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The Cox, Ingersoll, and Ross Model 

 

The CIR model is an equilibrium asset pricing model for the term structure of interest rate. It is 

defined under the assumption: 

dZtrdtrkdr ttt σθ +−= )(  

where σθ ,,k  are constants. represents the rates of mean reversion, k θ represents the long 

run average. Assuming , then the interest rate is ensured to be positive ( , it 

is possible for r to reach zero instantaneously, but it will never become negative).  
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Under the equivalent risk-neutral measure, it be comes 

dZtrdtrkkdr ttt σλθ ++−= ))((  

where λ  represents the risk adjustments when moving to the risk-neutral distribution. 

The CIR model is affine, and has a non-central chi-squared distribution (with degree of 

freedom 2

4
σ
θkv = ). By the Ricatti equations, the nominal risk-free bond price P(t,T) with 

payment of $1 at time T is given by 
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*all the interest rates are positive. 

 

 

The continuously compounded yield is defined as: 

tT
TtPTtY

−
−

=
)),(ln(),(  

As , it can be shown that  ∞→T

γλ
θ
++

→∞
k

ktY 2),(   

3



Which is independent of r . If 
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, the term structure is upward sloping (figure 1); if 
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upward first then downward sloping (figure 3). 
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MULTIFACTOR CIR MODEL 

The CIR model is frequently presented as a one-factor model; in Cox, Ingersoll, and Ross(1985), 

they showed how to extend the multiple factors. The multifactor CIR model is set up under the 

assumptions:  

dZjtxdtxkdx jtjjtjjjt σθ +−= )( , nj ,,1K=  

njx j ,,1, K=  are independent, and Brownian motions  are mutually independent. Also 

here we assume  to ensure the positivity. Similarly, under the risk-neutral measure, the 

model becomes: 

Zjt
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σλθ ++−= ))((     for nj ,,1K=  

Here we assumed the market price of risk jλ  as a fixed parameter. The instantaneous 

default-free short interest rate and default intensity are assumed to be the positive linear 

combinations of n factors  under weights  and jtx jw jw  
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(follows from historical data in Chen, Scott 1995): 

Estimates from Weekly Data, 1980-1988, T=470 

 k  θ  σ  λ  

Factor 1 0.13974 0.08480 0.10001 -0.07132 

Factor 2 0.7298 0.04013 0.16885 -0.01731 
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The nominal risk-free bond price P(t,T) with payment of $1 at time T is given by 
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Since the factors are independent by the assumption, and  and  have the 

forms given by  
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and 
22 2)( jjjjj ck σλγ ++=   

Then the defaultable bond prices under recovery rate q are given by: 
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The continuous compounded yield for the bond follows by: 
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We can observe that the term structure turns out to be a linear function of the unobservable state 

variables.  

Here we show the curve of two-factor CIR bond prices and yields 
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Default digital payoffs 

The price for a default digital put with maturity T (protection leg of a default digital swap) in CIR 

model is: 
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Proof: 

First, the equation in the expectation operator can be simplified: 
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Then for each fixed i, 
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Where ),0(0 tM j is defined as above. 

Then we do the change of measure to cP~  whose restriction on tℑ  is under the associated 

Radon-Nikodym density w.r.t P, and the process c
tW~ is a cP~ -Brownian motion: 
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On the other hand, under cP~ , the CIR interest rate x has the dynamics: 
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And x(T) given x(t) is non-central chi-square random variable distributed under cP~  with weight: 
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And finally combining with the integral, the equation for the price for a default digital put is 

proved. 

 

 

Numerical Estimation of Multifactor CIR Model 

We estimate the CIR model by the discrete method in Chen, Scott (1995) 

The individual interest rate are performed in a discrete representation by   

jttj
tktk

jjt vxeex jj ++−= −
∆−∆−

1,)1(θ , for nj ,,1K=  

Ni
tT

xTtBTtA
xtY

i

n

j
ktijij

i ,,1,
),(),(ln

),( 1
K=

−

+−
=
∑
=

 

 

where  represents the length of the time interval;  represents the error term in , it has 

a conditional expectation zero and conditional variance which is: 
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Conversely, the estimation of unobservable variables can be computed by nonlinear Kalman filter. 
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