −∞. Additional properties of the set B are
established in Lemma 4.5.1

3.2. A First Dual Formula

When B ∈ B, a monotonicity argument shows that optimizing over the cone CW leads
to the same expected utility as optimizing over the set of terminal wealths KW

sup
k∈KW

E[u(k − B)] = sup
f ∈CW

E[u( f − B)].(3.3)

It is well known in the literature that the primal problem (3.3) may not attain its
maximum on CW (or on KW). The duality approach shifts the analysis over an auxiliary
minimization problem (dual problem), which attains the minimum. The dual problem
is used to characterize a posteriori a domain over which the maximizer of the primal

1 The main duality result in Section 3.4 can be established under more general conditions on the negative
part of the claim B, at the cost of having to define appropriate extensions for linear functionals on L̂u , as
we did in previously circulated versions of this paper.
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problem is attained. This is the content of the next subsection, but first we show a dual
formula.

Let I B
u := E[u( f − B)] be a concave integral functional on Lû with values in [−∞,

+∞). The next lemma establishes that I B
u satisfies the conditions necessary to invoke

Fenchel’s Duality Theorem.

LEMMA 3.2. If B ∈ B, the functional I B
u is norm continuous on the interior of its proper

domain Dom(I B
u ) = { f ∈ Lû | I B

u ( f ) ∈ R}. As a consequence, there exists a norm continu-
ity point of I B

u that belongs to CW.

Proof. Since I B
u < +∞, then I B

u is proper, monotone, and concave. The first statement
thus follows from the Extended Namioka-Klee Theorem (see Ruszczynski and Shapiro
2006; Biagini and Frittelli 2009). If g belongs to S1, the open unit ball in Lû , then E[u(g)]
is finite and (3.2) implies

(+∞ >)E
[

u
(

−B + ε

1 + ε
g
)]

≥ E
[

u
(

−B+ + ε

1 + ε
g
)]

≥ E[u(−(1 + ε)B+)] + εE[u(g)]
1 + ε

> −∞

hence

ε

1 + ε
S1 ⊂ Dom(I B

u ).(3.4)

Therefore, any element of ε
2(1+ε)S1 ∩ (−Lû

+) is a continuity point for I B
u that belongs to

CW. �
Here is a first dual formula, valid under the assumption that bliss utility cannot be

reached.

LEMMA 3.3. Suppose that B ∈ B and that sup f ∈CW E[u( f − B)] < u(+∞). Then the
following dual formula holds:

sup
f ∈CW

E[u( f − B)] = min
λ>0,Q∈MW

{
λ(Q(−B) + ‖Qs‖) + E

[
�

(
λ

d Qr

d P

)]}
.(3.5)

Proof. From Fenchel’s Duality Theorem, we have

sup
f ∈CW

I B
u ( f ) = min

Q∈(CW)0

(
I B
u

)∗
(Q),

where (I B
u )∗(Q) := sup f ∈L̂u {I B

u ( f ) − Q( f )} is the convex conjugate of I B
u . A result by

Kozek (1979) shows that the convex conjugate has the representation (I B
u )∗(Q) =

Q(−B) + ‖Qs‖ + E[�( d Qr

d P )]. Recalling that MW is the set of normalized elements in
(CW)0, a simple reparameterization of the polar cone leads to the minimization over
MW modulo a scaling factor λ. The no bliss condition sup f ∈CW I B

u ( f ) < u(+∞) = �(0)
ensures that the minimizer cannot be null, hence the thesis follows. �
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3.3. The Dual Optimization and a New Primal Domain

The expectation term appearing in the minimization problem in Lemma 3.3 leads us
to consider the set

L� =
{

Q � P | E
[
�

(
λ

d Q
d P

)]
< +∞, for some λ > 0

}
.

Despite the possibility that �(0) = +∞, this is a convex set, as a consequence of the
convexity of the function (z, k) → z�( 1

z k) on R+ × R+, which has been pointed out by
Schied and Wu (2005, section 3).

It is sometimes necessary to guarantee that the expectation above is finite regardless
of the value of the scaling factor λ. When that is the case, we will require the following:

ASSUMPTION 3.4. The utility function u : R → R is strictly increasing, strictly concave,
continuously differentiable, and

lim
x↓−∞

u′(x) = +∞, lim
x↑∞

u′(x) = 0 (Inada conditions)(3.6)

Moreover, for any probability Q � P, the conjugate function � satisfies

E
[
�

(
d Q
d P

)]
< +∞ iff E

[
�

(
λ

d Q
d P

)]
< +∞ for all λ > 0.(3.7)

Condition (3.7) above is a joint condition on the probabilistic model and the pref-
erences via the conjugate �. A detailed discussion on relationship of (3.7) with the
condition of Reasonable Asymptotic Elasticity introduced by Schachermayer (2001) can
be found in Biagini and Frittelli (2005, 2008).

A general strategy for tackling minimization problems of the form appearing in (3.5) is
to consider the minimizations over λ and over Q separately. The two Propositions below
are a generalization of the corresponding ones in Biagini and Frittelli (2008). In the first
one we fix λ and explore the consequences of optimality in Q:

PROPOSITION 3.5. Let B ∈ B and suppose that Assumption 3.4 holds. Fix λ > 0 and
suppose that N ⊆ (Lû)∗+ is a convex set such that for any Q ∈ N we have Qr ∈ L�. If
Qλ ∈ N is optimal for

inf
Q∈N

{
E
[
�

(
λ

d Qr

d P

)]
+ λ(Q(−B) + ‖Qs‖)

}
< +∞(3.8)

then, ∀Q ∈ N

EQr
λ

[
�′
(

λ
d Qr

λ

d P

)]
+ Qλ(−B) + ∥∥Qs

λ

∥∥ ≤ EQr

[
�′
(

λ
d Qr

λ

d P

)]
+ Q(−B) + ‖Qs‖.

(3.9)

Next we fix Q and explore the consequences of optimality in λ.

PROPOSITION 3.6. Under Assumption 3.4, if Q is a probability measure in L�, then for
all c ∈ R the optimizer λ(c; Q) of

min
λ>0

{
E
[
�

(
λ

d Q
d P

)]
+ λc

}
(3.10)
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is the unique positive solution of the first order condition

E
[

d Q
d P

�′
(

λ
d Q
d P

)]
+ c = 0.(3.11)

Moreover, the random variable g∗ := −�′ (λ(c; Q) d Q
d P

)
belongs to the set {g ∈ L1(Q)|

EQ[g] = c}, satisfies u(g∗) ∈ L1(P), and

min
λ>0

{
E
[
�

(
λ

d Q
d P

)]
+ λc

}
= sup{E[u(g)] | g ∈ L1(Q) and

EQ[g] ≤ c} = E[u(g∗)] < u(+∞).

(3.12)

For a fix Q ∈ MW such that Qr ∈ L�, set c = Q(−B) + ‖Qs‖. Then the message
of the above proposition is that the minimization of the dual function in Lemma 3.3
with respect to λ > 0 leads to the same value of a utility maximization over integrable
functions satisfying EQr [g] ≤ Q(−B) + ‖Qs‖. Setting g = ( f − B) to be consistent with
the notation of Lemma 3.3, this leads us to define the following set of functionals and
corresponding domain for utility maximization.

DEFINITION 3.7. Let

MW
� := {Q ∈ MW | Qr ∈ L�}(3.13)

and

KW
B := { f ∈ L0 | f ∈ L1(Qr ), EQr [ f ] ≤ Qs(−B) + ‖Qs‖, ∀Q ∈ MW

� },(3.14)

with the corresponding optimization problem

UW
B := sup

f ∈KW
B

E[u( f − B)].(3.15)

Lemma 3.3 ensures thatMW
� is not empty, since the minimum is attained on functionals

such that Qr ∈ L�.

3.4. The Main Duality Result

THEOREM 3.8. Let u : R → R be an increasing and concave function satisfying
limx→−∞ u(x) = −∞. If B ∈ B and

sup
H∈HW

E
[

u
(∫ T

0
Ht d St − B

)]
< u(+∞),(3.16)

then MW
� is not empty and

sup
H∈HW

E
[

u
(∫ T

0
Ht d St − B

)]
= UW

B

= min
λ>0, Q∈MW

�

{
λQ(−B) + E

[
�

(
λ

d Qr

d P

)]
+ λ‖Qs‖

}
.

(3.17)

The minimizer λB is unique, while the minimizer QB is unique only in the regular part
Qr

B �= 0. Suppose in addition that the utility satisfies Assumption 3.4. Then the maximum
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is attained over KW
B and the unique maximizer is

fB = −�′
(

λB
d Qr

B

d P

)
+ B.(3.18)

The relation between primal and dual optimizers is given by

EQr
B
[ fB] = Qs

B(−B) + ∥∥Qs
B

∥∥.(3.19)

Proof. The chain of equalities in (3.17) follows from (3.3) and from

sup
f ∈CW

E[u( f − B)] = UW
B = min

λ>0,Q∈MW
�

{
λQ(−B) + E

[
�

(
λ

d Qr

d P

)]
+ λ‖Qs‖

}
.

(3.20)

To establish (3.20), fix an f ∈ CW such that E[u( f − B)] > −∞. As shown in Biagini
and Frittelli (2008, lemma 17), the norm ‖Qs‖ of the singular part Qs of any Q ∈ (Lû)∗+
satisfies

‖Qs‖ = sup
{g∈L̂u |E[u(−g)]>−∞}

Qs(g),(3.21)

and since (B − f ) ∈ Lû , we have that ‖Qs‖ ≥ Qs(B − f ). For any Q ∈ MW, and in
particular for those in MW

� , Q( f ) ≤ 0 so Q( f − B) ≤ Q(−B). Canceling EQr (−B) from
both sides, EQr ( f ) + Qs( f − B) ≤ Qs(−B) so that

EQr ( f ) ≤ Qs(−B) + Qs(B − f ) ≤ Qs(−B) + ‖Qs‖

and f ∈ KW
B , which implies that sup f ∈CW E[u( f − B)] ≤ UW

B . Now, fix an f ∈ KW
B , a

positive λ and a Q ∈ MW
� . Fenchel’s inequality then gives

u( f − B) ≤ λ
d Qr

d P
( f − B) + �

(
λ

d Qr

d P

)
.

Taking expectations and using (3.14),

E[u( f − B)] ≤ λE
[

d Qr

d P
( f − B)

]
+ E

[
�

(
λ

d Qr

d P

)]
≤ λ(Q(−B) + ‖Qs‖)

+ E
[
�

(
λ

d Qr

d P

)]
so

UW
B ≤ min

λ>0,Q∈MW
�

{
λQ(−B) + E

[
�

(
λ

d Qr

d P

)]
+ λ‖Qs‖

}
.

Then (3.20) follows from Lemma 3.3.
If a dual minimizer Q had Qr = 0, then the dual minimum would be �(0) + λB(Qs×

(−B) + ‖Qs‖) ≥ u(+∞), since ‖Qs‖ ≥ Qs(B) from (3.21) and �(0) = u(∞). This
would contradict condition (3.16). Uniqueness of λB and Qr

B follow from strict convexity
of the dual objective function in λ and Qr . However, the dual objective function is
not strictly convex in Qs , since the norm is additive on positive singular functionals:
‖Qs

1 + Qs
2‖ = ‖Qs

1‖ + ‖Qs
2‖, see Biagini and Frittelli (2008, proposition 11). Therefore

the optimal singular functional might not be unique.
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Under Assumption 3.4, the expression for fB and its relation with QB can be derived
from a combination of the results in Propositions 3.5 and 3.6 by observing that any
minimizer QB is obtained as the minimizer of

min
Q∈MW

�

{
λB Q(−B) + E

[
�

(
λB

d Qr

d P

)]
+ λB‖Qs‖

}
.

�
COROLLARY 3.9. If both W and B are in the Morse subspace Mû , then MW

� can be
replaced in (3.17) by Mσ ∩ L� and no singular term appears in the dual problem.

Proof. If W ∈ Mû , then the regular component Qr of Q ∈ MW is already in MW

(see Biagini and Frittelli 2008, lemma 41). If B is in Mû ⊆ B as well, then Qs(B) = 0.
Since ‖Qs‖ ≥ 0, the minimum of the dual problem must be achieved on the set Mσ ∩ L�.
Therefore, a posteriori one can rewrite the dual as a minimization over these probabilities
only. �

The next proposition gives a priori bounds for this singular contribution Qs(−B)
appearing in (3.17)

PROPOSITION 3.10. For any B ∈ B, let

L := sup{β > 0 | E[̂u(β B+)] < +∞} and l := sup{α > 0 | E[̂u(αB−)] < +∞}.

Then, for any fixed Q ∈ MW
� ,

− 1
L

‖Qs‖ ≤ Qs(−B) ≤ 1
l
‖Qs‖(3.22)

and in particular we recover again Qs(B) = 0 when B ∈ Mû .

Proof. It follows from (3.2) that L ≥ 1 + ε. For any b < L, (3.21) gives ‖Qs‖ ≥
b Qs(B+) and therefore

Qs(−B) ≥ −Qs(B+) ≥ −1
b
‖Qs‖,

hence Qs(−B) ≥ − 1
L‖Qs‖. To prove the right inequality in (3.22), observe that l > 0 and

that −αB− ∈ Dom(Iu) for any α < l. Therefore

Qs(−B) ≤ Qs(B−) = 1
α

Qs(αB−) ≤ 1
α

‖Qs‖ for all α < l. �

The result in Theorem 3.8 does not guarantee in full generality that the optimal
random variable fB ∈ KW

B can be represented as terminal value from an investment
strategy in L(S), that is, fB = ∫ T

0 Ht d St. The next proposition presents a partial result
in this direction.

PROPOSITION 3.11. Suppose that Assumption 3.4 holds and B ∈ B. If Qs
B = 0 and

Qr
B ∼ P, then fB can be represented as terminal wealth from a suitable strategy H.

Proof. When the optimal QB has zero singular part, then it is a sigma martingale
measure with finite entropy, according to (2.14). Therefore, a posteriori the dual problem
(3.17) can be reformulated as a minimum over those Q ∈ Mσ with finite entropy. In
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this simplified setup, one can show exactly as in Biagini and Frittelli (2005, theorem 4,
theorem 1(d)) that the optimal fB can be represented as terminal wealth from a suitable
strategy H. �

3.5. Exponential Utility

For an exponential utility function u(x) = −e−γ x, γ > 0, we have �(y) = y
γ

log y
γ

− y
γ

and û(x) = eγ |x| − 1. As already mentioned in Section 2.2, Mû consists of those random
variables that have all the (absolute) exponential moments finite, while the larger space
Lû corresponds to random variables that have some finite exponential moment.

An exponential utility satisfies Assumption 3.4, so the duality results follow directly
as a corollary of Theorem 3.8.

COROLLARY 3.12. Suppose B satisfies

E[e(γ+ε)B] < +∞ and E[e−εB] < +∞ for some ε > 0.

If

sup
H∈HW

E[−e−γ (
∫ T

0 Ht d St−B)] < 0,(3.23)

then MW
� is not empty and

sup
H∈HW

E[−e−γ (
∫ T

0 Ht d St−B)] = − exp
{

− min
Q∈MW

�

(H(Qr |P) + γ Q(−B) + γ ‖Qs‖)
}
,

(3.24)

where H(Qr |P) = E[ d Qr

d P log( d Qr

d P )] denotes the relative entropy of Qr with respect to P.
The minimizer QB ∈ MW

� is unique only in the regular part Qr
B. In addition,

sup
H∈HW

E
[− e−γ (

∫ T
0 Ht d St−B)] = E[−e−γ ( fB−B)],

the optimal claim is

fB = − 1
γ

ln
(

λB

γ

d Qr
B

d P

)
+ B,

where λB = γ exp(H(Qr
B|P) + γ QB(−B) + γ ‖Qs

B‖) = − 1
γ

UW
B , and it satisfies

1. fB ∈ L1(Qr ), EQr [ fB] ≤ Qs(−B) + ‖Qs‖ for all Q ∈ MW
� (i.e., it belongs to KW

B )
2. EQr

B
[ fB] = Qs

B(−B) + ‖Qs
B‖

If W and B have all the exponential (absolute) moments finite, then MW
� can be

replaced by the “classic” set of probabilities Q ∈ Mσ that have finite relative entropy, i.e.,
E[ d Q

d P ln( d Q
d P )] < +∞, and no singular term appears in (3.24).
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Proof. The conditions on B are exactly those in Theorem 3.8, adapted to the expo-
nential case. So, from Theorem 3.8

sup
H∈HW

E
[− e−γ (

∫ T
0 Ht d St−B)]

= min
λ>0, Q∈MW

�

{
λQ(−B) + E

[
λ

γ

d Qr

d P
log
(

λ

γ

d Qr

d P

)
− λ

γ

d Qr

d P

]
+ λ‖Qs‖)

}

and an explicit minimization over λ > 0 leads to the duality formula (3.24). The remaining
assertions follow as in the proof of Theorem 3.8. �

3.5.1 Example with Nonzero Singular Parts. Consider a one period model with S0 =
0 and S1 = YZ where Y is an exponential random variable with density f (y) = e−y, y ≥
0 and Z is a discrete random variable taking the values {1, − 1

2 , . . . , 1
n − 1, . . .}. Assume

that Y and Z are independent and let p1 := P(Z = 1) > 0 and pn := P(Z = 1
n − 1) > 0,

n ≥ 2, be the probability distribution of Z. For an investor with exponential utility u(x) =
−e−x, it is clear that the random variable W = 1 + Y is suitable and compatible. Suppose
now that B = α(Y, Z), where α is a bounded Borel function, so that the seller of the
claim B faces the problem

sup
h∈R

E[−e−hS1+B] = sup
h∈R

E[−e−h ZY+α(Y,Z)].

A necessary condition for the expectations to be finite is that −1 < h ≤ 1 . In fact, using
the probability distribution of Z,

E[−e−h ZY+α(Y,Z)] = p1 E[−e−hY+α(Y,1)] +
∑
n≥2

pn E[−e−hznY+α(Y,zn )]

= p1

∫ +∞

0
e−hy+α(y,1)e−ydy +

∑
n≥2

pn

∫ +∞

0
e−( 1

n −1)hy+α(y, 1
n −1)e−ydy.

If the expectation on the LHS is finite, then necessarily the one-dimensional integrals on
RHS converge. Since α is bounded, these integrals converge iff −1 < h ≤ 1.

The function to be optimized, gB(h) := E[−e−hS1+B], has a formal derivative given by

g′
B(h) = E[S1e−hS1+B] = p1 E[Ye−hY+α(Y,1)] +

∑
n≥2

pnzn E[Ye−hznY+α(Y,zn )].

Since −1 < zn < 0 for n ≥ 2,

g′
B(h) ≥ p1 E[Ye−Y+α(Y,1)] −

∑
n≥2

pn E[Ye−zn Y+α(Y,zn )].

When pn → 0 sufficiently fast, this expression is not only well defined but strictly positive.
To fix the ideas, we show how to compute such pn. Integration by parts of the terms
E[Ye−Y], E[Ye−zn Y] gives 1

4 and 1
(−zn−1)2 = n2, respectively, so that

g′
B(h) ≥ p1

e−‖B‖∞

4
−
∑
n≥2

pne+‖B‖∞n2 = e−‖B‖∞

4

⎡
⎣p1 −

∑
n≥2

pn4e+2‖B‖∞n2

⎤
⎦ ,
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where ‖B‖∞ denotes the sup-norm of the bounded B = α(Y, Z). Fix k ≥ 2 and for n ≥
2 define pn := 1

4e+2‖B‖∞ n22n−1+k . Accordingly, p1 := (1 −∑n≥2 pn) > 1 − 1
2k so that

⎡
⎣p1 −

∑
n≥2

pn4e+2‖B‖∞n2

⎤
⎦ = p1 − 1

2k
> 1 − 1

2k−1
> 0.

Under such choice for the distribution of Z, it is guaranteed that g′
B is indeed the

true derivative of gB and that 0 < g′
B(h) < ∞ for all −1 < h ≤ 1. Therefore, the func-

tion gB(h) is strictly increasing and attains its maximum at h = 1. But this implies
that suph∈R

E[−e−hS1+B] = E[−e−S1+B], so that the optimizer for the primal problem is
fB = S1. From the identity u′( fB − B) = λB

d Qr
B

d P , the optimizer for the dual problem has
a regular part given by

d Qr
B

d P
= e−S1+B

E[e−S1+B]
.(3.25)

Using (3.25) to calculate the expectation of fB with respect to Qr
B and the fact that

Qs
B(−B) = 0 (since B is bounded), we conclude from (3.19) that

∥∥Qs
B

∥∥ = EQr
B
[ fB] = E[S1e−S1+B]

E[e−S1+B]
= g′

B(1)
E[e−S1+B]

> 0,

which implies that Qs
B �= 0.

Observe that these probabilities pn also guarantee that the utility maximization prob-
lem without the claim B leads to a function g0(h) with the same domain as gB. Also,
0 < g′

0 < ∞. In particular, the maximum of E[−e−hS1 ] is still attained at h = 1, which
implies that the optimizers f 0 and fB for the primal problem with and without the claim
coincide. This means that the investor does not use the underlying market to hedge the
claim, despite the fact that B = α(Y, Z) is explicitly correlated with S1 = YZ. Such behav-
ior stems from the fact that the risk associated with the unboundedness of the underlying
outweighs the risk associated with the bounded claim. This should be contrasted with
the case of locally bounded markets, where a correlated claim often leads to a different
optimizer for the primal problem.

4. THE INDIFFERENCE PRICE π

Consider an agent with utility u, initial endowment x, and investment possibilities given
by HW who seeks to sell a claim B. As pointed out in Section 1, the indifference price
π (B) for this claim is defined as the implicit solution to (1.1). In view of the results of
Theorem 3.8, we now rephrase this definition in terms of the value function

UW
B (x) := sup

k∈KW
B

E[u(x + k − B)].(4.1)

Comparing this with (3.15), we see that we could alternatively denote (4.1) by UW
B−x. In

this section we prefer UW
B (x), since it better illustrates the different financial roles played

by the initial endowment x and the claim B.
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DEFINITION 4.1. Provided that the related maximization problems are well posed, the
seller’s indifference price π (B) of the claim B is the implicit solution of the equation

UW
0 (x) = UW

B (x + π (B)),(4.2)

that is, π (B) is the additional initial money that makes the optimal utility with the liability
B equal to the optimal utility without B.

The next proposition lists the various properties of the indifference price functional
π , defined on the set B ⊆ Lû . Some results are new, in particular the regularity of
the map and the description of the conjugate π∗ and of the subdifferential ∂π . They
are nice consequences of the choice of the natural Orlicz framework and the proofs
are quite short and easy. The other items are extensions of well-established results to
the present general setup (see, e.g., Becherer 2003 or the recent Owen and Zitkovich 2009,
proposition 7.5 and the references therein). A recent reference book for the necessary
notions from Convex Analysis is Borwein and Zhu (2005).

PROPOSITION 4.2. Let u : R → R be an increasing and concave function satisfying
limx→∞ u(x) = −∞ and suppose that UW

0 (x) < u(+∞). Then the seller’s indifference price
π : B → R verifies the following properties:

(1) π is a well-defined, convex, monotone nondecreasing functional and satisfies the cash
additivity property: π (B + c) = π (B) + c, for any B ∈ B, c ∈ R.

(2) Regularity: π is norm continuous and subdifferentiable.
(3) Dual representation: π admits the representation

π (B) = max
Q∈MW

�

(Q(B) − α(Q))(4.3)

where the (minimal) penalty term α(Q) is given by

α(Q) = x + ‖Qs‖ + inf
λ>0

⎧⎪⎪⎨
⎪⎪⎩

E
[
�

(
λ

d Qr

d P

)]
− UW

0 (x)

λ

⎫⎪⎪⎬
⎪⎪⎭ .

As a consequence, the subdifferential ∂π (B) of π at B is given by

∂π (B) = QW
B (x + π (B)),(4.4)

where QW
B (x + π (B)) is the set of minimizers of the dual problem associated with the

right-hand side of (4.2).
(4) Bounds: π satisfies the bounds

max
Q∈QW

0 (x)
Q(B) ≤ π (B) ≤ sup

Q∈MW
�

Q(B).

If W ∈ Mû and B ∈ Mû , the bounds above simplify to

EQ∗ [B] ≤ π (B) ≤ sup
Q∈Mσ ∩L�

EQ[B],

where the probability Q∗ ∈ Mσ ∩ L� is the unique dual minimizer in QW
0 (x).
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(5) Volume asymptotics: For any B ∈ B we have

lim
b↓0

π (bB)
b

= max
Q∈QW

0 (x)
Q(B).(4.5)

If B is in Mû ,

lim
b→+∞

π (bB)
b

= sup
Q∈MW

�

Q(B).(4.6)

If W ∈ Mû and B ∈ Mû , the two volume asymptotics above become

lim
b↓0

π (bB)
b

= EQ∗ [B], lim
b→+∞

π (bB)
b

= sup
Q∈Mσ ∩P�

EQ[B].

(6) Price of replicable claims: If B ∈ B is replicable in the sense that B = c + ∫ T
0 Ht d St

with H ∈ HW, but also −H ∈ HW, then π (B) = c.

The proof of Proposition 4.2 is postponed to the end of this section. For now, let
us comment on the financial significance of the volume asymptotics in item (5), which
generalize known results in the topic. The limit in (4.5) leads to a “generalized pricing by
marginal utility.” Classic pricing by marginal utility can be recovered in the simpler case
when W and B are in the Morse space Mû . In this case, there is only one Q∗ ∈ QW

0 (x), it
is a probability measure and it is proportional to u′( fB − B), the marginal utility from
the optimal primal solution (as given by relation (3.18)).

Regarding the second volume asymptotics (4.6) obtained when B is in Mû , suppose for
this analysis that W is also in Mû . Then, this asymptotic behavior gives the “weak-super
replication” price for B as defined and studied in Biagini and Frittelli (2004) for W = 1.
This price is in general smaller than the super-replication price, as preferences are taken
into account in the restriction of the class of pricing measures, from Mσ to MW

� .
To better compare our results with the current literature, in the next corollary we

specify the formula for π in the exponential utility case.

COROLLARY 4.3. Let u(x) = −e−γ x and assume that MW
� �= ∅. If B ∈ B then:

πγ (B) = max
Q∈MW

�

[
Q(B) − 1

γ
H(Q, P)

]
,(4.7)

where the penalty term is given by

H(Q, P) := γ ‖Qs‖+H(Qr |P)−UW
0 = γ ‖Qs‖+H(Qr |P)− min

Q∈MW
�

{γ ‖Qs‖+H(Qr |P)}.
(4.8)

Observe that for the exponential utility, the condition that UW
0 (x) < u(+∞) is equiv-

alent to MW
� �= ∅. Apart from the presence of the singular term ‖Qs‖, the result in this

corollary coincides with equation (5.6) of Delbaen et al. (2002).
In the next corollary we consider the risk measure induced by π :

COROLLARY 4.4. Under the same hypotheses of Proposition 4.2, the seller’s indifference
price π defines a convex risk measure on B, with the following representation:

ρ(B) = π (−B) = max
Q∈MW

�

{Q(−B) − α(Q)}.(4.9)
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If both the loss control W and the claim B are in Mû , then this risk measure has the Fatou
property. In terms of π , this means

Bn ↑ B ⇒ π (Bn) ↑ π (B).(4.10)

Proof. The first part is a consequence of Proposition 4.2 and the second part follows
again from the fact that when W, B are in Mû there is a version of the dual problem only
with regular elements Q ∈ MW

� ∩ L1 = Mσ ∩ L�. Consequently, there is a representation
ρ(B) = maxQ∈MW

� ∩L1{Q(−B) − α(Q)} on the order continuous dual. But this implies the
Fatou property (see, e.g., Biagini and Frittelli 2009, proposition 23). �

4.1. Proof of Proposition 4.2

The next lemma establishes the properties of the set B.

LEMMA 4.5. The set B satisfies

B = {B ∈ Lû | (−B) ∈ int(Dom(Iu))}(4.11)

and therefore has the properties:

1. B is convex and open in Lû ;
2. if B1 ∈ B and B2 ≤ B1, then B2 ∈ B;
3. B contains Mû (and thus L∞);
4. for any given B ∈ B and C ∈ Mû , we have that B + C ∈ B. In particular, B + c ∈ B

for all constants c ∈ R.

Proof. The claim B satisfies (3.2) iff −B+ ∈ int(Dom(Iu)). This is a consequence of
lemma 30 in Biagini and Frittelli (2008), which in turn is based on the definition of the
Luxemburg norm on Lû and on a simple convexity argument as in Lemma 3.2. Since
B ∈ Lû , B satisfies (3.2) iff −B ∈ int(Dom(Iu)).

Then, B is obviously open and convex (item 1) and item 2 is a consequence of the
monotonicity of Iu. It is evident that Mû is contained in B, since C ∈ Mû iff E[̂u(kC)] <

+∞ for all k > 0 (item 3). In order to prove item 4, fix B ∈ B and a convenient ε. For
any C in Mû , set r = ε

2
(1+ε)(1+ ε

2 ) . Then

E
[
u
(
−
(

1 + ε

2

)
(B + C)+

)]
≥

1 + ε

2
1 + ε

E[u(−(1 + ε)B+)] + ε/2
1 + ε

E
[

u
(

−C+

r

)]
> −∞.

�
Proof of Proposition 4.2. First observe that the assumption UW

0 (x) < u(+∞) always
implies MW

� �= ∅, thanks to the dual formula in Theorem 3.8 with B = 0 (which then
reduces to theorem 29 in Biagini and Frittelli 2008).

(1) We first need to show that the solution to the equation (4.2) exists and it is unique.
Let F(p) := UW

B (x + p). By standard arguments it can be shown that F : R →
(−∞, u(+∞)] is concave and monotone nondecreasing, though not necessarily
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strictly increasing. By monotone convergence,

lim
p→+∞ F(p) = u(+∞).(4.12)

We also have that limp→−∞ F(p) = −∞, so that F(p) is not constantly equal to
u(+∞). Indeed, fix Q ∈ MW

� and take λ > 0 for which E[�(λ d Qr

d P )] is finite. As in
the proof of Theorem 3.8, it follows from Fenchel’s inequality and the definition of
the set KW

B that

F(p) = UW
B (x + p) ≤ λ(x + p − Q(B) + ‖Qs‖) + E

[
�

(
λ

d Qr

d P

)]
,

and then one obtains limp→−∞ F(p) = −∞. The well-posedness of the defini-
tion of π is now straightforward. In fact, let pL be the infimum of the set
{p ∈ R | F(p) = F(+∞) = u(+∞)}. From concavity, on (−∞, pL) F is contin-
uous and strictly monotone and thus a bijection onto the image (−∞, u(+∞)).
Since UW

0 (x) < u(+∞), there always exists a unique p such that F(p) = UW
0 (x),

namely the indifference price π (B).
Convexity and monotonicity are consequences of the definition (4.2), of the

concavity and monotonicity of u. The cash-additivity property π (B + c) = π (B)
+ c for any c ∈ R, B ∈ B, follows directly from the definition (4.2) and from the
well-posedness of π .

(2) For this item, observe that π is a real valued, convex, monotone functional on
the convex open subset B of the Banach lattice Lû . It then follows from item 2 of
Lemma 4.5 that the extension π̃ of π on Lû with the value +∞ on Lû\B is still
monotone, convex, and cash additive. Trivially, the interior of the proper domain of
π̃ coincides with B. Therefore, norm continuity and subdifferentiability of π̃ (and
thus of π ) on B follow from an extension of the classic Namioka-Klee theorem for
convex monotone functionals (see Ruszczynski and Shapiro 2006, but also Biagini
and Frittelli 2009 and Cheridito and Li 2009 in the context of Risk Measures). As
a consequence, π admits a dual representation on B as

π (B) = π̃(B) = max
Q∈(L̂u )∗+,Q(1�)=1

{Q(B) − π∗(Q)},(4.13)

where π∗ is the convex conjugate of π̃ , that is π∗ : (Lû)∗ → (−∞, +∞],

π∗(z) = sup
B′∈L̂u

{z(B′) − π̃ (B′)} = sup
B∈B

{z(B) − π (B)}.

The normalization condition Q(1�) = 1 in (4.13) derives from the cash additivity
property. It is a general result from Convex Analysis (and can be proved in a couple
of lines) that there exists a dual representation of a (lower semicontinuous) convex
functional ψ with the “max,” i.e., ψ(B) = maxQ{Q(B) − ψ∗(Q)} if and only if
ψ is subdifferentiable at B and the subdifferential set is given by those Q which
attain the max, ∂ψ(B) = argmax{Q(B) − ψ∗(Q)}. The subdifferential of π at B is
therefore given by

∂π (B) = argmax{Q(B) − π∗(Q)}.(4.14)
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Note that, since π (0) = 0, π∗ is nonnegative and thus it can be interpreted as a
penalty function. The next item presents a characterization of π∗ and therefore of
∂π (B).

(3) A dual representation for π has just been obtained in (4.13). The current item
is proved in two steps: first, we establish representation (4.3) with the penalty α;
second, we prove that α = π∗, that is α is the minimal penalty function, which
together with (4.14) gives (4.4) and completes the proof.
Step 1. From the definition of π (B) and from the dual formula (3.17)

UW
0 (x) = UW

B (x + π (B))

= min
λ>0,Q∈MW

�

{
λQ(−B + x + π (B)) + λ‖Qs‖ + E

[
�

(
λ

d Qr

d P

)]}
.

Necessarily then

π (B) ≥ Q(B) −

⎡
⎢⎢⎣x + ‖Qs‖ +

E
[
�

(
λ

d Qr

d P

)]
− UW

0 (x)

λ

⎤
⎥⎥⎦ for all λ > 0, Q ∈ MW

�

and equality holds for the optimal λ∗ and any Q∗ ∈ QW
B (x + π (B)). Fixing Q ∈

MW
� and taking first the supremum over λ > 0, we get

π (B) ≥ Q(B) − inf
λ>0

⎡
⎢⎢⎣x + ‖Qs‖ +

E
[
�

(
λ

d Qr

d P

)]
− UW

0 (x)

λ

⎤
⎥⎥⎦ .

Taking then the supremum over Q we finally obtain

π (B) = max
Q∈MW

�

⎧⎪⎪⎨
⎪⎪⎩Q(B) − inf

λ>0

⎡
⎢⎢⎣x + ‖Qs‖ +

E
[
�

(
λ

d Qr

d P

)]
− UW

0 (x)

λ

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭

where equality holds for λ∗, Q∗ ∈ QW
B (x + π (B)). Observe that the following ex-

tension, still denoted by α,

α(Q) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

infλ>0

⎡
⎢⎢⎣x + ‖Qs‖ +

E
[
�

(
λ

d Qr

d P

)]
− UW

0 (x)

λ

⎤
⎥⎥⎦ when Q ∈ MW

�

+∞ otherwise

is [0, +∞]-valued, satisfies inf Q∈(L̂u )∗α(Q) = 0 and therefore it is a grounded penalty
function. Clearly

π (B) = max
Q∈(L̂u )∗+

{Q(B) − α(Q)}

and

argmax {Q(B) − α(Q)} = QW
B (x + π (B))(4.15)
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as sets. In particular, when B = 0

π (0) = 0 and argmax {−α(Q)} = argmin {α(Q)} = QW
0 (x).(4.16)

Step 2. As α provides another penalty function, a basic result in convex duality
ensures that π∗ = α∗∗, i.e., π∗ is the convex, σ ((Lû)∗, Lû) —lower semicontinuous
hull of α. We want to show that π∗ = α. To this end, we prove that α is already
convex and lower semicontinuous.

(a) α is convex: Let Q(y) = yQ1 + (1 − y)Q2 be the convex combination of any couple
of elements in MW

� (if the Qi are not in MW
� there is nothing to prove). Given any

λ1, λ2 > 0 , define λ(y) = 1
(1−y) 1

λ2
+y 1

λ1

, so that 1
λ(y) = (1 − y) 1

λ2
+ y 1

λ1
. Then

α(Q(y)) ≤

⎡
⎢⎢⎣x + ‖Qs(y)‖ +

E
[
�

(
λ(y)

d Qr (y)
d P

)]
− UW

0 (x)

λ(y)

⎤
⎥⎥⎦

≤ y

⎡
⎢⎢⎣x + ‖Qs

1‖ +
E
[
�

(
λ1

d Qr
1

d P

)]
− UW

0 (x)

λ1

⎤
⎥⎥⎦

+ (1 − y)

⎡
⎢⎢⎣x + ‖Qs

2‖ +
E
[
�

(
λ2

d Qr
2

d P

)]
− UW

0 (x)

λ2

⎤
⎥⎥⎦

where the inequalities follow from the convexity of the norm and of the function
(z, k) → z�(k/z) on R+ × R+, as already pointed out. Taking the infimum over λ1

and λ2 we get: α(Q(y)) ≤ y α(Q1) + (1 − y) α(Q2).
(b) α is lower semicontinuous: Since α is a convex map on a Banach space, weak lower

semicontinuity is equivalent to norm lower semicontinuity. Suppose then that Qk

is a sequence converging to Q with respect to the Orlicz norm. We must prove that

α(Q) ≤ lim inf
k

α(Qk) := L.

We can assume L = lim infkα(Qk) < +∞, otherwise there is nothing to prove.
Now, it is not difficult to see that

Qk
‖·‖→ Q iff Qr

k
‖·‖→ Qr , Qs

k
‖·‖→ Qs(4.17)

so that Qr
k → Qr in L�̂ and henceforth in L1. We can extract a subsequence, still

denoted by Qk to simplify notation, such that α(Qk) → L and Qr
k → Qr a.s. So

these Qk are (definitely) in MW
� , which is closed and therefore the limit Q ∈ MW

� .
From the definition of α we deduce that for all k ∈ N+ there exists λk > 0 such

that

α(Qk) ≤ x + ‖Qs
k‖ +

E
[
�

(
λk

d Qr
k

d P

)]
− UW

0 (x)

λk
≤ α(Qk) + 1

k
.

The next arguments rely on a couple of applications of Fatou’s Lemma to (a

subsequence of) the sequence (
�(λk

d Qr
k

d P )−UW
0 (x)

λk
)k. Fatou’s Lemma is enabled here by
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the condition UW
0 (x) < u(+∞) and by the convergence of the regular parts ( d Qr

k
d P )k.

In fact, one can always find an x̃ such that u (̃x) = UW
0 (x) and then the Fenchel

inequality �(y) − u (̃x) + ỹx ≥ 0 gives the required control from below

�

(
λk

d Qr
k

d P

)
− UW

0 (x)

λk
+ d Qr

k

d P
x̃ ≥ 0.(4.18)

The sequence (λk)k cannot tend to +∞. In fact, if λk → +∞, then a.s. we would
have (remember that � is bounded below)

lim inf
k

�

(
λk

d Qr
k

d P

)
− UW

0 (x)

λk
= lim inf

k

�

(
λk

d Qr
k

d P

)
λk

≥ lim
k

(miny �(y))
λk

1{ d Qr
k

d P ∧ d Qr
d P =0} + lim

k

�

(
λk

d Qr
k

d P

)
λk

1{ d Qr
k

d P ∧ d Qr
d P >0}

= lim
k

�

(
λk

d Qr
k

d P

)

λk
d Qr

k

d P

d Qr
k

d P
1{ d Qr

k
d P >0}1{ d Qr

d P >0}.

(4.19)

Since 1{ d Qr
k

d P >0}1{ d Qr
d P >0} → 1{ d Qr

d P >0} a.s. and, as already checked, limy→+∞
�(y)

y = +∞
the limit in (4.19) is in fact +∞ on the set { d Qr

d P > 0} which has positive probability
as Q ∈ MW

� . But then

L = lim
k

{
α(Qk) + 1

k

}
≥ limk

⎧⎪⎪⎨
⎪⎪⎩x + ‖Qs

k‖ + E

⎡
⎢⎢⎣

�

(
λk

d Qr
k

d P

)
− UW

0 (x)

λk

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭

≥ x + ‖Qs‖ + E

⎡
⎢⎢⎣lim inf

k

�

(
λk

d Qr
k

d P

)
− UW

0 (x)

λk

⎤
⎥⎥⎦=+∞,

where in the inequality we apply (4.17) and Fatou’s Lemma.
Therefore there exists some compact subset of R+ that contains λk for infinitely

many k’s, so that we can extract a subsequence λkn → λ∗. The inequality (4.18)
ensures that λ∗ must be strictly positive. Otherwise, if λ∗ = 0, the numerator of
the fraction there tends to �(0) − UW

0 (x) = u(+∞) − UW
0 (x) > 0 and globally the

limit random variable would be +∞. Finally,

α(Q) ≤ x + ‖Qs‖ +
E
[
�

(
λ∗ d Qr

d P

)]
− UW

0 (x)

λ∗

≤ x + lim inf
n

⎧⎪⎪⎨
⎪⎪⎩
∥∥Qs

kn

∥∥+
E
[
�

(
λkn

d Qr
kn

d P

)]
− UW

0 (x)

λkn

⎫⎪⎪⎬
⎪⎪⎭ = L.
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Hence, α = π∗ and the identity ∂π (B) = QW
B (x + π (B)) in (4.4) follows from (4.14)

and (4.15).
(4) The bounds

sup
Q∈QW

0 (x)
Q(B) ≤ π (B) ≤ sup

Q∈MW
�

Q(B)(4.20)

are easily proved, since the first inequality follows from the fact that when Q ∈
QW

0 (x), the penalty α(Q) = 0 (see (4.16)) and the second inequality holds because
α is a penalty, i.e., α(Q) ≥ 0. The first supremum is in fact a maximum, which is
a consequence of the “Max Formula” as better explained in item (5) below. The
case W, B ∈ Mû is immediate from (4.20) and from the special form of the dual as
stated in Corollary 3.9.

(5) Let π ′(C, B) indicate the directional derivative of π at C along the direction B,
i.e., π ′(C, B) = limb↓0

π (C+bB)−π (C)
b . The so-called Max Formula (Borwein and Zhu

2005, theorem 4.2.7) states that given a convex function π and a continuity point
C, then

π ′(C, B) = max
Q∈∂π (C)

Q(B).

So the first volume asymptotic becomes a trivial application of the Max Formula
with C = 0, since bB ∈ B if b ≤ 1 + ε and

lim
b↓0

π (bB)
b

= π ′(0, B) = max
Q∈QW

0 (x)
Q(B),

because π (0) = 0 and QW
0 (x) = ∂π (0).

For the second volume asymptotic, when B ∈ Mû then bB ∈ B for all b ∈ R. So,
π (bB) is well defined and for all b > 0 we have that π (bB) ≤ supQ∈MW

�
Q(bB).

Therefore

lim sup
b→+∞

π (bB)
b

≤ sup
Q∈MW

�

Q(B).

If we fix Q ∈ MW
� , the penalty α(Q) is finite and π (bB)

b ≥ Q(B) − α(Q)
b for all

b > 0 so that lim infb→+∞
π (bB)

b ≥ Q(B) for all Q ∈ MW
� and limb→+∞

π (bB)
b =

supQ∈MW
�

Q(B).
Finally, the case W, B ∈ Mû follows from the asymptotics just proved and Corol-

lary 3.9.
(6) If B and −B are replicable with admissible strategies, then Q(B) = c for all Q ∈

MW
� , hence in particular for the “zero penalty functionals” Q ∈ QW

0 (x). Therefore
π (B) = maxQ{Q(B) − α(Q)} = c. �
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