
A Privacy Score for Anonymous Databases

By

Lindsay A. White

c© Copyright by Lindsay A. White, September 2021

Acknowledgements

This work was supported by Borealis AI through the Borealis AI Global Fel-

lowship Award and by the Vector Institute through the Vector Scholarship in

Artificial Intelligence (VSAI).

ii

Abstract

In this thesis, we present a quantitative measure called the Database Privacy

Score to assess the level of privacy in an anonymous database. Individuals in an

anonymous database are still at risk of having personal information uncovered

about them in a linkage attack. A privacy score is assigned to each individual

in the database, measuring the risk of an adversary gaining new knowledge

about them in a linkage attack. This requires looking at a set of attributes

K and determining which additional attributes can be inferred from knowing

K. This is where the bulk of the computational work occurs, and we present

algorithms for computing this. C++ source code is included in the Appendix

for all computations involved in computing the Database Privacy Score. We

also show that under certain assumptions, applying k-anonymity to a database

cannot worsen the privacy score, although there is no guarantee that it will

improve the score. We also look at privacy from a topological perspective, and

propose a solution for removing inferences that come from topological holes in

the Dowker Complex representing our database.

iii

Contents

1 Introduction 1

2 Preliminaries 5

2.1 Simplicial Complexes . 5

2.2 Databases and Dowker Complexes 6

2.3 k-Anonymity . 15

3 Database Privacy Score 17

3.1 Desired Properties . 17

3.2 Description of Score . 23

3.3 Proof of Properties . 24

3.4 Future Considerations . 29

4 Algorithms 32

4.1 Inference Sets . 34

4.2 Intersection Poset . 34

4.3 Computing weight(S) . 41

5 Connection to k-Anonymity 52

5.1 Weights for k-Anonymity . 52

5.2 Effect of k-Anonymity on Privacy Score 52

6 Topological Approach to Improve Privacy 56

6.1 Topological Description of Privacy Loss 56

6.2 Modifying Databases to Preserve Privacy 57

7 Future Work 62

8 Conclusion 64

iv

A C++ Code 65

v

Chapter 1

Introduction

Even when personally identifiable data is removed from a database, it can still

be possible for a person to be identified. In [Swe02], it was established that 87%

of the U.S. population in 1990 could likely be identified using only the three

properties of gender, date of birth and zip code. k-anonymity is a condition on

a database which aims to prevent an individual from being uniquely identified

in a database. In k-anonymity, a group of attributes (called a quasi-identifier)

is identified that could, in combination, be used to uniquely identify individu-

als. The database is then modified to ensure that each individual has identical

attributes to at least k − 1 others, within this group of attributes. However,

even if k-anonymity can be achieved, there can still be privacy loss for individu-

als during a linkage attack. In a linkage attack, an adversary has access to two

databases, one that is anonymized, and one that contains personally identifiable

information. They then look at common attributes between the databases to

try to find a unique match to connect an individual in the anonymous database

to one they can identify by name (or email, phone number, etc.) in the other

database. For a database where k-anonymity has been achieved, an adversary

may not be able to determine which row corresponds to a specified individual

(this is what k-anonymity aims to prevent), but they may still be able to gain

additional knowledge about the individual in question. If they knew an indi-

vidual had the attributes is male and age 30, and every individual with these

attributes in the database also have the attribute has cancer, then the attacker

can still gain the additional knowledge of the attribute has cancer, without

needing to explicitly determine which row of the database corresponded to the

given individual. This is what is called a homogeneity attack [KG06]. In this

case, we are not uniquely identifying the individual in the database, yet we

1

A Privacy Score for Anonymous Databases Lindsay A. White

are still acquiring additional information about them. In order to make this

type of inference, we would first need to know some information about the in-

dividual. This could mean that we personally know an individual who is in the

database and know certain facts about them, but more likely it will mean that

we have another database from some other source, and are trying to gain more

information about an individual using the knowledge from the other database.

The limitations of k-anonymity have been previously observed, and other

techniques for measuring privacy have been introduced, such as l-diversity

[KG06] and t-closeness [LLV07]. While l-diversity is an improvement from k-

anonymity, it was still shown in [LLV07] to be subject to skewness and similar-

ity attacks. In a skewness attack, if 85% of individuals who have the attribute

age 60 also have the attribute has diabetes, an adversary is still able to infer

potentially accurate information about an individual. t-closeness further im-

proves upon l-diversity by requiring that within each group of individuals with

identical quasi-identifier, the probability of having a sensitive attribute within

this group should differ from the probability within the database as a whole by

no more than some given threshold.

All of the above conditions can be measured for a given database, but they

are either a yes or no condition - a database satisfies it, or it does not. They also

all require grouping attributes into either identifying attributes, quasi-identifier

attributes, sensitive attributes, or other attributes. In this thesis, we present a

metric for measuring privacy loss that gives a database a score on a scale from

0 to 1, where 0 means there is no risk of information leakage and 1 indicates a

very high risk. We measure privacy loss by considering the possible inferences

that could occur for each individual, and assigning a numerical risk factor to

each individual (again on a scale from 0 to 1). This allows a comparison of the

risk before and after an anonymization technique is applied. In contrast to the

conditions listed above, we do not group the attributes into different types, but

instead assign a weight to each attribute to measure both its sensitivity level

and the likelihood that an adversary may have knowledge of that attribute.

By doing so, we are considering all possibilities. Certain inferences may be

more likely to occur if the knowledge needed beforehand is easier to acquire,

while some inferences may be more dangerous than others, depending on the

sensitivity of the attributes that were inferred. All of these factors are considered

in constructing the database privacy score. In this thesis, we consider only

absolute inferences in constructing our score, but propose that this should be

extended to include probabilistic inferences (to account for skewness attacks)

2

A Privacy Score for Anonymous Databases Lindsay A. White

for future work.

The intent behind creating a database privacy score is to allow companies

to assess the risk to individuals before releasing an anonymous database. As

well, having a quantitative measure to assess privacy also allows a company to

measure privacy both before and after an anonymization technique is applied.

Without such a measure, there is no way to assess whether anonymization did

in fact improve privacy. The use of the word anonymization often implies that

there is no privacy risk. Under our definition of privacy, this would mean no

new knowledge can be obtained about an individual. This could only occur if

no inferences are possible, which is an unlikely scenario in general. We therefore

need the database privacy score to give a precise measurement of how secure the

database is. This score could also be used to prove theoretical results on how a

particular anonymization technique affects privacy, by analyzing its effect on the

database privacy score. We will see an example of this regarding k-anonymity

in Section 5.2.

Other metrics have been introduced to measure privacy loss in other set-

tings, such as hiding failure in [OZ03], which measures privacy loss on datasets

consisting of transactional records. In this setting, our dataset is a list of trans-

actions, such as purchases in a store, and data analysis is looking for frequent

patterns that appear, such as groups of items purchased together. To measure

privacy loss, hiding failure is the percentage of sensitive patterns in the modified

database compared to that in the original. In contrast, we are considering a

generic database consisting of individuals and attributes, and assume an ad-

versary is looking for any type of knowledge they can acquire, as opposed to

frequent patterns.

In this thesis, we are motivated by topological approaches to privacy. Topol-

ogy can be used to describe the relationships between attributes in a database

through the construction of a Dowker complex. Closure operators can be defined

between the face posets of these complexes, and the inferences in our database

can be derived from these closure operators. We can also use topology to de-

scribe how inferences occur in a database. Some inferences are the result of a

topological hole in the Dowker complex. In Section 6.2, we propose a technique

to remove the holes from the database in a way that eliminates the inferences

coming from this hole, and does not create any new inferences.

In Chapter 7, we propose several avenues of further research. In modifying

a database to improve privacy, the database privacy score gives us a way to

measure whether this improvement occurs. However, improving privacy often

3

A Privacy Score for Anonymous Databases Lindsay A. White

involves adding in false data, which can affect the usefulness of the data. For

this, we need a way to meausre data usability as well. We propose that a Data

Usability Score should be introduced, and both the Data Privacy Score and

Data Usability Score should be used when assessing the effectiveness of a given

anonymization technique.

In Appendix A, we include C++ source code for all of the algorithms needed

to compute the Database Privacy Score. This can be used on a real dataset once

the attributes are converted to binary ones.

4

Chapter 2

Preliminaries

In this chapter, we review some key definitions that will be used throughout.

We refer the reader to [Hat02] and [EH10] for a thorough background on alge-

braic topology and simplicial complexes. We also refer the reader to [Wac06]

for further background on simplicial complexes, faces and face posets, and to

[Erd17] for more on the Dowker complexes and closure operators.

2.1 Simplicial Complexes

Definition 2.1. An n-simplex (geometrically) is the convex hull of n + 1

vertices. It consists of n+ 1 vertices, all edges between each pair of vertices, all

triangles between each group of 3 vertices, and so on. It is n-dimensional.

0-simplex 1-simplex 2-simplex 3-simplex

Definition 2.2. A face τ of an n-simplex σ is any simplex contained in σ (τ

may be σ itself). We denote this by τ ≤ σ.

Definition 2.3. A simplicial complex S is a finite collection of simplices

satisfying the following conditions:

1. If σ ∈ S and τ ≤ σ, then τ ∈ S as well.

2. If σ, τ ∈ S, then either σ ∩ τ = ∅, or σ ∩ τ ≤ σ and σ ∩ τ ≤ τ .

5

A Privacy Score for Anonymous Databases Lindsay A. White

Example 2.4. The second condition above means that in a simplicial complex,

we connect up simplices on edges, vertices, etc. We do not have an edge from

one simplex slicing through the edge of another.

Acceptable Not Acceptable

We can also represent simplices and simplicial complexes using sets.

Definition 2.5. In an abstract simplicial complex S, we represent each

simplex σ in S by a set consisting of all the vertices of σ. S is then the collection

of these sets.

Example 2.6. Suppose we label the vertices of an n-simplex as {1, 2, . . . , n+1}.
To represent an n-simplex as an abstract simplicial complex, we can take all

non-empty subsets of {1, 2, ..., n+ 1}.

1

1 2

1 2

3

S = {1}

S = {{1}, {2}, {1, 2}}

S = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

In other words, we have that S = P({1, . . . , n+ 1}) \ ∅ for an n-simplex S,
where P(X) denotes the power set of the set X.

2.2 Databases and Dowker Complexes

Definition 2.7. Let X and Y be sets. A relation on X×Y is a set R ⊆ X×Y .

If X = Y , we say that R is a relation on X. If (x, y) ∈ R, we often denote this

by xRy.

6

A Privacy Score for Anonymous Databases Lindsay A. White

Definition 2.8. A dataset consists of a list of individuals with their attributes.

The set of individuals is denoted by Ind, and the set of attributes is denoted

by Att, so that our dataset R is a relation on Ind × Att. We often represent

this as a binary matrix.

Example 2.9. Let Ind = {1, 2, 3, 4} and Att = {a, b, c, d}. We can represent a

dataset R by a matrix, such as:

R a b c d
1 • •
2 • •
3 • • •
4 • • •

Throughout, we will typically use K to denote a set of attributes, and

J to denote a set of individuals. When trying to determine inferences in a

database, we will be thinking of K as the set of known attributes, hence the

choice of notation. We represent a simplex by the set of its vertices. For

example, the triangle containing vertices a, b, c would be represented by the set

{a, b, c}. Sometimes we will shorten this to abc for easier readability.

Definition 2.10. From a relation R, we can construct two simplicial complexes

called Dowker Complexes:

1. ΦR = {K ⊆ Att | ∃i ∈ Ind s.t. (i, x) ∈ R ∀x ∈ K}

2. ΨR = {J ⊆ Ind | ∃x ∈ Att s.t. (i, x) ∈ R ∀i ∈ J}

The simplices in ΦR are the sets of attributes that at least one individual in

our dataset has. From our matrix representation for R, the sets K ∈ ΦR are the

rows in the matrix, along with all subsets of each row. In our example relation

R above, we would have:

ΦR = {{a, b}, {a}, {b}, {b, c}, {c}, {a, c, d}, {a, c}, {a, d}, {c, d}, {d}, {b, c, d}, {b, d}}

The simplices in ΨR are the sets of individuals who share at least one at-

tribute. The sets J ∈ ΨR consist of the columns in R, as well as all subsets of

the columns in R. In our example relation R above, we would have:

ΨR = {{1, 3}, {1}, {3}, {1, 2, 4}, {1, 2}, {1, 4}, {2, 4}, {2}, {4}, {2, 3, 4}, {2, 3}, {3, 4}}

7

A Privacy Score for Anonymous Databases Lindsay A. White

a

b c

d

1

3 2

4

Figure 2.1: ΦR on the left and ΨR on the right

Theorem 2.11 (Dowker Duality, [Dow52]). Let R be a relation on Ind× Att,
with ΦR and ΨR as above. Then ΦR and ΨR are homotopy equivalent.

For the purpose of this thesis, we will not use the fact that these complexes

are homotopy equivalent. However, the maps that describe this homotopy will

be important, and we describe them below. We first will need some other

definitions.

Definition 2.12. Let R be a relation on a set X. R is a partial order if it is:

1. Reflexive: aRa ∀a ∈ X

2. Antisymmetric: If aRb and bRa, then a = b.

3. Transitive: If aRb and bRc, then aRc.

Definition 2.13. A set X along with a partial order R is called a partially

ordered set (poset).

Definition 2.14. The face poset of a simplicial complex S, denoted F (S), is

the poset with elements being the simplices of S and ordering being set inclusion.

Elements in the face poset are the simplices in our simplicial complex. For

ΦR, these simplices are subsets of Att, and for ΨR, these simplices are subsets

of Ind. We now describe two important maps on the face posets.

Definition 2.15. Let i ∈ Ind be an individual, and let R ⊆ Ind × Att be a

dataset. Then Atti is the set of attributes i has in R.

Atti = {x ∈ Att|(i, x) ∈ R}

This is the row corresponding to the individual i in our matrix representation

of R.

8

A Privacy Score for Anonymous Databases Lindsay A. White

Definition 2.16. Let x ∈ Att be an attribute, and let R ⊆ Ind × Att be a

dataset. Then Indx is the set of individuals who have the attribute x.

Indx = {i ∈ Ind|(i, x) ∈ R}

This is the column in corresponding to the attribute x in our matrix represen-

tation of R.

Definition 2.17. The two maps describing the homotopy equivalence between

ΦR and ΨR are as follows:

1.

φR : F (ΨR)→ F (ΦR)

J 7→
⋂
i∈J

Atti

2.

ψR : F (ΦR)→ F (ΨR)

K 7→
⋂
x∈K

Indx

1. φR sends a set of individuals to the set of attributes they share

2. ψR sends a set of attributes to the individuals who share them

Observe that φR and ψR are both inclusion-reversing maps. That is, we have

the following:

1. If J1 ⊆ J2, then φR(J2) ⊆ φR(J1).

2. If K1 ⊆ K2, then ψR(K2) ⊆ ψR(K1).

This fact follows from intersection of sets being inclusion-reversing.

The maps we are particularly interested in are the compositions φR ◦ψR and

ψR ◦ φR, which turn out to be closure operators.

Definition 2.18. Let P be a poset, and let f : P → P be an order-preserving

map. Then f is a closure operator if:

1. x ≤ f(x) ∀x ∈ P

2. f(f(x)) = f(x) ∀x ∈ P

9

A Privacy Score for Anonymous Databases Lindsay A. White

Lemma 2.19. ([Erd17]) ψR ◦ φR and φR ◦ ψR are closure operators.

Let’s consider the map φR ◦ ψR : F (ΦR)→ F (ΦR). Let K = (φR ◦ ψR)(K).

Since φR ◦ ψR is a closure operator, this tells us that:

1. K ⊆ K for any K ⊆ Att

2. (φR ◦ ψR)(K) = K for any K ⊆ Att

Let K denote a set of attributes, and let IK denote the attributes we infer from

K in our dataset R. We claim that K = K∪IK (where this is a disjoint union).

To see this, we look at K = (φR ◦ ψR)(K):

{
set of

attributes
(K)

}
7→

{ set of
individuals

who share them
(J)

}
7→

{ set of
atrributes
shared by

those individuals
(K)

}

Clearly, K ⊆ K, since every individual in J has all attributes in K. However,

it is possible that every individual in J also has additional attributes outside of

A. If K \ K 6= ∅, then K \ K = IK is the set of additional attributes we can

infer from knowing someone has all the attributes in K. Thus, K = K ∪ IK , as

desired.

Now that we know that K = K ∪ IK , condition (2) above tells us that if

S = K for some K ⊆ Att, then S = S and no new attributes can be inferred

from S.

For simplicity, we will often use that K =
⋂
i∈J

Atti, where J is the set of all

individuals in our dataset who have the attributes in K.

Example 2.20. We illustrate the map φR ◦ψR with an example. Consider the

following relation R:

R a b c d
1 • •
2 • •
3 • • •
4 • • •

Here, we have:

{d} 7→ {3, 4} 7→ {c, d}

This means that everytime we know someone has attribute d, we also know they

must have attribute c.

10

A Privacy Score for Anonymous Databases Lindsay A. White

We can also make inferences of a different sort from the closure operator

ψR ◦ φR. These are not relevant here, but we refer the interested reader to

[Erd17] for more informtaion.

Definition 2.21. A simplex M of a simplicial complex S is maximal if there

is no simplex M ′ ∈ S such that M (M ′.

Definition 2.22. A simplex F of a simplicial complex S is said be a free face

of S if it is contained in exactly one maximal simplex of S.

Example 2.23. Consider the following simplicial complex:

ab

c

d

In this example, the simplices {a, b} and {a, c, d} are both maximal. Only the

simplex {a} is not free (it is in both maximal simplices; all others are only in

one of the two).

We now consider how inferences relate to free faces.

Notice that some information is lost when translating from our dataset to the

Dowker complex. In the example above, we know there must be an individual

with Atti = {a, c, d}. This is because we only add a simplex to our Dowker

complex if there is an individual in the dataset with all of those attributes,

and since {a, c, d} is not contained in a larger simplex, we must have someone

with Atti = {a, c, d}. However, we do not know whether an individual exists

with Attj = {a, c}. Since individual i has the attributes {a, c}, {a, c} will be in

our Dowker complex. It is however possible that another individual exists with

Attj = {a, c}. This can only be determined by looking at the original dataset.

In other words, we cannot tell from the Dowker complex whether there are any

individuals in our database with Attj ⊆ Atti.

Example 2.24. Let’s consider a free face in ΦR with two possible datasets:

R1 a b c
1 • • •

R2 a b c
1 • •
2 • • •

11

A Privacy Score for Anonymous Databases Lindsay A. White

b

a

c

Here, ab is a free face, as it is only contained in the one maximal simplex abc.

In R1, we have the inference ab =⇒ c, but in R2 we have no inference coming

from ab.

This illustrates that in general, we cannot determine whether or not there

will be an inference from a free face. However, if we make the assumption that

Attj 6⊆ Atti for any i, j ∈ Ind, then our databases will look more like R1, where

we do have inferences.

Lemma 2.25. Let R be a dataset, and suppose that there are no individuals

i, j ∈ Ind with Attj ⊆ Atti. If K is a free face in ΦR and K is not maximal,

then K = K. In particular, this means that IK 6= ∅, and there are attributes we

can infer from IK.

Proof. Since Attj 6⊆ Atti for any i, j ∈ Ind, we have that the maximal simplices

in ΦR are precisely the attributes sets Atti for each i ∈ Ind. (By construction

of ΦR, the only way Attj would not be a maximal simplex is if it were contained

in another attribute set.) Since K is free and not maximal, then K ⊂ Attj
for exactly one maximal simplex Attj. Since K =

⋂
i∈J

Atti, where J is the set

of all individuals in our dataset who have the attributes in K, and K is only

contained in Attj, we have that K =
⋂
i∈{j}

= Attj. Thus, K = Attj, and since

K was not maximal, we have K 6= K, as desired.

In general however, we cannot conclude whether or not there is an inference

from a free face.

Example 2.26. Now we consider a non-free face, again with two possible

datasets.

R1 a b c d
1 • • •
2 • • •

R2 a b c d
1 • • •
2 • • •
3 • •

12

A Privacy Score for Anonymous Databases Lindsay A. White

c

a

b

d

Here, a is a non-free face as it is in both of the maximal simplices abc and abd.

In R1, we have the inference a =⇒ b. However, in R2, we have no inference

coming from a. Again, this is caused by having an individual with Att3 ⊆ Att1.

Notice however that we also have the non-free face ab. In both R1 and R2,

there is no inference coming from ab. Here, ab is the intersection of the maximal

simplices it is contained in.

Lemma 2.27. Let K ⊆ Att and let Att1, . . . Attn be the attribute sets that K is

contained in within a dataset R. If K =
n⋂
i=1

Atti, then K = K and no inferences

can be made from K.

Proof. Let J = {1, . . . , n} denote the set of individuals which have the attributes

K. Then we have K =
⋂
j∈J

Attj =
n⋂
i=1

Atti = K, so K = K, as desired.

While in our example above, we saw that there was no guarantee whether or

not there was an inference from the non-free face a (without putting conditions

on the dataset), it turns out that if there are no free faces at all in ΦR, then we

cannot have any inferences at all.

Theorem 2.28 ([Erd17]). Let Ind and Att be non-empty, and let R be a relation

on Ind×Att. If there are no free faces in ΦR, then no attribute inferences are

possible.

While we can have inferences coming from free or non-free faces in general,

the existence of free faces is what causes the problem (even if the inference is

actually coming from a non-free face).

Example 2.29. Let’s revisit the example above, where we had the possible

inference a =⇒ b.

R1 a b c d
1 • • •
2 • • •

13

A Privacy Score for Anonymous Databases Lindsay A. White

c

a

b

d

This inference is coming from the fact that a is sitting inside two free faces,

ad and ac. If we make it so that a does not sit inside any free faces, we avoid

inferences from a. For example, we could modify ΦR as follows:

c

b

d

e

a

We now cannot have an inference from a. At a minimum, our dataset would

need to contain the following:

R1 a b c d e
1 • • •
2 • • •
3 • • •
4 • • •

It is clear from this dataset that there is no inference from a.

Lemma 2.30. Let K be a non-free face in ΦR that is not contained in any other

non-free face. Then K = K, and there no inference is possible from K.

Proof. Suppose for a contradiction that there is an inference. Then there is a

simplex K ′ such that K = K ′, where K ⊂ K ′. If we can show that K ′ is a

non-free face, then we have a contradiction to K not being contained in any

other non-free face. Suppose then that K ′ is free. Then K ′ ⊆ M for only

one maximal face M . On the other hand, since K is non-free, we know that

K ⊆M1,M2 for at least two maximal faces. We have K ′ = K =
⋂
i∈J

Atti, where

14

A Privacy Score for Anonymous Databases Lindsay A. White

J is the set of individuals who have the attributes in K. Since K ⊆M1,M2 for

two maximal faces, and we know the maximal faces must be attributes sets, let

i1 and i2 denote the two individuals whose attribute sets corresponds to these

two maximal faces. Then i1, i2 ∈ J (since i1, i2 have all attributes in K). Since

K ′ =
⋂
i∈J

Atti, K
′ ⊆ Atti for each i ∈ J . Thus, K ′ ⊆ Atti1 , Atti2 , contradicting

K ′ being free. Thus, K ′ is non-free, a contradiction to K not being contained

in any other non-free face. Thus, we must have K = K, as desired.

2.3 k-Anonymity

k-anonymity is a condition on a database introduced in [Swe02] that is used

to protect privacy. In k-anonymity, each individual will be identical to at least

k−1 others across a particular set of attributes, where k is some integer greater

than 1. The goal of k-anonymity is to prevent the ability of an adversary from

being able to uniquely identify an individual in a database. In this thesis, we

consider a stronger requirement for privacy. Instead of measuring privacy based

on whether an individual can be tracked down to a unique row in the anonymous

database, we measure privacy based on the ability of an adversary to gain any

new knowledge about an individual that they did not already have beforehand.

Definition 2.31. A quasi-identifer is a collection of attributes that can (pos-

sibly) be used to uniquely identify an individual in a database.

For instance, the combination of the attributes {zip code, birthdate, sex}
are often sufficient to uniquely identify each individual in a database. Usually,

the attributes chosen for the quasi-identifier will be ones that are easily acces-

sible in a public database. This allows an adversary to link the records in a

public database to a private anonymous one. If there is a unique individual

in the anonymous database with the quasi-identifier attribute values, they can

be matched to the corresponding individual in the public database. This then

allows an adversary to de-anonymize this individual and match them to a name.

Definition 2.32. A database is said to be k-anonymous if for each individual

in the database, their attribute values corresponding to the quasi-identifier are

identical to those of at least k − 1 other individuals in the database.

This means that if an adversary were to try to link a public database to a

k-anonymous private database, they would be unsuccessful in finding a unique

15

A Privacy Score for Anonymous Databases Lindsay A. White

match. However, finding a unique match is not the only possible way for an

adversary to gain additional information about an individual.

Example 2.33. Consider the following database, and suppose {a, b, c} is the

quasi-identifier, and {d, e, f} are sensitive attributes that we do not want linked

back to a particular individual.

R a b c d e f
1 • • • •
2 • • • •
3 • • • •
4 • • • •

This database is 2-anonymous with respect to the quasi-identifier {a, b, c}. Now

let’s assume an adversary has another database where they have an individual

with attributes a and b. They won’t be able to determine whether this person

is individual 1 or 2. However, since everyone in the database with attributes a

and b also have attribute d, they will be able to infer that the individual also

has attribute d. This is still a loss in privacy, as the adversary was able to

gain new (possibly sensitive) knowledge about the individual that they did not

previously have. This form of privacy loss is not considered in the k-anonymity

model.

16

Chapter 3

Database Privacy Score

In assigning a privacy score to a database, we want to assess the risk level of each

individual in the database. Therefore, we must first consider a privacy score

for an individual in a database. We can then choose to assign the score to the

database by either taking the average, maximum, or some other combination of

the scores of the individuals.

Before we decide how to assign a score to an individual, or to the database

as a whole, we need to consider what properties we want the score to have.

That is, we need to consider how the score should behave (or change) in various

circumstances.

3.1 Desired Properties

The basis of our score will be in assessing the risk of inference for an individual.

Careful consideration is needed to ensure we accurately assess the risk. Some

factors to consider are:

1. What are all of the possible inferences that could be made for the indi-

vidual?

2. For a given inference:

(a) How likely is it that an adversary knows all of the attributes needed

to make the inference?

(b) How dangerous is it for an adversary to learn these new attributes?

These factors suggest that simply tallying up the number of inferences that

occur for an individual will not suffice. Some inferences may be more likely to

17

A Privacy Score for Anonymous Databases Lindsay A. White

occur than others, while some may be more dangerous to infer than others. This

suggests that each inference should be weighted according to both the danger

of learning the inferred attributes and the likelihood of an adversary having the

knowledge necessary to make the inference.

Let K denote a set of attributes. We will think of K as a ′′knowledge set′′ or
′′known set′′ that an adversary has knowledge of ahead of time. Let IK denote

the new attributes we can infer from knowing K. For each possible K, we need

to assign a weight w(K) that captures both the likelihood we know K in the

first place, as well as the danger from learning IK . For each individual i in our

database, an adversary could have knowledge of any set K ⊆ Atti, where Atti is

the set of attributes for individual i. We will need to establish how to use these

w(K) values to assign a score to an individual. For this, we need to determine

what properties our individual privacy score (denoted by priv(i)) should have.

We will assign our score to be in the range [0, 1], where 1 will be the worst for

privacy, and 0 will be the best. Similarly, we will assign our weights to be values

in the range [0, 1] as well.

We would like priv(i) to satisfy the following conditions:

1. If Atti ⊆ Attj for some individuals i and j, then priv(i) ≤ priv(j).

We would like this to occur since any inference that could be made for

individual i could also be made for individual j. This is because j has all

of the attributes i has. It is however possible that additional inferences

could be made for individual j.

Suppose we were to define priv(i) by taking the average of the w(K) for

K ⊆ Atti. Consider an example where we have:

Atti = {a, b}

Attj = {a, b, c}

and suppose we have the inferences a =⇒ b and b =⇒ a, each with weight 1.

Further, assume that all other inferences have weight 0. Recall that we assign

a w(K) for each K ⊆ Atti, so for individual i there will be 4 subsets, and for

individual j there will be 8 (we include K = ∅ as a possibility). If we were to

use an average of these weights, we would have:

priv(i) =
1 + 1 + 0 + 0

4
= 0.66

18

A Privacy Score for Anonymous Databases Lindsay A. White

priv(j) =
1 + 1 + 0 + 0 + 0 + 0 + 0 + 0

8
= 0.29

The lower score for individual j gives the appearance that j is safer. How-

ever, the same inferences (a =⇒ b and b =⇒ a) occurred for both i and j,

with no other inferences being dangerous for either. This indicates that i and

j should have the same risk. However, the addition of more 0-weight inferences

caused j’s score to decrease. This is something that we want to make sure our

score avoids, and hence we should not take the average of the weights.

Notice that in the above, i and j share the same worst-case inferences. This

leads to the decision that we should be taking a maximum of the w(K)’s instead

of the average.

Definition 3.1. Let i be an individual in a database D. Then the privacy

score for i is defined as:

priv(i) = max
K⊆Atti

w(K)

where Atti is the set of attributes for individual i, and w(K) is the risk of

inferring IK from K.

Let us verify that this is a reasonable assessment of privacy. We are trying

to assess the risk of individual i from being in the database. Assuming we have

properly assessed the risk of inferring IK from K (in the computation of w(K)),

the maximum of these weights gives us the worst possible scenario that could

occur. Since w(K) will reflect the likelihood of the inference being made as

well as the danger of inferring those attributes, the highest w(K) is the worst

inference that is likely to be made. A high w(K) means its a dangerous inference

and its likely to occur.

We need to assess whether taking the maximum is the best way to assess

the privacy of an individual in the database. For this, we need to consider

whether there is another way to combine the w(K)s to better reflect the risk.

For instance, suppose we have two individuals i and j. Suppose individual i has

w(Ki1) = 0.9, and all other w(Kil) = 0. Suppose individual j has w(Kj1) = 0.9,

w(Kj2) = 0.5, and all other w(Kjl) = 0. Should individual j be given a higher

score than i? By taking the maximum w(K), both i and j are given the same

score. We claim that this is an accurate reflection of the risk, and that j should

not be given a higher score.

The inclination to say that j should have a higher score comes from thinking:
′′What if an adversary had knowledge of both Kj1 and Kj2?

′′ Here, the thinking

19

A Privacy Score for Anonymous Databases Lindsay A. White

is that we should somehow be adding the risk weights of 0.9 and 0.5. However,

if an adversary has knowledge of Kj1 and Kj2 , then they have knowledge of the

set Kj1 ∪Kj2 . Since both Kj1 ⊆ Attj and Kj2 ⊆ Attj, then Kj1 ∪Kj2 ⊆ Attj as

well. This means Kj1 ∪Kj2 was already in the list of sets we took the maximum

over. There is no need to add any scores together, as by considering all possible

subsets of Attj (when we take max
K⊆Attj

w(K)), we are already accounting for com-

bined knowledge of sets. Thus, taking the maximum w(K) really is assessing

the worst possible case for the individual.

Now we list some properties that we would like for w(K):

1. If K ⊆ K ′ and IK = IK′ , then w(K) ≥ w(K ′).

We would like this to be true because if both K and K ′ infer the same

set IK , we are able to infer IK from a smaller set when we infer from K.

This means we can infer the same set with less knowledge, so this should

be considered worse.

2. If IK = ∅, w(K) = 0.

If no inference is made, there is no risk.

Definition 3.2. If K is a set of attributes in a database D, then the risk

weight of a set K, denoted w(K), is

w(K) = lk(K) ∗ dg(IK)

where lk(K) is the likelihood of knowing K and dg(IK) is the danger from

inferring IK .

To determine lk(K) and dg(IK), we need to now look at individual at-

tributes. For each attribute x, we assign two numbers:

l(x) : the likelihood (probability) of knowing attribute x (0 ≤ l(x) ≤ 1)

d(x) : danger rating for inferring x (0 ≤ d(x) ≤ 1)

A higher l(x) means that we are more likely to know x, and a higher d(x)

means that it is more dangerous to infer x. We note that it may be reasonable

to require that l(x) + d(x) = 1. If it is likely that an adversary knows an

attribute, then it might indicate that it is something shared publicly and this

might mean that it is not dangerous to infer. However, this may not always be

a valid choice to make.

20

A Privacy Score for Anonymous Databases Lindsay A. White

If we assume that our attributes are independent random variables, then it

is straightforward to compute lk(K) for a set K:

Definition 3.3. Let K be a set of attributes in a database D. The likelihood

of knowing K is then:

lk(K) =
∏
x∈K

l(x)

where l(x) is the likelihood of knowing the attribute x.

We will assume that we do not have any dependent variables in our database.

For instance, we cannot have one attribute that is age, and another that is age

+ 1, as we would have a dependence between attributes here. Note that there

may be databases that include dependent variables, but for the purposes of

this thesis we will assume that our database consists of a set of independent

attributes. Future work could revise the likelihood function to deal with the

possibility of dependent variables in our database.

Computing dg(IK) is not quite as straightforward. This is because we need

a few considerations. We need that:

1. If IK′ = IK ∪ {x}, where d(x) = 0, then dg(I ′K) = dg(IK).

In other words, if we infer an additional attribute that has a danger weight

of 0, our danger score should not change. This then eliminates the possi-

bility of multiplying our scores together, as multiplying by 0 would give

us 0 even if other attributes had risk values.

2. If d(x) = 0 for all x ∈ IK , then dg(IK) = 0.

3. If IK ⊆ IK′ , then dg(IK) ≤ dg(IK′).

This is because if IK′ is inferred, then all attributes from IK have also

been inferred, so dg(IK′) should be at least as high as dg(IK).

Since multiplication of the d(x) values will not work, we need to consider

addition instead. However, we need to scale dg(IK) to be between 0 and 1. We

want the score to get worse when we add new attributes to IK (i.e., when we

infer more). If we consider a scenario where all attributes have weight 1, we

want dg(IK) to get worse as IK grows in size. We thus propose the following:

Definition 3.4. Let IK be a set of attributes in a database D. Then the danger

21

A Privacy Score for Anonymous Databases Lindsay A. White

score for inferring IK is defined as:

dg(IK) =

∑
x∈IK

d(x)

1 +
∑
x∈IK

d(x)

where d(x) is the danger weight for attribute x.

Note that dg(x) 6= d(x). This is because of our need to have dg(IK) worsen

as IK grows in size, and our inability to multiply scores. d(x) should be chosen

with this in mind.

We add 1 in the denominator to ensure that dg(IK) is between 0 and 1.

It is possible to choose a number other than 1 here, and this may depend on

the typical size of IK that we will be looking at. For instance, suppose our

sum in the numerator were 5. Using 1 in the denominator, we would have

dg(IK) = 0.83, but if we used 0.1 in place of 1, we would get 0.98. The choice

of this value may depend on what we want to consider to be a ′′bad′′ sum of

danger scores, and is something that should be discussed in future work.

Above, we had stated that we do not want the score to change if we add in

an attribute with d(x) = 0. Notice that if we were to add in such an x, it would

contribute 0 to both the numerator and denominator, so the score dg(IK) would

be left unchanged, as desired.

We can also see in our scenario where all x have d(x) = 1, that as IK grows,

so does dg(IK). More specifically, as
∑
x∈IK

d(x)→∞, we have dg(IK)→ 1.

Now that we have considered our individual privacy score, we need to de-

termine how to assign a score to a database as a whole. For our database score,

we would like that:

1. If we have two databases D and D′, and the same set IK is inferred in

each, dg(IK) is the same in each. That is, dg(IK) is independent of the

database we are currently looking at.

2. The score should not be relative to the database. A bigger database with

larger (more dangerous) inferences should have a worse score than a small

database with fewer dangerous inferences.

22

A Privacy Score for Anonymous Databases Lindsay A. White

3.2 Description of Score

Here, we summarize the steps in computing the score that were derived in the

previous section. We also introduce some options for computing a privacy score

on the database as a whole.

Let K be a set of attributes in a database D. Let IK be the set of attributes

we can infer from knowing K.

Recall from Definitions 3.3 and 3.4 that the likelihood of knowing K, de-

noted lk(K), and the danger of inferring IK , denoted dg(IK) are:

lk(K) =
∏
x∈K

l(x)

and

dg(IK) =

∑
x∈IK

d(x)

1 +
∑
x∈IK

d(x)

respectively, where l(x) is the likelihood of knowing the attribute x and d(x) is

the danger weight for attribute x. Note that dg({x}) 6= d(x).

From Definition 3.2, we had that the risk weight for a set of attributes K

is w(K) is:

w(K) = lk(K) ∗ dg(IK)

In Definition 3.1, we defined the individual privacy score, denoted by

priv(i), for any individual i in a database D, as:

priv(i) = max
K⊆Atti

w(K)

where Atti is the set of attributes that i has in D.

Definition 3.5. For a database D, the average database privacy score,

denoted privavg(D), is defined as:

privavg(D) =

∑
i∈Ind

priv(i)

n

where Ind is the set of all individuals in D and n = |Ind|.

This assesses the average risk of an individual in the database D. This may

23

A Privacy Score for Anonymous Databases Lindsay A. White

be combined with other scores as listed below.

Definition 3.6. For a database D, the threshold privacy count is defined

as:

privct(D) = |{i | priv(i) ≥ t}|

and the threshold privacy score is defined as:

privt(D) =
|{i | priv(i) ≥ t}|

n

where 0 ≤ t ≤ 1 is some chosen threshold value, and n is the number of

individuals in D.

The threshold privacy count gives a count of the total number of individuals

in a databse with a privacy score over a certain threshold, while the threshold

privacy score gives a percentage of the number of individuals in a database with

a privacy score over a certain threshold.

3.3 Proof of Properties

Desired Properties for lk(K).

Proposition 3.7. lk(K) satisfies the following conditions:

(i) If K ⊆ K ′, then lk(K) ≥ lk(K ′).

(ii) If x ∈ K and l(x) = 0, then lk(K) = 0.

(iii) If l(x) = 1 for all x ∈ K, then lk(K) = 1.

Proof. (i): Since 0 ≤ l(x) ≤ 1 and K ⊆ K ′,

lk(K) =
∏
x∈K

l(x) ≥
∏
x∈K′

l(x) = lk(K ′)

(ii):

lk(K) =
∏
x∈K

l(x) = 0 ·
∏

x∈K,x6=x

l(x) = 0

(iii):

lk(K) =
∏
x∈K

l(x) =
∏
x∈K

1 = 1

24

A Privacy Score for Anonymous Databases Lindsay A. White

Desired Properties for dg(K).

Proposition 3.8. If IK′ = IK ∪ {y} and d(y) = 0, then dg(IK′) = dg(IK).

Proof. We have:

dg(IK′) =

∑
x∈IK′

d(x)

1 +
∑

x∈IK′

d(x)

=

d(y) +
∑
x∈IK

d(x)

1 + d(y) +
∑
x∈IK

d(x)

=

0 +
∑
x∈IK

d(x)

1 + 0 +
∑
x∈IK

d(x)

=

∑
x∈IK

d(x)

1 +
∑
x∈IK

d(x)

= dg(IK)

as desired.

Proposition 3.9. If IK ⊆ IK′, then dg(IK) ≤ dg(IK′).

25

A Privacy Score for Anonymous Databases Lindsay A. White

Proof. Suppose IK′ = IK ∪ J . We have:

dg(IK′) =

∑
x∈IK′

d(x)

1 +
∑

x∈IK′

d(x)

=

∑
x∈IK

d(x) +
∑
x∈J

d(x)

1 +
∑
x∈IK

d(x) +
∑
x∈J

d(x)

Let a =
∑
x∈IK

d(x) and b =
∑
x∈J

d(x). We then have:

dg(IK′) =
a+ b

1 + a+ b

We want to show that dg(IK) ≤ dg(IK′). Since dg(IK) =
a

1 + a
and dg(IK′) =

a+ b

1 + a+ b
, we need to show that

a

1 + a
≤ a+ b

1 + a+ b

26

A Privacy Score for Anonymous Databases Lindsay A. White

where a, b ≥ 0. We have

a+ b

1 + a+ b

=
a(1 +

b

a
)

(1 + a)(1 +
b

1 + a
)

=
a

1 + a
·

1 +
b

a

1 +
b

1 + a

We have that
b

a
>

b

a+ 1
, so

1 +
b

a

1 +
b

1 + a

> 1. This means we have

a+ b

1 + a+ b
≥ a

1 + a

as desired.

Proposition 3.10. If d(x) = 0 for all x ∈ IK, then dg(IK) = 0.

Proof. If d(x) = 0 for all x ∈ IK , we have:

dg(IK) =

∑
x∈IK

d(x)

1 +
∑
x∈IK

d(x)
=

∑
x∈IK

0

1 +
∑
x∈IK

0
=

0

1 + 0
= 0

Notice that our worst possible case is when all x have d(x) = 1, and when

|IK | is very large. If d(x) = 1 for all x, we have:

dg(IK) =

∑
x∈IK

d(x)

1 +
∑
x∈IK

d(x)
=

∑
x∈IK

1

1 +
∑
x∈IK

1
=
|IK |

1 + |IK |

and this approaches ∞ as |IK | → ∞.

27

A Privacy Score for Anonymous Databases Lindsay A. White

Desired Properties for w(K).

Proposition 3.11. w(K) satisifies the following conditions:

(i) If K ⊆ K ′ and IK = IK′, then w(K) ≥ w(K ′).

(ii) If IK = ∅, then w(K) = 0.

Proof. (i): By Proposition 3.7(i), since K ⊆ K ′, we have that lk(K) ≥ lk(K ′).

Then we have:

w(K) = lk(K) ∗ dg(IK)

= lk(K) ∗ dg(IK′) since IK = IK′

≥ lk(K ′) ∗ dg(IK′)

≥ w(K ′)

as desired. (ii): If IK = ∅, then dg(IK) = 0, so w(K) = lk(K) ∗ dg(IK) =

lk(K) ∗ 0 = 0, as desired.

Desired Properties for priv(i).

Proposition 3.12. If Atti ⊆ Attj, then priv(i) ≤ priv(j).

Proof. We have that

priv(i) = max
K⊆Atti

w(K)

Since Atti ⊆ Attj,

max
K⊆Atti

w(K) ≤ max
K⊆Attj

w(K)

so priv(i) ≤ priv(j).

Proposition 3.13. If IK = ∅ for every K ⊆ Atti, then priv(i) = 0.

Proof. If IK = ∅ for every K ⊆ Atti, this is saying that no known set K will

produce any inferences. Then w(K) = 0 for every K ⊆ Atti by Proposition

3.11(ii). Thus, priv(i) = max
K⊆Atti

w(K) = 0, as desired.

For the next property, we want that if K ⊆ K ′ and IK = IK′ , our score

should not count these as separate inferences. Since K can infer IK with less

knowledge, this is the more dangerous inference to occur. The inference of IK
from K ′ is not a new inference, since it is really being inferred just from K.

Thus, w(K ′) should not contribute to priv(i), but w(K) may.

28

A Privacy Score for Anonymous Databases Lindsay A. White

Proposition 3.14. If K ⊆ K ′ and IK = IK′, then w(K) may contribute to

priv(i), but w(K ′) should not.

Proof. Since priv(i) = max
K⊆Atti

w(K), only one K will ultimately contribute. For

K and K ′, only the one with higher weight may contribute. By Proposition

3.11(i), w(K) ≥ w(K ′), so w(K ′) will not contribute, but w(K) may.

Desired Properties Across Two Databases.

Let D and D′ be two databases that share some subset of their attributes. Thus,

it is possible that an attribute set K or an inference set I may appear in both.

Note that I may be inferred from different sets in D and D′.

Proposition 3.15. If we have two databases D and D′, and the same set of

attributes I is inferred in each, dg(I) is the same.

Proof. We have

dg(I) =

∑
x∈I

d(x)

1 +
∑
x∈I

d(x)

This definition is independent of the choice of database. It depends only on the

values assigned for d(x). If the same d(x) values are used, dg(I) will be the

same in any database.

Proposition 3.16. Individual scores should not be scaled relative to the size of

the database.

Proof. Since priv(i) takes the maximum of the w(K) weights (as opposed to

an average or other measure), priv(i) is not scaled relative to the size of the

database.

This means databases with larger inferences will result in larger priv(i)

scores, as desired.

3.4 Future Considerations

How to Assign Attribute Weights. More careful thought needs to go into

establishing a reliable and consistent way of choosing the attribute likelihood

and danger weights.

29

A Privacy Score for Anonymous Databases Lindsay A. White

In assigning likelihood scores, it may be fair to say that higher scores will be

assigned to more readily-available public data. In this case, it may also be fair to

say that l(x)+d(x) = 1. In other words, if we share certain information publicly

and frequently, the likelihood score will be high, but we may not consider it

dangerous to infer.

On the other hand, there may be sensitive attributes that we want to assign

a high d(x) value to, but perhaps the likelihood of knowing the attribute is a

bit higher than 1− d(x). In this case, we may not want l(x) + d(x) = 1.

A standardization of weights for commonly seen attributes should be estab-

lished, perhaps with an analysis of how easy they are to find in public databases.

Partial Inferences. In the privacy score presented in this thesis, we only

considered ′′complete′′ inferences. In other words, we only considered IK to be

inferred from K if everyone who had the attributes in K also had the attributes

in IK . In future work, partial inferences should be considered. For instance,

if 95% of those with the attributes in K also have those in I, this could be

considered similar to the full inferences, but perhaps multiplied by 0.95. Then

w(K) may need to be computed by taking the maximum across all of these

possible weightings. The reason for considering these inferences as well is that

if an adversary sees that 95% of individuals with the set of attributes they are

looking for also have the attributes in some set I, there is a 95% chance that

they inferred correct information (I) about the individual they are looking at.

This is still a privacy loss.

Which Database Score Should Be Used. Three different scores were given

for the overall database. The average and threshold scores may be used together

to give a better overall assessment of the risk. Future work should consider

whether there are other ways to combine the individual scores to assess the

overall risk of the database.

What is a Good Score? Future work will need to analyze the scores of

various databases and come to a consensus on what an acceptable score is.

This should be done both at an individual level, and for the database as a

whole. Consideration should also be given as to what the ideal number to add

in the denominator of the dg(IK) calculation should be.

How This Score Should Be Used. The intention behind this score is to allow

companies to establish the privacy risk of individuals in their database before

they share this information, either publicly, internally, or with third parties

30

A Privacy Score for Anonymous Databases Lindsay A. White

for data analytics. Before sharing a database, if the score is too high, further

anonymization techniques or removal of high risk individuals should be done.

This score also gives a quantitative measure in assessing whether applying a

given anonymization technique has in fact improved the privacy of individuals

in the database.

How Can We Improve the Score? Future work will need to look at existing

and new anonymization techniques to establish effective ways to improve the

privacy score of a database, while maintaining data usability.

31

Chapter 4

Algorithms

In computing the database privacy scores, we need to first compute the indi-

vidual privacy scores. Recall that we have

priv(i) = max
K⊆Atti

w(K)

where w(K) = lk(K)∗dg(IK), and IK is the set of attributes that we infer from

K. The computation of w(K) is straightforward once we know both K and IK .

The biggest task then is determining IK from K. Let us denote by K the

set K ∪ IK , consisting of both K and the attributes inferred from knowing K.

Recall that K = (φR ◦ ψR)(K). We will refer to K as our inference set.

By definition of priv(i), the most obvious algorithm for computing it would

involve enumerating all subsets K of Atti, determining IK , and then computing

w(K). If |Atti| = N , we would then have 2N subsets K to enumerate, making

this algorithm exponential in the size of our Atti set. We would also have the

same set K appearing as a subset of more than one Atti (which indicates we

might want to store the w(K)s once computed to avoid repeating computations).

This observation however does not avoid the 2N enumeration of subsets for each

Atti set.

Let n = |Ind| and m = |Att|. Then the brute force algorithm described

above will have a worst-case complexity of n ·2m · l, where l is the complexity of

computing w(K). For a dataset, n will often be in the 100s of 1000s, while m

may be significantly smaller. For instance, if n = 80000 and m = 19, we would

have

n ·m · l = 80000 · 542288 · l

We propose an alternative approach in which we do not need to consider

32

A Privacy Score for Anonymous Databases Lindsay A. White

all possible subsets K for each Atti set. Instead of starting with a set K and

determining IK , we start with the sets S that could possibly be a K for some

K, and then determine all of the K for which K = S. (We will see later that

we actually do not need to determine all such K, but can further refine this to

a smaller number of possible Ks that we find.)

If K ⊆ Atti, we know that K ⊆ Atti as well. We can organize all the possible

sets S (that could be K for some K) into a poset ordered by set containment.

We know that if we have a set S with S = K for some K ⊆ Atti, then S must

be a descendant of Atti in our poset, as S ⊆ Atti.

We can assign a weight weight(S) for each possible inference set S, where

weight(S) = max
K⊆S

w(K)

Then we have that priv(i) = weight(Atti). Instead of computing this di-

rectly by listing out all possible subsets K, we will use the poset to more effi-

ciently compute all of the priv(i) values for all individuals i ∈ Ind.

Let’s consider computing these weights as we traverse our poset from bottom

to top. Notice that if S ′ ⊆ S, then any K ⊆ S ′ ⊆ S has already had w(K)

computed before we reach S, and is accounted for in weight(S ′). Thus, we can

compute weight(S) by taking the maximum value across the weight(S ′)s for

any S ′ ⊆ S (where S ′ is a direct child of S), along with considering new w(K)s

where K ⊆ S but K 6⊆ S ′ for any S ′ ⊆ S.

weight(S) = max{ max
K⊆S and K 6⊆S′ ∀S′⊆S

w(K), max
S′⊆S, S′ a direct child of S

weight(S ′)}

There are thus three major tasks to consider:

1. Determine the possible sets S we can have as inference sets for some K.

2. Construct a poset with these S, starting from our original collection of

sets {Att1, . . . , Attn}.

3. For a given set S in our poset, determine the new sets K with K ⊆ S and

K 6⊆ S ′ for any S ′ ⊆ S, and determine weight(S).

33

A Privacy Score for Anonymous Databases Lindsay A. White

4.1 Inference Sets

We consider the first task of determining the possible sets S we can have as

inference sets for some set K. To do this, we first make some useful observations.

By construction, K must be the intersection of some collection of Atti sets.

More precisely, recall that K = (φR ◦ ψR)(K) =
⋂
i∈J

Atti, where J is the set of

individuals who have the attributes inK. This establishes that our inference sets

S must be of the form S =
⋂
i∈J

Atti for some collection of individuals J ⊆ Ind.

Lemma 4.1. For any set K ⊆ Att, we have that K =
⋂
i∈J

Atti for some collec-

tion of individuals J ⊆ Ind.

While this tells us that our inference sets take the form S =
⋂
i∈J

Atti for some

collection of individuals J ⊆ Ind, it does not tell us whether each such set S will

actually have some K with K = S. However, recall Lemma 2.27, which states

that if K =
⋂
i∈I
Atti for some collection of individuals I ⊆ Ind, then K = K. In

other words, when K = S, we have S = S.

This answers our first question of determining the possible sets S we can

have as inference sets for some K. More precisely, we know that:

1. An inference set S can only be of the form

S =
⋂
i∈J

Atti

for some collection of individuals J ⊆ Ind.

2. Any set of the form S =
⋂
i∈J

Atti will be the inference set of at least one

set K. (i.e., when K = S)

4.2 Intersection Poset

Our second task was to construct a poset where the elements are the intersec-

tion sets of the form S =
⋂
i∈J

Atti for some J ⊆ Ind, and the ordering is set

containment.

Definition 4.2. Let A = {A1, . . . , An} be a collection of n sets. The Intersec-

tion Poset for A is the poset where the elements are sets of the form
⋂
i∈I
Ai for

34

A Privacy Score for Anonymous Databases Lindsay A. White

some collection I ⊆ {1, . . . , n}, and the ordering is set inclusion.

We will illustrate how to construct this with an example.

Example 4.3. Consider the following relation:

R a b c d e f g
1 • • • •
2 • • • •
3 • • • •
4 • • • •

We denote the Atti sets as follows:

Att1 = abcd, Att2 = abce, Att3 = abfg, Att4 = bcfg

We want to take all intersections of the Atti sets, and organize them into a poset

(ordered under set containment). The top row will be the Atti sets. Then we

will take all pairwise intersections of the Atti sets. These pairwise intersections

will create the next ′′row′′ of the intersection poset. We can then take pairwise

intersections of this new row, and continue on. (There will be some slight

adjustments to this in order for the poset to be constructed properly.)

If we are taking the intersection of two sets S1 and S2, we then need to

create a parent-child relationship in our poset between the parents (S1, S2) and

the child (S1 ∩ S2).

Proceeding as we have described so far, we get the following diagram for our

poset:

abcd abce abfg bcfg

abc ab bc bfg

b

We see that in our second row, we have two sets (ab, bc) who have a parent (abc)

in the same row. To construct our poset properly, the two sets ab and bc should

be on a lower level of the poset than abc is. We will also adjust parent-child

relationships to reduce redundancy. For this, consider the following sub-diagram

of our poset:

35

A Privacy Score for Anonymous Databases Lindsay A. White

abcd abce abfg

abc ab

Looking at the diagram above, we see that both abcd and abce are parents

for both abc and ab. However, since abc is a parent of ab, we do not need to

keep abcd, abce as parents of ab as well. (This is implied by transitivity of set

containment.) While we could leave these parent-child connections in anyways,

we actually will want them removed for when we consider the task of looking

for the sets K that infer each S in our poset. After making adjustments to

redundant parent-child relationships and moving subsets down in the poset, we

get the following:

abcd abce abfg bcfg

abc bfg

ab bc

b

The first step in creating an algorithm for the process illustrated above is to

generate all intersections by generating pairwise intersections row by row. We

provide pseudocode for generating the pairwise intersections in Algorithm 1. In

Algorithm 2, we provide the pseudocode for generating all intersections.

We now discuss the complexity of the algorithms, and explain why Algorithm

2 will in fact give us all possible intersections of the Atti sets, and we confirm

that the algorithm will terminate.

Theorem 4.4. Algorithm 1 has complexity O(k2 · m), where = |A| and m =

|Att|.

36

A Privacy Score for Anonymous Databases Lindsay A. White

Algorithm 1 getPairwiseIntersections(A)

Input:

• A = {A1, . . . , Ak} is a collection of k sets.

• Each set Ai contains elements from a set Att of m elements.

Output:

• List contains all pairwise intersections of sets in A

List← {}
for (i = 1 to k − 1) do

for (j = 2 to k) do
List← List ∪ {Ai ∩ Aj}

end for
end for

Proof. Algorithm 1 will compute the intersection of each unique pair of elements

from A. Since there are k sets in A, there are
(
k
2

)
= k·(k−1)

2
pairs. For each pair,

we need to compute the intersection between two sets containing elements from

S. These sets are represented as boolean vectors of length m, where we include

a 1 if the element is in the set, and 0 if not. To compute the intersection, we

use logical and on the boolean vectors. This gives m comparisons to get the

intersection. Thus, this algorithm has complexity O(k2 ·m).

Note that k will be the size of a row in our poset. On the first iteration of

Algorithm 2, when we call Algorithm 1, k = n. However, on future iterations,

k may be either larger or smaller than n.

Algorithm 2 will terminate when no new intersections are added in a given

iteration.

Theorem 4.5. Algorithm 2 will terminate after log n iterations of the while

loop, where n = |Ind| is the number of sets in A = {A1, . . . , An}.

The fact that this algorithm will terminate in log n iterations of the while

loop follows from the following lemma, which establishes that after the kth

iteration, we have found all intersections of up to 2k distinct sets from A. Thus,

after log n iterations, we will have found all intersections of up to n distinct

sets. Since there are only n distinct sets in A, we will have found all possible

intersections after log n iterations.

37

A Privacy Score for Anonymous Databases Lindsay A. White

Algorithm 2 getAllIntersections(A)

Input:

• A = {A1, . . . , An} is a collection of n attribute sets, where n = |Ind|.

• Each set Ai contains elements from a set Att of m elements.

Output:

• NewTotal contains all intersections of any finite collection of sets from A

OldTotal← {}
NewTotal ← A
NewSet← A
while (NewTotal 6= OldTotal) do

OldTotal← NewTotal
NewSet← getPairwiseIntersections(A)
NewTotal ← OldTotal ∪NewSet

end while

Let A = {A1, . . . , An}. Let Sk denote NewSet after the kth iteration of

Algorithm 2. In other words, Sk consists of all pairwise intersections of sets

from Sk−1.

Lemma 4.6. Let 2k−1 + 1 ≤ m ≤ 2k. Then all intersections of m distincts sets

from A are contained in Sk.

Note that Sk may also contain intersections of a smaller number of distinct

sets as well.

Proof. We prove this by induction on k.

Base Case: k = 1

When k = 1, we have 21−1 + 1 ≤ m ≤ 21, so m = 2. On the first iteration, we

take all intersections of two sets from A, so S1 contains all intersections of two

distinct sets from A, as desired.

Induction Hypothesis: Assume that for any collection of m′ distinct sets in

A, where 2k−1 + 1 ≤ m′ ≤ 2k, their intersection is in Sk.

Induction Step: We want to show that for any collection of m distinct sets in

A, where 2k + 1 ≤ m ≤ 2k+1, their intersection is in Sk+1.

38

A Privacy Score for Anonymous Databases Lindsay A. White

Let B =
⋂
i∈I
Ai be an intersection of m distinct sets from A, where I ⊆

{1, . . . , n}, |I| = m, and 2k + 1 ≤ m ≤ 2k+1. Since the elements of Sk+1 are

pairwise intersections of elements frm Sk, we want to show that B = B1 ∩ B2

for some B1, B2 ∈ Sk, so that B ∈ Sk+1.

We thus need to find sets B1 and B2 that are the intersections of m1 and

m2 sets respectively, where 2k−1 + 1 ≤ m1,m2 ≤ 2k. We will show that we can

take our index set I for B and split it into two sets I1 and I2, where I1∪ I2 = I,

|I1| = m1, and |I2| = m2. We will then have B1 =
⋂
i∈I1

Ai and B2 =
⋂
i∈I2

Ai, so

that B = B1 ∩B2. We now establish that we can split I into two such sets.

Let I = {i1, . . . , im}. If m is even, let

I1 = {i1, . . . , im
2
}

I2 = {im
2
+1
, . . . , im}

Then we have |I1| = |I2| = m
2

and clearly I1 ∪ I2 = I. Since 2k + 1 ≤ m ≤ 2k+1

and m is even, we have 2k + 2 ≤ m ≤ 2k+1, which gives 2k−1 + 1 ≤ m
2
≤ 2k.

Thus, we have 2k−1 + 1 ≤ |I1|, |I2| ≤ 2k as desired.

If m is odd, let

I1 = {i1, . . . , ibm2 c+1
}

I2 = {ibm2 c+1
, . . . , im}

Then we have |I1| = |I2| =
⌊
m
2

⌋
+ 1 and clearly I1∪ I2 = I (the two sets overlap

on one element). Since 2k + 1 ≤ m ≤ 2k+1 and m is odd, we have:

2k + 1 ≤ m ≤ 2k+1 − 1⌊
2k + 1

2

⌋
≤
⌊m

2

⌋
≤
⌊

2k+1 − 1

2

⌋
2k−1 ≤

⌊m
2

⌋
≤ 2k − 1

2k−1 + 1 ≤
⌊m

2

⌋
+ 1 ≤ 2k

Thus, we have 2k−1 + 1 ≤ |I1|, |I2| ≤ 2k as desired.

While the while loop will terminate after log n iterations, we also need to

consider the complexity of what is being done at each iteration. In each itera-

39

A Privacy Score for Anonymous Databases Lindsay A. White

tion, we are calling the function getPairwiseIntersections(NewSet), which has

complexity O(k2 ·m), where k is the number of sets in NewSet, and m = |Att|
as before. m will be the same on each iteration, but k will vary. However, since

Algorithm 2 is computing all intersections of n sets, we know this can have no

more than 2n unique sets generated. On the other hand, we also know these

sets are subsets of Att, which has size m. There are at most 2m unique subsets

of Att. Thus, Algorithm 2 will produce at most min{2m, 2n} sets. This gives

us the following theorem:

Theorem 4.7. Let m = |Att| and n = |Ind|. Then Algorithm 2 will produce

at most min{2m, 2n} unique sets.

In the context of databases, n will be the number of individuals in our

database, and m will be the number of attributes in our database. There will

often be a significant difference in the size of n compared to m. For instance,

we may have n = 80000, while m = 19. Thus, if our algorithm does reach the

worst case and produce 219 sets, that is only 524288 sets, which is relatively

small.

Lemma 4.8. Algorithm 2 has approximate complexity of O(m · 2m), where

m = |Att|.

Proof. By Theorem 4.7, we have that Algorithm 2 generates at mostmin{2m, 2n}
unique sets, where the minimum will be 2m in the context of datasets. Each

set is represented as a boolean vector of length m, where we include a 1 if an

attribute is in our set, or 0 otherwise. The intersection of two sets is computed

using logical and on these two vectors, which has complexity O(m). Thus, Al-

gorithm 2 has complexity O(m · 2m) if it generates exactly 2m sets. However,

some sets may be generated more than once, so this complexity is simply an

approximation.

To create our Intersection Poset, we need to make some modifications to our

algorithm for generating pairwise intersections. We do not want to store the

same set in more than one place, so one modification is that we will only add

Ai ∩ Aj to NewSet if Ai ∩ Aj has not been created previously. In either case,

when we process Ai ∩ Aj, we will also need to add parent-child relationships

between Ai, Aj and Ai∩Aj. Further, if Ai∩Aj ∈ A, we will potentially need to

adjust parent-child relationships involving Ai ∩Aj for redundancy, as discussed

in the example above. The pseudocode for this is provided in Algorithm 3.

The complexity of Algorithm 3 is the same as that of Algorithm 2, as no major

changes have been introduced that would change the complexity.

40

A Privacy Score for Anonymous Databases Lindsay A. White

4.3 Computing weight(S)

We are aiming to compute

weight(S) = max
K⊆S

w(K) = max{ max
K⊆S and K 6⊆S′ ∀S′⊆S

w(K), max
S′⊆S

weight(S ′)}

for each S in our poset. This means that for any child S ′ ⊆ S, we consider the

weights for these S ′, and only need to determine w(K) for any K ⊆ S if K 6⊆ S ′

for any S ′ ⊆ S. To compute w(K) = lk(K) ∗ dg(IK), we need to determine IK
(or alternatively K, where K = K ∪ IK). We claim that for any K ⊆ S where

K 6⊆ S ′ for any S ′ ⊆ S, K = S.

Lemma 4.9. For a set of attributes K ⊆ Att, K =
⋂
i∈I
Atti is the unique

smallest (with respect to set containment) intersection of attribute sets for which

K ⊆
⋂
i∈I
Atti.

Proof. We have that K = (φR ◦ ψR)(K) =
⋂
i∈J

Atti, where J is the set of in-

dividuals who have the attributes in K. We need to show that there is no set

S ′ =
⋂
j∈J ′

Attj with K ⊆ S ′ ⊆ K, and we also need to show that there cannot

be two such minimal Ks.

First, let K =
⋂
i∈J

Atti. We need to show that there is no S ′ =
⋂
j∈J

Attj with

K ⊆ S ′ ⊂ K. We have that K = (φR ◦ψR)(K) =
⋂
i∈J

Atti. If K ⊆ S ′ =
⋂
j∈J ′

Attj

for some collection of individuals J ′, then all j in J ′ must share the attributes

K. Thus, J ′ ⊆ J , so
⋂
i∈J

Atti ⊆
⋂
j∈J ′

Attj. Thus, K ⊆ S ′, contradicting S ′ ⊂ K.

Thus, K must be the smallest intersection set that K is contained in.

We now need to show that there is a unique smallest intersection set that

K is contained in. Suppose for a contradiction that there are two distinct

intersection sets S1, S2 with K ⊆ S1, K ⊆ S2, and K 6⊆ S ′1, K 6⊆ S ′2 for any

S ′1 ⊂ S1 or S ′2 ⊂ S2. Notice that these conditions mean that S1 6⊂ S2 and

S2 6⊂ S1.

Let S1 =
⋂
i∈I1

Atti and S2 =
⋂
i∈I2

Atti. Then since K ⊆ S1, S2, this means that

all attributes in K are shared by the individuals in I1 and I2, so I1 ∪ I2 ⊆ J .

Note that we must have I1∪I2 (J . Otherwise, if I1∪I2 = J , then K = S1∩S2.

But since S1 6⊆ S2, we must have that S1 ∩ S2 (S1, this contradicts that there

is no intersection set S ′1 with K ⊂ S ′1 ⊂ S1, as S ′ = S1 ∩S2 satisfies this. Thus,

41

A Privacy Score for Anonymous Databases Lindsay A. White

I1 ∪ I2 (J . Then we have

K = (φR ◦ ψR)(K) =
⋂
i∈J

Atti ⊂
⋂

i∈I1∪I2

Atti

This gives that K ⊂ S1, S2, a contradiction. Thus, there is a unique smallest

intersection set
⋂
i∈I
Atti with K ⊆

⋂
i∈I
Atti.

This means that in order to determine the sets K for which K = S for

a given intersection set S =
⋂
i∈I
Atti, we want to find the subsets K ⊆ S for

which K 6⊆ S ′ for any other intersection set S ′ ⊆ S. In other words, S must

be the smallest (with respect to subset containment) intersection set that K is

contained in.

Let POSET denote our intersection poset.

Theorem 4.10. Let K ⊆ Att and S ∈ POSET . K = S if and only if K ⊆ S

and K 6⊆ S ′ for any S ′ ⊆ S.

Recall that

weight(S) = max{ max
K⊆S and K 6⊆S′ ∀S′⊆S

w(K), max
S′⊆S

weight(S ′)}

By Theorem 4.10, the sets K ⊆ S with K 6⊆ S ′ are precisely the sets K with

K = S. This means that (once we have the desired sets K) we can easily

compute w(K) for these as w(K) = lk(K)∗dg(S \K). It would be helpful if we

could further narrow down which of these Ks have the potential to produce a

maximal w(K), and avoid considering any K for which we know w(K) cannot

be maximal. In other words, if we know a certain K ′ has w(K ′) < w(K) for

some other K, we would like to eliminate K ′ from our search to begin with.

Lemma 4.11. If K ⊆ K ′ and K = K ′, then w(K) ≥ w(K ′).

Proof. To show that w(K) ≥ w(K ′), we need to show that lk(K) ∗ dg(IK) ≥
lk(K ′) ∗ dg(IK′), where IK = K \K and IK′ = K ′ \K ′.

By Proposition 3.7(i), if K ⊆ K ′, then w(K) ≥ w(K ′). Since K ⊆ K ′ and

K = K ′, we then have that IK ⊇ IK′ . By Proposition 3.9, since IK′ ⊆ IK , we

have that dg(IK′) ≤ dg(IK). Since lk(K) ≥ lk(K ′) and dg(IK) ≥ dg(IK′), we

then have:

w(K ′) = lk(K ′) ∗ dg(IK′) ≤ lk(K) ∗ dg(IK) ≤ w(K)

42

A Privacy Score for Anonymous Databases Lindsay A. White

as desired.

Suppose we are considering a given set S in our poset, and suppose that

both K and K ′ have S as their inference set, with K ⊆ K ′. We thus only

need to be able to find the minimal (with respect to set containment) such sets

K and compute their weights. These are the only sets that could potentially

produce a maximal w(K).

Thus, for each S in our poset, we need to find the minimal K with K = S.

These Ks must satisfy two conditions:

1. K ⊆ S and K 6⊆ S ′ for any S ′ ⊂ S, where S, S ′ ∈ POSET .

2. There is no smaller K ′ ⊂ K ⊆ S for which K ′ also satisfies Condition (1).

Condition (1) establishes that K = S and Condition (2) establishes that there

is no smaller K ′ ⊆ K with K ′ = S as well.

Finding Ks With Condition 1.

First, we will determine how to enumerate the sets K satisfying (1). Let

KS = {K ⊆ S | K 6⊆ Si for any Si ⊆ S}

In other words, K = S for all K ∈ KS. In our poset, we would have:

S

S1 S2
.

Sk−1 Sk

Since our poset is ordered by set containment, this means Si ⊆ S for i = 1, . . . k.

We may also have other sets S ′i ⊆ Si ⊆ S. However, for determining which

sets are in KS, if we state that K 6⊆ Si, then K 6⊆ S ′i follows immediately for

any S ′i ⊆ Si. Thus, it is enough to consider just the Si sets that are direct

children of S in the poset when trying to establish (for a given K) that K 6⊆
Si for any Si ⊆ S.

For K to be in KS, we need that K ⊆ S and K 6⊆ Si for any i = 1, . . . k,

where S1, . . . Sk are the direct children of S in the poset. Now, let Sci = S \ Si.
Then the condition that K ⊆ S and K 6⊆ Si means that K ∩ Sci 6= ∅ for each

i = 1, . . . , k.

43

A Privacy Score for Anonymous Databases Lindsay A. White

This means that K must contain at least one element from each Sci set. We

can then rephrase Condition (1) as:

1. K contains at least one element from each Sci for i = 1, . . . , k, where

S1, . . . , Sk are the direct children of S in the poset.

The pseudocode for finding all of the sets K satisfying condition 1 for a

given S can be found in Algorithms 4 and 5. Observe that the complexity will

be |S1
c| · |S2

c| . . . · |Skc|, where k is the number of direct children of S. Note

that we need to do this for each S in our poset. However, since we only need

the minimal Ks, we will not actually implement these algorithms. Instead, we

will use the algorithms presented in the next section.

Finding Minimal Ks.

We now need to determine how to find the sets K that will also satisfy Condition

(2). These are the sets that are minimal (with respect to set containment)

amongst the sets satisfying Condition (1). For Condition (1), we needed K to

contain at least one element from each Sci . If we want a minimal K, to start,

we should restrict this to sets that contain exactly one element from each Sci .

Now, some of the Sci sets will have elements in common, so choosing exactly

one element from each will not always guarantee a minimial K. We illustrate

this with an example.

Example 4.12. Consider the following set S and direct children S1, S2, S3, S4

within our poset.

S = abcdef

S1 = cdef S2 = adef S3 = ace S4 = abcd

We then have:

Sc1 = a b
Sc2 = b c
Sc3 = b d f
Sc4 = e f

Now, if we chose abde, that uses one element from each Sci . However, since b

is common to the first three sets, choosing be will also select one element from

each and {b, e} ⊆ {a, b, d, e}. Thus, abde is not a minimal K, so it would not

satisfy Condition (2).

44

A Privacy Score for Anonymous Databases Lindsay A. White

The example above suggests that we need to choose the elements that occur

in the highest frequency first, and then continue to choose elements appearing

in the highest frequency amongst the remaining sets that we have not yet chosen

an element from. We illustrate what this process would look like, again with

the example above. Here, we will find all of the minimal K, satisfying both

conditions (1) and (2).

Example 4.13. We start by listing all of our Sci sets, and first choose an element

occurring with the highest frequency.

Sc1 = a b
Sc2 = b c
Sc3 = b d f
Sc4 = e f

(4.1)

Here, there is only one element occurring with the highest frequency, so we

choose it (b). This means we have now chosen an element from Sc1, S
c
2, S

c
3. We

now only need to choose an element from Sc4. There are two choices here, which

give us two minimal Ks:

be, bf

At this point, we have now exhausted all minimal Ks that contain b in them.

We now remove b from consideration and proceed as before:

Sc1 = a
Sc2 = c
Sc3 = d f
Sc4 = e f

(4.2)

Here, f is our only letter occurring with maximal frequency in what we have

left, so we choose it. We see that in the remaining rows, we have only one option

for Sc1 and one for Sc2, so the only K we get from here is:

acf

We now remove f from consideration and repeat:

Sc1 = a
Sc2 = c
Sc3 = d
Sc4 = e

(4.3)

Here, we have four options to choose from for our maximal frequency letter. It

does not matter which we choose. In this case, the only option is to take the

45

A Privacy Score for Anonymous Databases Lindsay A. White

single element available from each, which gives us the following K:

acde

To see how this process ends, normally we would proceed by removing a at the

next step.
Sc1 =
Sc2 = c
Sc3 = d
Sc4 = e

(4.4)

We now have a row with no elements. This means we cannot proceed further,

as we need to select an element from each row. Thus, our algorithm stops at

this point. We have then found the following desired minimal sets K:

be, bf, acf, acde

In Algorithm 7 we outline the algorithm for generating all of our minimal

Ks, and in Algorithm 6, we provide pseudocode for the algorithm which finds

the next element that we are looking for at any stage in the process illustrated

above.

Theorem 4.14. Algorithm 6 has at best constant time complexity, and at worst

O(m), where m is the number of attributes.

Proof. In Algorithm 6, there are two cases. In the first case, we have not finished

finding a set K, and thus our next element will be found simply by looking at the

next position in our traversal vector. This is the first part of the if statement,

and is thus constant time complexity.

If we are in the else part of our if statement, this means we have found all

possible sets K with the elements we have chosen so far. This means we need

to go back a step and change our last element to the next one in its traversal

vector. In this case, we pop all of our stack variables, and try again. In the

worst case, we will need to work our way back to the very beginning of the

stacks. The stacks will hold at worst m elements, where m is the number of

attributes we are working from. Thus at most, it will take m steps to get our

next element.

Thus, the worst case complexity is O(m).

The implementation of getTraversal and getNewRows can be found in the

appendix. getTraversal requires sorting a vector of size m. The sort function

46

A Privacy Score for Anonymous Databases Lindsay A. White

in C + + has linearathmic complexity, O(m ∗ log2(m)) [cpl]. getNewRows is

linear in the number of rows we started with, so it is O(k) complexity.

In Algorithm 7, during each iteration of the while loop, getNewRows,

getTraversal and findNextElement are each called once. These three func-

tions have complexity O(k), O(m ∗ log2(m)) and somewhere between constant

and O(m) complexity, respectively, where m is the number of attributes and

k is the number of rows we originally started with. Here, the number of rows

is the number of direct children of our set S. Thus, if Algorithm 7 outputs l

sets, then it will have complexity O(l ·max{m ∗ log2(m), k}). This gives us the

following theorem:

Theorem 4.15. Algorithm 7 will be polynomial in the number of sets it outputs.

47

A Privacy Score for Anonymous Databases Lindsay A. White

Algorithm 3 createIntersectionPoset(A)

Input:

• A = {A1, . . . , An}, a list of Atti sets

Notes:

• Combines and modifies Algorithms 1 and 2 so that if an intersection set
was generated in a previous iteration, we do not add to NewSet on future
iterations. It also adds in parent-child relations.

• flagSet flags the sets we need to move down a level in the POSET

POSET ← {}
OldTotal← {}
NewTotal ← A
OldSet← A
while (NewTotal 6= OldTotal) do

NewSet← {}
flagSet← {}
for (i = 1 to |OldSet| − 1) do

for (j = 2 to |OldSet|) do . Let Si = OldSet[i], Sj = OldSet[j]
if (Si ∩ Sj /∈ OldSet) then

NewSet← NewSet ∪ {Si ∩ Sj}
end if
if (Si ∩ Sj ∈ OldSet) then

flagSet← flagSet ∪ {Si ∩ Sj}
end if
(Si ∩ Sj).parents← (Si ∩ Sj).parents ∪ Si ∪ Sj
Si.children← Si.children ∪ (Si ∩ Sj)
Sj.children← Sj.children ∪ (Si ∩ Sj)

end for
end for
OldSet← OldSet \ flagSet
NewSet← NewSet ∪ flagSet
POSET ← POSET ∪ {OldSet} . Add OldSet not NewSet
OldTotal← NewTotal . Set up for next iteration
NewTotal ← OldTotal ∪NewSet
OldSet← NewSet

end while
POSET ← POSET ∪ {OldSet}

48

A Privacy Score for Anonymous Databases Lindsay A. White

Algorithm 4 getAllK

Finds all K satisfying condition 1. That is, K ⊆ S and K 6⊆ S ′ for any
S ′ ⊆ S.

Input:

• Set S from POSET

• SC Children = {Sc1, . . . Sck}, the complements in S of the direct children
of S.

AllK ← generateCrossProd(S1
c, . . . Sk

c)

Algorithm 5 generateCrossProd

Generates all elements of X1 × · · · ×Xk.

Input:

• Sets X1, . . . , Xk

AllElements← {}
if (n = 1) then

AllEls← X1

return
end if
for (i = 1 to |X1|) do

ToMerge← generateCrossProd(X2, . . . , Xk)
for (each x in ToMerge) do

x← X1[1]× x
end for

end for

49

A Privacy Score for Anonymous Databases Lindsay A. White

Algorithm 6 findNextElement
Input:

• ElsChosen, a stack variable that contains a list of the attributes selected
for the current K, in order

• RowsSelected, a stack variable where each element on the stack is a list
of the additional rows selected when we choose a new attribute for K

• Traversal, a stack variable where each element is a vector listing the
attributes from highest to lowest frequency in the remaining rows

• Pos, a stack variable that tells us where in the corresponding traversal
vector we have worked up to

• EliminatedEls, a stack variable where each element contains a list of the
attributes we have exhausted all K for at the current stage

Conditions:

• There are m attributes and k rows.

• new rows will be any rows new el is in that were not already in
RowsSelected

• This algorithm will find the next element in our set K. The traversal
vectors will be modified after returning from this function.

• Returns 1 if all K have been found.

if (pos = ∅) then . All Ks found
return 1

end if
curr pos← pos.top() . Let new el = traversal.top()[curr pos]
if (curr pos < m and new el /∈ ElsChosen and new el /∈ EliminatedEls)
then

ElsChosen.push(new el)
pos.top() + +
pos.push(0) . Sets pos to 0 for next traversal
return . Next element has been found

else
pos.pop()
if (pos = ∅) then . All Ks found

return 1
end if
traversal.pop()
RowsMatched.pop()
ElsChosen.pop()
EliminatedEls.push(ElsChosen.top())
findNextElement(ElsChosen,RowsSelected, Traversal, Pos, EliminatedEls)

end if

50

A Privacy Score for Anonymous Databases Lindsay A. White

Algorithm 7 getAllMinimalK

Conditions:

• getTraversal finds the next traversal vector

• getNewRows finds the next set of matched rows and adds to the
RowsSelected stack

pos, traversal, ElsChosen← ∅
RowsSelected, EliminatedEls← ∅
pos.push(0)
traversal← getTraversal
done← findNextElement
while (not done) do

next el← ElsChosen.top()
RowsSelected← getNewRows
if (|RowsSelected| = k) then . All rows selected

output K
end if
traversal← getTraversal
done← findNextElement

end while

51

Chapter 5

Connection to k-Anonymity

5.1 Weights for k-Anonymity

In k-anonymity, it is assumed that the attributes in our quasi-identifier are

commonly found in public databases, so we can assign a likelihood weight of

1 to these attributes. We may also choose to assign a danger weight of 0 to

these attributes since we assume they are public knowledge and (possibly) not

dangerous to acquire.

5.2 Effect of k-Anonymity on Privacy Score

One way of turning a database into a k-anonymous one is by adding additional

attributes to certain individuals in order to make them identical to at least

k − 1 others (within the set of quasi-identifier attributes). For non-binary at-

tributes such as age, these attributes may be generalized to larger ranges. For

instance, someone with the age 26 might end up with the age 25 − 30 after

generalization. This can be seen as being equivalent to adding new attributes.

Essentially, this individual kept their original attribute of 26 but gained the

new attributes 25, 27, 28, 29 and 30. In the following, we will consider the effect

on the database privacy score when k-anonymity is achieved through adding

additional attributes within the quasi-identifier.

We first consider an example to illustrate that it is not immediately clear

whether k-anonymity will improve privacy. While k-anonymity is intended to

prevent unique identification of an individual in a database, it is possible that

new inferences will appear in our database.

52

A Privacy Score for Anonymous Databases Lindsay A. White

Example 5.1. Consider the following small database, before and after making

it 2-anonymous.

A B C D E
• • •
• • •

A B C D E
• • • •
• • • •

Here, we are assuming that our quasi-indentifier is {A,B}. Notice that in our

original database, we could not infer anything from C, but in our new database,

C =⇒ AB. While this is a new inference, it actually will not affect the privacy

score, since it will have a weight of 0 (assuming we have a danger weight of 0

assigned to our quasi-identifier attributes). In any new inference we see, if

the new attributes inferred are within our quasi-identifier, this will not affect

our privacy score. Notice that we also have new sets appearing such as BD

that were not in an attribute set for any individual in our original database.

Here, BD =⇒ AC, so the inference does include attributes outside the quasi-

identifier. However, observe that D =⇒ AC as well, and D ⊆ BD and

D =⇒ AC was an inference in our original database. Thus, by Proposition

3.11(i), w(BD) ≤ w(B), so BD will not contribute to the privacy score.

Let D be our original database, and let D′ be our new database after k-

anonymity has been achieved by giving individuals additional attributes within

the quasi-identifier. For a given attribute set K ⊆ Att, let IKD
and IK′

D
denote

the set of attributes inferred fromK in the databasesD andD′, respectively. Let

KD = K∪IKD
and let K ′D = K∪IK′

D
. Alternatively, let KD = (φD◦ψD)(K) and

K ′D = (φ′D ◦ ψ′D)(K) denote the attribute closure operators in the databases D

and D′, respectively. For a given individual i ∈ Ind, let AttDi
and AttD′

i
denote

the set of attributes for individual i in the databases D and D′, respectively.

Finally, let wD(K) and wD′(K) denote the weight of K in the databases D and

D′, respectively.

Theorem 5.2. Let D be a database, and D′ be a k-anonymized version of D,

where the only alterations to D were adding additional attributes (within the

quasi-identifier) to individuals. Assume that d(x) = 0 for all x in the quasi-

identifier. Then wD′(K) ≤ wD(K) for any set K ⊆ Att.

Proof. We have that

wD(K) = lk(K) ∗ dg(IKD
)

wD′(K) = lk(K) ∗ dg(IKD′)

Thus, to show that wD′(K) ≤ wD(K), we need to show that dg(IKD′) ≤
dg(IKD

).

53

A Privacy Score for Anonymous Databases Lindsay A. White

Let Att = Q ∪ V , where Q is our quasi-identifier, and V consists of the

remaining attributes. In computing dg(IK), any x ∈ Q will contribute 0 to

dg(IK) since d(x) = 0 by assumption. Thus, dg(IK) = dg(IK ∩ V). This

means that in order to show that dg(IKD′) ≤ dg(IKD
), we need to show that

dg(IKD′ ∩ V) ≤ dg(IKD
∩ V). Recall from Propisition 3.9 that if IK ⊆ IK′ , then

dg(IK) ≤ dg(IK′). Thus, to show that dg(IKD′ ∩V) ≤ dg(IKD
∩V), we will show

that IK′
D
∩V ⊆ IKD

∩V . More precisely, we will show that KD′ ∩V ⊆ KD ∩V .

Recall that KD = K ∪ IKD
= (φD ◦ ψD)(K). Now, ψD(K) is the set of

individuals in D sharing the attributes in K. Since attributes are only ever

added to individuals in D′, we must have that ψD(K) ⊆ ψD′(K). We have that

KD′ =
⋂

i∈ψD′ (K)

AttD′
i

KD =
⋂

i∈ψD(K)

AttDi

Since the only new attributes given to an individual in D′ are quasi-identifier

attributes, we have that AttD′
i

= AttDi
∪ Qi, for some set of quasi-identifier

attributes Qi ⊆ Q. Thus, AttD′
i
∩ V = AttDi

∩ V . We then have:

KD′ ∩ V =
⋂

i∈ψD′ (K)

ÃttDi

KD ∩ V =
⋂

i∈ψD(K)

ÃttDi

where ÃttDi
= AttDi

∩ V . Now, ψD(K) ⊆ ψD′(K), so KD′ ∩ V ⊆ KD ∩ V
(as long as ψD(K) 6= ∅), and this is what we wanted to show.

We now consider the case when ψD(K) 6= ∅. This happens when K was not a

subset of any individual’s attribute set in D. If ψD′(K) = ∅ (in other words, K is

also not a subset of any individual’s attribute set in D′), then KD′∩V ⊆ KD∩V
as both are ∅. We now consider the case where ψD(K) = ∅, but ψD′(K) 6= ∅.
Since ψD(K) = ∅, we have that K 6⊆ AttDi

for any i ∈ Ind. On the other hand,

since ψD′(K) 6= ∅, there is at least one i for which K ⊆ AttD′
i
. The only way we

can have K 6⊆ AttDi
and K ⊆ AttD′

i
for some i is if K contains some attributes

from the quasi-identifier. When we take K ∩ V , we must have ψD(K ∩ V) 6= ∅,
as K ∩ V must have individuals with tje attributes in K ∩ V in the original

database for an individual in D′ to have these (non-quasi-identifier) attributes.

54

A Privacy Score for Anonymous Databases Lindsay A. White

Now, K ∩ V ∩V = K ∩V , so the above argument can now be applied on K ∩V
instead of K.

Thus, we have that KD′ ∩ V ⊆ KD ∩ V , so wD′(K) ≤ wD(K).

Theorem 5.3. Assume that d(x) = 0 for all attributes x in the quasi-identifier.

Applying k-anonymity to a database by only adding in new attributes (within the

quasi-identifier) for an individual cannot increase the database privacy score.

This follows immediately from Theorem 5.2.

55

Chapter 6

Topological Approach to

Improve Privacy

6.1 Topological Description of Privacy Loss

If we return to looking at the Dowker complexes of a database, we can explain

how some privacy loss occurs from a topological perspective. This is discussed in

[Erd17]. There are at least two ways we see an inference occurring in a database.

The first is coming from a free face (a simplex contained in exactly one maximal

simplex) inferring the maximal simplex that it is contained in. The second is

coming from within the intersection of a set of simplices. (A simplex within

the intersection inferring the intersection). We illustrate each in the examples

below.

Example 6.1. Here, we consider an inference from a free face. This can occur

from a simplex on the boundary of our Dowker complex, or from a hole within.

Consider the following dataset:

R a b c d e f
1 • • •
2 • • •
3 • • •

This gives the following Dowker complex:

56

A Privacy Score for Anonymous Databases Lindsay A. White

D A E

B C

F

We can see that we have inferences coming from free faces in the outer boundary,

such as AE = ACE. We also have inferences coming from free faces in the

boundary of the hole in the middle, such as AC = ACE.

Example 6.2. Here, we consider an inference coming from within an intersec-

tion of simplices. Consider the following dataset:

R a b c d
1 • • •
2 • • •

This gives the following Dowker complex:

D A

B C

We can see from our dataset that we have the inferences A =⇒ B and

B =⇒ A coming from within the intersection of the two triangles. If A or

B were in another simplex that did not contain the other, we would no longer

have this inference. Thus, this will not occur every time we have an intersection

of simplices. (Recall that to get K we needed to intersect all attribute sets

containing K. These are the intersection sets for which this inference from all

subsets will occur.)

6.2 Modifying Databases to Preserve Privacy

We will consider the case where the inference is a result from a topological hole

in the Dowker complex. In order to eliminate this inference, we can fill in this

57

A Privacy Score for Anonymous Databases Lindsay A. White

hole. We can do this in more than one way. We need to consider how useful the

data will be after doing this as well. Let’s return to our example to see how we

could modify our database.

Example 6.3. Here, we have the following database and Dowker complex:

R A B C D E F
1 • • •
2 • • •
3 • • •

D A E

B C

F

In order to fill in the hole ′′ABC′′, we need at least one individual in the

database to have all three attributes. One option is to take any individual who

has attributes contained in ABC and give them all three attributes. This may

not be ideal for data usability, and could also introduce higher dimensional holes

as our simplicial complex will have new higher dimensional simplices added to

it. If we were to do this, our database would look like this:

R A B C D E F
1 • • • •
2 • • • •
3 • • • •

We no longer have any inferences from within {A,B,C} to other attributes, but

we can still have inferences to {A,B,C}. This looks similar to k-anonymity,

in that if the attributes in {A,B,C} all have danger weights of 0, these new

inferences will not affect the privacy score. Notice for instance, that originally

we had BD =⇒ A, but now we have BD =⇒ AC. The new attributes

inferred will all be attributes contributing to the hole.

We notice that this may not be an ideal way to resolve the hole, as the

attributes may not all have danger weights of 0, and further, this may be un-

desirable to do in terms of data usability.

58

A Privacy Score for Anonymous Databases Lindsay A. White

A second option for filling the hole is simply to add a new individual into

the database who has all of the attributes in the hole. This avoids higher-

dimensional simplices from being added, and prevents any new inferences from

being introduced. In our example, the new database would look like this:

R A B C D E F
1 • • •
2 • • •
3 • • •
4 • • •

The resulting Dowker complex would be:

D A E

B C

F

Note that this is not what the Dowker complex would be under our first option.

In that option, there would be higher-dimensional simplices added on top of

this.

We see here now that any inferences from within {A,B,C} are removed. We

do not have any new inferences introduced either. In terms of data usability,

this is something that would need to be analyzed more closely. If we only needed

to fill in one hole in a database with 500 people, it seems less likely to affect

data usability than in the small example we have here. We would need to also

consider how many holes and how many false individuals we need to introduce

to our dataset.

In the following, M will denote our topological hole.

Theorem 6.4. Let D be a database. Let M = {a1, . . . , an} ⊆ Att. Suppose

that for each subset F ⊂ M with |F | = n − 1, there is an individual i ∈ Ind
with F ⊆ Atti but M 6⊆ Atti. Then, for any subset K ⊂M , IK ∩M = ∅.

In other words, if IK ∩ M = ∅, the inference from K must only contain

attributes outside of the hole M .

59

A Privacy Score for Anonymous Databases Lindsay A. White

Proof. Let M = {a1, . . . , an} and suppose that for any subset F ⊆ M of size

n− 1, there is an individual i ∈ Ind with F ⊆ Atti, but M 6⊆ Atti. This means

that each of these individuals have exactly n−1 of the n attributes in M . Thus,

for each such individual, there is exactly one attribute x ∈M that they do not

have.

Let K ⊆ M . We want to show that IK ∩ M = ∅. In other words, any

attribute we infer from K must be outside of M .

To compute IK , we are looking at the additional attributes (outside of K)

shared by all individuals who share K. IK ∩M is the set of these additional

attributes that are also in M .

Consider the set M \ K. We know that IK ⊆ M \ K, as IK ∩ K = ∅, by

definition. For each x ∈ M \ K, we have an individual i ∈ Ind with F =

M \ {x} ⊆ Atti. Thus, for each x ∈M \K, we have an individual with K ⊆ F

but x /∈ Atti. This means that x cannot be in IK . Therefore, no x ∈ M \K is

in IK , which means there are no elements of M in IK . Thus, IK ∩M = ∅, as

desired.

Theorem 6.5. Let D be a database. Let M = {a1, . . . , an} ⊆ Att. Suppose that

for each F ⊂M with |F | = n− 1, there is an individual i ∈ Ind with F ⊆ Atti
but M 6⊆ Atti. Suppose we modify D to a database D′ by adding an individual

j with Attj = M . Then for each i ∈ Ind, privD′(i) ≤ privD(i). We also have

that privD′(j) = 0.

In other words, adding this individual to the database will either improve

or maintain privacy for the other individuals. The score itself will actually

improve, but note that this strict improvement only comes from adding a false

individual with 0 score, so it is not necessarily improving everyone’s individual

scores.

Proof. Let IK
D denote IK in the database D, and let IK

D′
denote IK in the

database D′. First, we show that privD′(j) = 0. Since j has Attj = M , for

any K ⊆ M , we must have K ⊆ M . By Theorem 6.4, for any K ⊂ M ,

IK
D ∩M = ∅ in D. In D′, IK could only change due to the new individual j

with Attj = M . Since IK
D =

⋂
i∈I
Atti\K (for some set of individuals I), in D′ we

have IK
D = (

⋂
i∈I
Atti∩M) \K. Thus, we have IK

D′ ⊆ IK
D. As observed above,

IK
D ∩M = ∅, so IK

D′ ∩M ⊆ ∅. Thus, we have IK
D′

= ∅. We also have that

IM = ∅, as j has attribute set M and no other attributes to infer. Since IK = ∅

60

A Privacy Score for Anonymous Databases Lindsay A. White

for any K ⊆ M , we have that w(K) = 0 in D′. Since privD′(j) = max
K⊆M

w(K),

privD′(j) = 0.

Now we show that privD′(i) ≤ privD(i) for any individual i in D. No

attributes for i have changed in D′, but the inferences may have. Since Attj =

M , the only time that IK could change in D′ from what it was in D is if K ⊆M .

In other words, the only time we will have an additional individual sharing K

is if that individual is j. However, we showed above that IK = ∅ in D′ for

any K ⊆ M . The weights of any other sets will remain unchanged. Thus,

wD′(K) = 0 ≤ wD(K) for any K ⊆M . Thus, privD′(i) ≤ privD(i).

In the proof of the previous theorem, we proved the following:

Corollary 6.6. Let D be a database. Let M = {a1, . . . , an} ⊆ Att. Suppose

that for each F ⊂ M with |F | = n − 1, there is an individual i ∈ Ind with

F ⊆ Atti but M 6⊆ Atti. Suppose we modify D to a database D′ by adding

an individual j with Attj = M . Then for any K ⊆ M , IK = ∅ in D′ and

wD′(K) = 0. In other words, there is no inference in D′ from any set K ⊆M .

The above results tell us that if we fill in a hole using the method of adding

an individual with the missing attributes, our privacy score of the new database

will improve, if we had inferences coming from the original hole.

61

Chapter 7

Future Work

Data Usability Score. As discussed in the last section, while we suggest

potential ways to improve the privacy score of a database, we need a way to

measure data usability as well. Thus, future work should involve creating a

Data Usability Score. When a technique to anonymize a database is created,

both the Data Privacy Score and Data Usability Score should then be taken

into consideration in assessing the usefulness of the technique. In [KK12], it

was stated that there was no standard metric for measuring data usability that

has been widely accepted.

Improving Database Privacy. The main focus of this thesis was on com-

puting the database privacy score. However, more work needs to be done in

determining what can be done to improve privacy (while maintaining data us-

ability). In the previous section, we offered one suggestion of removing some

inferences from the database. More work needs to be done to assess whether

this is a useful technique to use in terms of data usability. If so, algorithms

would also need to be developed to find the topological holes in the dataset.

In [Sam01], an algorithm was presented to modify a database into a min-

imally k-anonymous one, in order to minimize the risk of losing data utility.

Another task would be to create an algorithm with a similar goal of minimizing

the amount of changes to the database needed to achieve a privacy score under

a given threshold.

Algorithms. Future work should involve running the algorithms presented

on real-world datasets. In particular, we need to establish that it is feasible

to do, and if not, improve the algorithms further so that they can be run.

62

A Privacy Score for Anonymous Databases Lindsay A. White

Another future direction should involve parallelizing the algorithms for further

improvements.

Probabilities. All of the inferences considered here needed to be absolute.

Future work should generalize the database privacy score to include when an

inference occurs some percentage of the time as well. This non-absolute infer-

ence may still allow accurate inferences to be uncovered.

Data Analysis. While the focus here was in creating a database privacy score,

the algorithms created to find the inferences could also be used on datasets

(where privacy is not a concern) to make these inferences. This is also something

that may be combined with the probability work listed above.

We also propose investigating how the techniques presented here could be

used to solve (supervised) classification problems. The setup here would be

to include the output result as an attribute in the dataset, and then look for

minimal subsets that imply the output result.

Other Types of Data Input. In this thesis, we only considered binary at-

tributes. We can generalize this to numeric or categorical variables. For cat-

egorical variables, if there are 5 options, we can create 5 binary attributes for

these. Each individual would have 1 of the 5 attributes. For numeric variables,

we can first convert to ranges so it becomes categorical, and from there convert

to binary attributes. However, more work needs to go into determining if there

is a better way to proceed with non-binary attributes. The condition that each

individual can only have 1 out of 5 attributes may also affect how we proceed

with algorithms, or how we can make inferences.

Generalization to String Data. In this thesis, we looked at sets of attributes.

We mentioned above the potential of using this for data analysis to find infer-

ences. Future work should also look at how to generalize the techniques for

computing inferences to strings. More precisely, we would like to determine in

a given string database whether all strings with a particular substring also al-

ways contain other substrings. This could be used in applications such as DNA

analysis and cryptography. We propose using substrings as our attributes in

this context. Here, our Dowker complex would then use all possible substrings

as the vertices.

63

Chapter 8

Conclusion

In this thesis, we presented a Database Privacy Score which measures the risk

of information leakage in a linkage attack on an anonymous database. We

presented algorithms for computing this score, as well as source code in C + +

in the appendix.

We also explored how k-anonymity affects the Database Privacy Score, and

saw that it cannot worsen the privacy score, as long as we assume the quasi-

identifier attributes are not dangerous to infer.

As well, we considered some topological explanations as to how inferences

end up occurring in a database, and presented a method to remove those infer-

ences from the database.

Future work will need to consider how to measure data usability so that

both privacy and data usability can be measured when assessing the usefulness

of anonymization techniques.

64

Appendix A

C++ Code

65

//	Database	Privacy	Score

#include	<stdio.h>
#include	<stdlib.h>
#include	<string.h>
#include	<iostream>
#include	<numeric>
#include	<vector>
#include	<array>
#include	<stack>
#include	<boost/unordered_map.hpp>
#include	<boost/dynamic_bitset.hpp>
//	From	https://github.com/boostorg/dynamic_bitset/issues/34	:	hash	function	for	dynamic_bitset
//	put	in	namespace	boost	if	using	unordered_map	from	boost,	but	change	to	std	if	using	std	map
#include	<boost/functional/hash.hpp>
namespace	boost	{
		template<>	struct	hash<boost::dynamic_bitset<>>	{
				std::size_t	operator()(const	boost::dynamic_bitset<>&	bs)	const	{
						std::string	h;
						boost::to_string(bs,	h);
						return	std::hash<std::string>{}(h);
				}
		};
}

using	namespace	std;
using	namespace	boost;	

//	Intersection	POSET	Creation	functions:
void	createIntersectionPOSET(vector<unordered_map<dynamic_bitset<>,	vector<unordered_map<dynamic_bitset<>,	int>>>>&	POSET,
																													unordered_map<dynamic_bitset<>,	vector<unordered_map<dynamic_bitset<>,	int>>>&	A);

void	getPairWiseIntersections(unordered_map<dynamic_bitset<>,	vector<unordered_map<dynamic_bitset<>,	int>>>&	A,	
																														unordered_map<dynamic_bitset<>,	vector<unordered_map<dynamic_bitset<>,	int>>>&	new_set,
																														vector<unordered_map<dynamic_bitset<>,	vector<unordered_map<dynamic_bitset<>,	int>>>>&	POSET);

void	processFlagged(unordered_map<dynamic_bitset<>,	vector<unordered_map<dynamic_bitset<>,	int>>>&	A,	
																				unordered_map<dynamic_bitset<>,	vector<unordered_map<dynamic_bitset<>,	int>>>&	new_set,
																				vector<unordered_map<dynamic_bitset<>,	vector<unordered_map<dynamic_bitset<>,	int>>>>&	POSET,
																				unordered_map<dynamic_bitset<>,	int>	flag);

void	modifyParentChild(unordered_map<dynamic_bitset<>,	vector<unordered_map<dynamic_bitset<>,	int>>>&	set_a,
																							unordered_map<dynamic_bitset<>,	vector<unordered_map<dynamic_bitset<>,	int>>>&	set_for_parents,
																							dynamic_bitset<>	Atti,	dynamic_bitset<>	Attj,	dynamic_bitset<>	a);

//	Privacy	Scores	from	POSET:
void	getPrivi(vector<unordered_map<dynamic_bitset<>,	vector<unordered_map<dynamic_bitset<>,	int>>>>&	POSET,	
														unordered_map<dynamic_bitset<>,	float>&	last_row_weights,
														vector<float>	lk,	vector<float>	dg);

void	createM(unordered_map<dynamic_bitset<>,	int>	children,	vector<int>	Sind,	vector<dynamic_bitset<>>&	M);
				
void	getIndices(dynamic_bitset<>	S,	vector<int>&	Sind);
				
float	getAvgPrivD(unordered_map<dynamic_bitset<>,	float>&	last_row_weights);

//	getAllK	functions:
void	getAllK(vector<dynamic_bitset<>>	&M,	dynamic_bitset<>	TK,	vector<int>	TKIndices,	
													vector<float>	lk,	vector<float>	dg,	float	*max_weight);

void	column_sum_dynamic_bitset(int	m,	int	n,	vector<dynamic_bitset<>>	&M,	vector<int>	&sums);

bool	findNextEl(int	m,	int	n,	stack<int>&	pos,	stack<vector<int>>&	sum,	stack<vector<int>>&	traversal,
																stack<dynamic_bitset<>>&	rows_matched,	stack<dynamic_bitset<>>&	rows_so_far,	stack<int>&	els_so_far,	dynamic_bitset<>&

void	getNewRows(int	m,	int	n,	int	new_el,	vector<dynamic_bitset<>>	M,	stack<dynamic_bitset<>>&	rows_matched,	stack<dynamic_bitset<>>&

void	getNextSum(int	m,	int	n,	stack<vector<int>>&	sum,	stack<dynamic_bitset<>>	rows_matched,	vector<dynamic_bitset<>>	M);

bool	isComplete(int	m,	dynamic_bitset<>	so_far);

float	processK(int	n,	int	num_features,	dynamic_bitset<>	chosen_els,	dynamic_bitset<>	TK,	vector<int>	TKIndices,
														vector<float>	lk,	vector<float>	dg);

void	getTraversal(int	n,	vector<int>	curr_sum,	
																		stack<vector<int>>&	traversal);

//	Weight	Calculations:
float	likelihood(dynamic_bitset<>		K,	vector<float>	lk);
float	danger(dynamic_bitset<>	IK,	vector<float>	dg);
float	weight(dynamic_bitset<>		K,	dynamic_bitset<>		IK,	
													vector<float>	lk,	vector<float>	dg);

//	Convert	from	length	num_features	to	shorter	ones:
void	getTKIndices(dynamic_bitset<>	TK,	int	num_features,	vector<int>	&TKIndices);
				
int	main(int	argc,char	**argv){
				
				//	Set	Up	for	A,	POSET:

//	Set	Up	for	A,	POSET:
				
				unordered_map<dynamic_bitset<>,	vector<unordered_map<dynamic_bitset<>,	int>>>	A;
				vector<unordered_map<dynamic_bitset<>,	int>>	pc_vec;
				unordered_map<dynamic_bitset<>,	int>	parents;
				unordered_map<dynamic_bitset<>,	int>	childs;
				pc_vec.push_back(parents);
				pc_vec.push_back(childs);
				
				//	Initially,	we	will	leave	the	vector	of	parent/child	hash	tables	empty:
				A.insert({dynamic_bitset<>	(string("111100")),	pc_vec});
				A.insert({dynamic_bitset<>	(string("111010")),	pc_vec});
				A.insert({dynamic_bitset<>	(string("111001")),	pc_vec});
				A.insert({dynamic_bitset<>	(string("110110")),	pc_vec});
				A.insert({dynamic_bitset<>	(string("110000")),	pc_vec});
				
				//	Our	POSET	will	be	a	list	of	these	"A"s;	each	"A"	is	a	row	in	the	POSET.
				//	**We	don't	add	A	to	the	POSET	until	we've	run	through	and	modified	it	to	add	both	parents	and	children.
				vector<unordered_map<dynamic_bitset<>,	vector<unordered_map<dynamic_bitset<>,	int>>>>	POSET;
				createIntersectionPOSET(POSET,	A);
				
				//	Set	up	lk	and	dg	weights:
				vector<float>	lk(6,	1);	//length	6,	all	1s	for	testing
				vector<float>	dg(6,	1);
				
				//	Now	traverse	POSET	to	get	Priv_i	scores	(they	will	be	stored	in	last_row_weights):
				unordered_map<dynamic_bitset<>,	float>	last_row_weights;
				getPrivi(POSET,	last_row_weights,	lk,	dg);
				
				//	Print	all	individual	Priv_i	Scores:
				auto	it_lrw	=	last_row_weights.begin();
				for	(it_lrw	=	last_row_weights.begin();	it_lrw	!=	last_row_weights.end();	it_lrw++){
								cout	<<	"Atti:	"	<<	(*it_lrw).first	<<	"	Weight:	"	<<		(*it_lrw).second	<<	endl;
				}
				
				//	Compute	and	print	Average	Score:
				cout	<<	"Average	Score:	"	<<	getAvgPrivD(last_row_weights)	<<	endl;
				
}
/**************************************POSET	Creation	Functions**/

void	createIntersectionPOSET(vector<unordered_map<dynamic_bitset<>,	vector<unordered_map<dynamic_bitset<>,	int>>>>&	POSET,
																	unordered_map<dynamic_bitset<>,	vector<unordered_map<dynamic_bitset<>,	int>>>&	A){
				/*
				
									Creates	the	Intersection	POSET	from	A,	where	the	elements	of	POSET	are	all	possible	intersections	between	sets	from	A.
									The	ordering	is	standard	set	inclusion.
									Each	element	in	the	POSET	is	represented	as	an	unordered	map,	where	the	key	is	the	set	(as	a	dynamic	bitset),
									and	the	"value"	is	a	vector	with	two	hash	tables.	The	first	one	is	a	list	of	all	parents	of	the	given	set.
									The	second	is	a	list	of	all	children	of	the	given	set.
									Parents	and	children	are	wrt	set	containment.	We	only	take	the	minimal	number	of	these	needed.
									ie.	if	A->B->C,	we	only	store	A->B	and	B->C;	we	do	not	include	a	parent/child	relation	for	A->C.
									
									*We	don't	add	A	(a	row)	to	the	POSET	until	we've	taken	all	intersections	from	it.	This	is	because
									we	may	drop	elements	from	A	as	they're	pushed	down	in	the	POSET.
									
									Assumption:	This	assumes	that	we	do	not	have	any	individual	with	Atti	contained	in	Attj.	
																				If	this	were	the	case,	the	"top	row"	(after	POSET	creation)	would	no	longer	contain	Atti,	as
																				it	would	be	pushed	down	lower	in	the	POSET.
																				If	this	case	needs	to	be	considered,	the	code	could	be	modified	to	flag	these	sets	in	the	top	row
																				and	keep	track	of	their	weights	to	add	to	the	last_row_weights	hash	table	later.
								
								Input:		A	=	{Att1,...,Attn}	our	original	set	of	attributes
								Output:	POSET	(we	create	this)
								
								USES:			<boost/unordered_map.hpp>
																<boost/dynamic_bitset.hpp>
																<vector>
																
								Functions:	getPairWiseIntersections
				
				*/
				
				unordered_map<dynamic_bitset<>,	vector<unordered_map<dynamic_bitset<>,	int>>>	new_set;
				
				getPairWiseIntersections(A,	new_set,	POSET);
				POSET.push_back(A);
				while	(!new_set.empty()){
								A	=	new_set;
								new_set.clear();
								getPairWiseIntersections(A,	new_set,	POSET);
								POSET.push_back(A);
				}
				
}

void	getPairWiseIntersections(unordered_map<dynamic_bitset<>,	vector<unordered_map<dynamic_bitset<>,	int>>>&	A,	
																														unordered_map<dynamic_bitset<>,	vector<unordered_map<dynamic_bitset<>,	int>>>&	new_set,
																														vector<unordered_map<dynamic_bitset<>,	vector<unordered_map<dynamic_bitset<>,	int>>>>&	POSET){
				
				/*
								

								
								Creates	all	pairwise	intersections	from	the	sets	in	A	and	adds	to	new_set.
								
								A	will	be	our	initial	list	of	sets	(values	are	two	hash	tables	-	one	for	parents,	one	for	children).
								new_set	will	initially	be	empty,	but	added	to	throughout	this	function.
								We	go	through	A	and	take	every	pairwise	intersection,	and	add	these	to	new_set.
								If	the	intersection	was	already	in	A,	we	move	that	set	(and	associated	parent/children)	into	new_set
								(and	remove	from	A).
								Both	A	and	new_set	will	be	revised.	A	will	be	added	to	POSET	after	this	function	call.
							
								In	the	first	call,	A	is	our	set	{Att1,	Att2,...,Attn}.
								Each	element	Atti	is	a	set	of	attributes,	stored	as	a	dynamic	bitset.
								A	is	stored	as	a	hash	table:
												-The	keys	are	the	Atti	sets.
												-The	values	consist	of	a	vector	of	two	hash	tables:
																				-the	first	hash	table	is	a	list	of	the	parents	to	Atti
																					(this	is	accessed	by	.at(0))
																				-the	second	hash	table	is	a	list	of	the	children	to	Atti
																								-the	keys	are	the	Attj	sets	that	are	the	parents/children
																								-the	values	are	simply	integers	'1'	(not	really	needed)
																					(this	is	accessed	by	.at(1))
								
								Let	a	be	an	intersection	set	we	found.
								If	a	is	already	in	A,	we	will	remove	it	from	A	and	add	to	new_set	instead.
								(ie.	a	needs	to	be	on	a	lower	level	of	the	POSET)
								We	also	may	modify	parent/child	relationships.
								eg.	if	we	had	a	->	B	->	C	and	a->C,	we	drop	the	a	->	C	relationship
								In	other	words,	if	B	is	a	parent	of	a,	and	a	and	B	have	a	common	parent,
								we	keep	that	parent	for	B,	but	remove	it	as	a	parent	from	a.
								Thus,	only	minimal	parental	relationships	are	kept.
								
								ALGORITHM:
								Let's	suppose	A={Att1,...,Attn}.
								We	traverse	through	all	pairs	of	Atti	sets	in	A.
								For	each	i,j	(i<j),	we	take	the	intersection	of	Atti	with	Attj	-	call	this	a.
								For	each	intersection	a,	we	need	to	do	the	following:
																-if	a	is	not	in	A	already,	we	add	it	to	new_set	
																	(at	the	end,	A	will	be	appended	to	POSET;	this	is	essentially	the	next	"row"	in	our	POSET;	
																		new_set	will	be	added	in	the	next	iteration)
																-either	way,	we	need	to	add	Atti	as	a	parent	of	a	(as	long	as	a!=Atti),	and	same	for	Attj
																-we	also	need	to	add	a	as	a	child	of	Atti	and	Attj	(if	a	is	not	equal	to	it)
																-if	a	is	in	A	already,	then	we	need	to	flag	it
																-the	flag	will	be	dealt	with	later	(we	will	need	to	potentially	adjust	parents)
																-flag	will	be	a	hashtable	(if	anything	is	in	there,	it's	been	flagged;	we	store	a	1	as	value)
																
								NOTES:
								-must	use	pointer	to	parent_child	vector	in	order	to	modify
								-(*parent_child_ptr).at(0)	is	the	hash	table	for	parents
								-(*parent_child_ptr).at(1)	is	the	hash	table	for	children
								
								Inputs:	-A		(list	of	original	sets,	as	a	hash	table)
																				(key	is	the	set,	value	is	a	vector	with	the	first	entry	a	parent	hash	table,	
																					second	entry	a	child	hash	table)
																-POSET	
																
																
								Outputs:				-new_set	(list	of	the	pairwise	intersections	+	their	parent/child	hash	tables)
																				-A	will	be	modified	(possibly	elements	removed,	or	parent/child	relations	modified)
																				
								USES:			<boost/unordered_map.hpp>
																<boost/dynamic_bitset.hpp>
																<vector>
								
								Functions:	modifyParentChild
																			processFlagged
								
				
				*/
				
				//	Can	only	do	pairwise	intersections	if	at	least	2	elements:
				if	(A.size()	<	2){
								return;
				}
				
				vector<unordered_map<dynamic_bitset<>,	int>>	*parent_child_ptr,	*parent_child_Atti_ptr,	*parent_child_Attj_ptr,	parent_child_new
				unordered_map<dynamic_bitset<>,	int>	flag,	parent_a,	child_a;
				dynamic_bitset<>	Atti,	Attj,	a;
				
				//	Traverse	through	all	pairs	in	A:
				auto	it1	=	A.begin();
				int	i=1,j=0;
				for	(it1	=	A.begin();	it1	!=	A.end();	++it1){
								auto	it2=it1;
								j=i;
								for	(it2++;	it2	!=	A.end();	it2++){
												j++;
												
												//	Two	bitsets	we're	intersecting:
												Atti=(*it1).first;
												Attj=(*it2).first;
												a	=	(Atti&Attj);
												

												
												/*
																If	a	is	not	already	in	A,	we	add	it	to	the	new	set.
																If	a	already	in	new_set,	we	only	modify	parent/child	relations.
																If	a	is	in	A,	we	flag	it,	as	we'll	need	to	re-adjust	parents	after.
																ie.	flagged	means	a	has	parents	in	the	same	"row"	as	it	(ie.	parents	in	A)
												*/
												if	(A.find(a)==A.end()){	
																
																//	a	is	not	in	A;	add	to	new_set	(or	modify	if	already	there)
																
																if	(new_set.find(a)!=new_set.end()){	
																				
																				//	a	in	new_set;	modify	parent/child	
																				
																			modifyParentChild(new_set,	A,	Atti,	Attj,a);

																}	else	{	
																				
																				//	a	is	not	already	in	new_set	;	add	to	new_set
																				
																				parent_child_new.clear();
																				parent_a.clear();
																				child_a.clear();
																								
																				if	(a!=Atti){
																								parent_a.insert({Atti,1});
																								parent_child_Atti_ptr	=	&((A.find(Atti))->second);	//gets	ptr	to	vec	with	parent,	child	tables
																								((*parent_child_Atti_ptr).at(1)).insert({a,1});
																								
																				}
																				
																				if	(a!=Attj){
																								parent_a.insert({Attj,1});
																								parent_child_Attj_ptr	=	&((A.find(Attj))->second);	//gets	vec	with	parent,	child	table
																								((*parent_child_Attj_ptr).at(1)).insert({a,1});
																								
																				}
																				
																				//	Add	parent	and	child	hash	tables	into	a	vector.	Then	insert	into	new_set:
																				parent_child_new.push_back(parent_a);
																				parent_child_new.push_back(child_a);
																				new_set.insert({a,	parent_child_new});		
																}
																
												}	else	{
																
																//	a	is	already	in	A.	Modify	parent/child	in	A:
																modifyParentChild(A,	A,	Atti,	Attj,a);
																
																//	We	flag	it	(if	not	flagged	already)	so	that	once	we	are	done	we	can	go	back	and	check	parent/child	relations	to	modify.
																if	(flag.find(a)==flag.end()){
																				flag.insert({a,1});
																}
												}
												i++;
								}
				}	//	end	traversal	of	all	pairs
				
				processFlagged(A,new_set,POSET,flag);
				
}

void	processFlagged(unordered_map<dynamic_bitset<>,	vector<unordered_map<dynamic_bitset<>,	int>>>&	A,	
																				unordered_map<dynamic_bitset<>,	vector<unordered_map<dynamic_bitset<>,	int>>>&	new_set,
																				vector<unordered_map<dynamic_bitset<>,	vector<unordered_map<dynamic_bitset<>,	int>>>>&	POSET,
																				unordered_map<dynamic_bitset<>,	int>	flag){
				
				/*	
											We	modify	parent-child	relations	for	any	redundancy	in	the	sets	we	flagged.
											eg.	if	a->b->c	and	a->c,	we	can	drop	a->c	as	it's	a	redundant	relation
											(We	need	to	drop	these	for	our	algorithm	for	getAllK	to	work).
											We	also	push	down	flagged	sets	in	the	POSET.
											(It's	possible	there	was	nothing	flagged.)
											a	will	denote	the	set	we	flagged.
											We	want	to	do	the	following:
											
											Let	a	be	a	flagged	set	in	A.
											For	each	parent	x	of	a:
															-extract	the	parents	of	x
															-compare	these	to	the	parents	of	a
															-if	y	is	a	parent	of	BOTH	x	and	a,	we	need	to:
																				-remove	y	from	a's	parent	list
																				-remove	a	from	y's	child	list
											After	this,	we	want	to	remove	a	from	A,	and	instead	move	a	
											(with	revised	parents)	into	new_set.
											(So	we	are	pushing	it	down	in	the	POSET).
											NOTE:	x,a	will	both	be	in	A
											
											We	will	use	B	to	denote	another	row	in	the	POSET.
											
											Inputs:		-flag	is	a	hash	table	of	sets	in	A	that	appeared	as	intersections	of	other	sets	in	A

											Inputs:		-flag	is	a	hash	table	of	sets	in	A	that	appeared	as	intersections	of	other	sets	in	A
																				-A	is	a	set	of	sets
																				-new_set	is	where	flagged	sets	will	be	added	to
																				-POSET	includes	previous	rows	before	A,	new_set	(parents	may	be	in	these	rows)
																
											Outputs:	-A,	new_set,	POSET	may	all	be	modified	as	the	parent-child	relationships	are	modified

											USES:			<boost/unordered_map.hpp>
																			<boost/dynamic_bitset.hpp>
																			<vector>
											
								*/
				
								unordered_map<dynamic_bitset<>,	vector<unordered_map<dynamic_bitset<>,	int>>>*	B;	
								vector<unordered_map<dynamic_bitset<>,	int>>	*a_pc_ptr,	*y_pc_ptr,	x_pc;	//parent-child	vec	(pointer	except	for	x,	which	is	not	modified)	
								unordered_map<dynamic_bitset<>,	int>	*a_parent_ptr,	*y_child_ptr,	x_parent,	x_child;
								dynamic_bitset<>	a,	x,	y,	to_erase;
								
								auto	it_flag	=	flag.begin();	
								for	(it_flag	=	flag.begin();	it_flag	!=	flag.end();	it_flag++){
												a	=	(*it_flag).first;	
												
												//	We	want	a	ptr	so	we	can	adjust,	but	then	we	will	move	into	new_set:
												a_pc_ptr	=	&((A.find(a))->second);	
												a_parent_ptr	=	&((*a_pc_ptr).at(0));	
												
												//	For	each	parent	of	a:
												auto	it_parent	=	(*a_parent_ptr).begin();
												for	(it_parent	=	(*a_parent_ptr).begin();	it_parent	!=	(*a_parent_ptr).end();	it_parent++){
																//	x	is	a	parent	of	a
																x	=	(*it_parent).first;
																x_pc	=	(A.find(x))->second;	
																x_parent	=	x_pc.at(0);
																auto	it_aparents	=	(*a_parent_ptr).begin();
																for	(it_aparents	=	(*a_parent_ptr).begin();	it_aparents	!=	(*a_parent_ptr).end();	it_aparents++){
																				
																				//	Erase	any	from	last	iteration	(see	below):
																				(*a_parent_ptr).erase(to_erase);	
																				
																				//	y	is	a	parent	of	x
																				y	=	(*it_aparents).first;
																				if	(x_parent.find(y)	!=	x_parent.end()){
																								
																								//	y	is	a	parent	of	both	x	and	a
																								
																								//	Remove	y	as	a	parent	of	a	(we	flag	as	to_erase	and	do	on	next	iteration):
																								//	Because	of	incrementing	on	loop,	we	can't	erase	it	here.
																								to_erase	=	y;	
																								
																								//	Remove	a	as	a	child	of	y.	y	could	be	in	any	level	of	the	POSET	above	a	(or	in	A).
																								//	Check	A	first.	If	not,	reverse	backwards	through	the	POSET.
																								//	NOTE:	A	is	not	stored	in	POSET	yet.
																								if	(A.find(y)	!=	A.end()){
																												
																												//	y	is	in	A	
																												
																												//	Remove	a	as	a	child	of	y:
																												y_pc_ptr	=	&((A.find(y))->second);	
																												y_child_ptr	=	&((*y_pc_ptr).at(1));
																												(*y_child_ptr).erase(a);
																												
																								}	else	{
																												
																												//	y	is	in	some	earlier	level	of	the	poset
																												auto	it_poset_reverse	=	POSET.rbegin();	
																												//	B	is	a	row	in	the	POSET.	B	must	be	a	pointer	below;	otherwise	it	won't	update.
																												for	(it_poset_reverse	=	POSET.rbegin();	it_poset_reverse	!=	POSET.rend();	it_poset_reverse++){
																																B	=	&(*it_poset_reverse);	
																																if	((*B).find(y)	!=	(*B).end()){
																																				//	y	is	in	B
																																				
																																				//	Remove	a	as	a	child	of	y:
																																				y_pc_ptr	=	&(((*B).find(y))->second);
																																				y_child_ptr	=	&((*y_pc_ptr).at(1));
																																				(*y_child_ptr).erase(a);
																																				
																																				//	Now	that	we	have	found	it,	we	need	to	stop	searching	POSET:
																																				break;
																																}
																																
																												}
																								}
																				}
																}
																(*a_parent_ptr).erase(to_erase);	//erase	one	from	last	iteration																
												}
												
												//	Now	we	need	to	move	a	into	new_set,	and	erase	from	A:
												new_set.insert({a,	*a_pc_ptr});
												A.erase(a);
								}

								}
								
				
}

void	modifyParentChild(unordered_map<dynamic_bitset<>,	vector<unordered_map<dynamic_bitset<>,	int>>>&	set_a,
																							unordered_map<dynamic_bitset<>,	vector<unordered_map<dynamic_bitset<>,	int>>>&	set_for_parents,
																							dynamic_bitset<>	Atti,	dynamic_bitset<>	Attj,	dynamic_bitset<>	a){

																				
				/*	
								(Possibly)	modifies	the	parents	of	a	and	children	of	Atti,	Attj.
								a	is	the	intersection	of	Atti	and	Attj,	and	we	want	to	add	a	as	a	child	of	Atti,	Attj.
								(And	Atti,	Attj	as	parents	of	a).
								a	is	in	(or	will	be	in)	set_a,	and	the	parents	are	in	set_for_parents	(possibly	the	same).
								
								PARENT-CHILDREN:	*(parent_child_ptr).at(0)	is	the	hash	table	for	parents	of	a
																									*(parent_child_Atti_ptr).at(1)	is	the	hash	table	for	children	of	Atti
																									We	add	Atti	as	a	parent	of	a,	and	a	as	a	child	of	Atti,	as	long	as	a!=Atti	and	the	relation
																									is	not	already	there.
																									We	do	the	same	for	Attj.
								
								Inputs:	-Atti,	Attj,	a	(a	is	intersection	of	Atti	and	Attj)
																-set_a	(set	a	is	or	will	be	in),	set_for_parents	(set	Atti,	Attj	in)
																
								Outputs:	-set_a,	set_for_parents	are	modified
																	-a	will	be	added	as	a	child	of	Atti,	Attj;	Atti,	Attj	added	as	parents	of	a
																		(unless	Atti=a,	or	the	relation	is	already	there)
																	
								
								USES:			<boost/unordered_map.hpp>
																<boost/dynamic_bitset.hpp>
																<vector>
								
								
				*/
				
				vector<unordered_map<dynamic_bitset<>,	int>>	*parent_child_Atti_ptr,	*parent_child_Attj_ptr;
				vector<unordered_map<dynamic_bitset<>,	int>>*	parent_child_ptr	=	&((set_a.find(a))->second);	
				
				if	(a!=Atti	&&	((*parent_child_ptr).at(0)).find(Atti)==((*parent_child_ptr).at(0)).end()){	//parent	not	already	in	there
								((*parent_child_ptr).at(0)).insert({Atti,1});
								parent_child_Atti_ptr	=	&((set_for_parents.find(Atti))->second);	
								((*parent_child_Atti_ptr).at(1)).insert({a,1});
				}
				if	(a!=Attj	&&	((*parent_child_ptr).at(0)).find(Attj)==((*parent_child_ptr).at(0)).end()){	//parent	not	already	in	there
								((*parent_child_ptr).at(0)).insert({Attj,1});
								parent_child_Attj_ptr	=	&((set_for_parents.find(Attj))->second);
								((*parent_child_Attj_ptr).at(1)).insert({a,1});
				}			
}

/**************************************Privacy	Scores	from	POSET	**/
void	getPrivi(vector<unordered_map<dynamic_bitset<>,	vector<unordered_map<dynamic_bitset<>,	int>>>>&	POSET,	
														unordered_map<dynamic_bitset<>,	float>&	last_row_weights,
														vector<float>	lk,	vector<float>	dg){
				
				/*		
				
								Traverses	through	POSET	from	bottom	to	top.	
								Recall	that	priv(i)	is	the	max	of	w(K)	for	any	K	that	infers	Atti.
								
								For	each	S	in	POSET,	determines	the	maximal	weight	from	any	subset	K	of	S.
								ie.	-we	can	find	which	subsets	K	will	infer	S	(using	getAllK)
												-among	these,	we	want	to	find	the	one	that	produces	the	highest	w(K)	score
												-we	then	compare	this	to	the	highest	score	from	the	children	of	S
												-we	will	associate	the	highest	score	from	all	of	these	to	S	and	store	in	the	hash-table	"weights"
												-we	ultimately	only	need	to	keep	the	weights	at	the	last/top	row	(connected	to	the	individual	i)
												-however,	we	do	need	to	keep	the	others	for	comparison	as	we	traverse	the	POSET
													(we	store	this	in	the	hash	table	"weights")
								The	"last	row"	(top	row)	is	the	set	of	individuals	in	the	database	(ie.	the	Atti	sets).
								These	weights	are	the	priv(i)	scores.
								last_row_weights	is	modified	and	when	returned	will	contain	all	the	priv(i)	scores.
								
								Assumption:	This	assumes	that	we	do	not	have	any	individual	with	Atti	contained	in	Attj.	
																				If	this	were	the	case,	the	"top	row"	(after	POSET	creation)	would	no	longer	contain	Atti,	as
																				it	would	be	pushed	down	lower	in	the	POSET.
																				If	this	case	needs	to	be	considered,	the	code	could	be	modified	to	flag	these	sets	in	the	top	row
																				and	keep	track	of	their	weights	to	add	to	the	last_row_weights	hash	table	later.
								
								NOTE:			We	use	S	to	denote	an	element	of	the	POSET	(this	is	an	intersection	of	Atti's).
																In	our	getAllK	functions,	we	use	TK	(total	K;	ie.	K	u	I_K)	instead	of	S.
																For	getAllK,	we	need	a	matrix	M.	This	will	be	a	matrix	containing	the	complements	of	all	the	children	of	S.
																This	is	needed	to	determine	our	minimal	K	(which	give	maximal	weights).
								
								Inputs:	-POSET	(stored	as	a	vector,	where	each	entry	is	a	hash	table	representing	a	ROW	of	the	POSET)
																-lk,	dg	likelihood	and	danger	weights	(each	of	length	num_features)
																
								Outputs:	-last_row_weights	is	a	hash	table	with	all	of	the	maximal	weights	from	the	last/top	row
																	-these	are	all	the	priv(i)	scores
																	
								

								USES:			<boost/unordered_map.hpp>
																<boost/dynamic_bitset.hpp>
								
								Functions:	getAllK
																			getIndices
								
				*/
				
								
				unordered_map<dynamic_bitset<>,	vector<unordered_map<dynamic_bitset<>,	int>>>*	row_ptr;
				unordered_map<dynamic_bitset<>,	int>	children;
				unordered_map<dynamic_bitset<>,	float>	weights;	
				dynamic_bitset<>	S,	child;	
				vector<dynamic_bitset<>>	M;
				vector<int>	Sind;
				int	row_number	=	0;
				float	var=0,	*max_weight;
				max_weight	=	&var;
				
				
				//	Traverse	POSET	from	bottom	to	top	(rbegin	means	we	start	at	the	END	of	the	POSET):
				
				auto	it_prows	=	POSET.rbegin();	
				for	(it_prows	=	POSET.rbegin();	it_prows	!=	POSET.rend();	it_prows++){	//	traverse	rows	
								row_number++;
								row_ptr	=	&(*it_prows);
								
								auto	it_row	=	(*row_ptr).begin();
								for	(it_row	=	(*row_ptr).begin();	it_row	!=	(*row_ptr).end();	it_row++){	//	traverse	sets	in	row
												S	=	(*it_row).first;
												getIndices(S,Sind);
												
												//	Get	children	of	S:
												children	=	((*it_row).second).at(1);
												createM(children,	Sind,	M);
												auto	it_children	=	children.begin();
												
												//	Get	M:
												*max_weight	=	0;
												getAllK(M,	S,	Sind,lk,dg,	max_weight);
												
												//	Now	compare	max_weight	against	all	children	of	S:
												for	(it_children	=	children.begin();	it_children	!=	children.end();	it_children++){
																child	=	(*it_children).first;
																if	(weights.at(child)	>	*max_weight){
																				*max_weight	=	weights.at(child);
																}
												}
												
												//	Add	in	S	with	weight	to	weights	hash	table:
												if	(row_number	<	POSET.size()){
																weights.insert({S,*max_weight});
												}	else	{
																last_row_weights.insert({S,*max_weight});
												}
								}
								
				}
				
}

void	createM(unordered_map<dynamic_bitset<>,	int>	children,	vector<int>	Sind,	vector<dynamic_bitset<>>&	M){
				
				
				/*
								
								From	a	set	S	in	our	POSET,	we	need	to	create	M.	
								M	is	a	matrix	where	each	row	is	the	complement	of	a	child	of	S.
								However,	we	need	the	bitsets	(rows)	of	M	to	be	the	same	length	as	the	number	of	elements	in	S.
								(rather	than	of	length	num_features).
								eg.	-if	num_features=6	and	S=110100	(abd),	we	want	M	to	be	of	size	mx3,	not	mx6
												-instead	of	a	child	being	100000	(a),	we	would	have	100
													(to	denote	the	set	with	a	but	not	b	or	d)
								
								To	create	M,	we	then	need	the	children	of	S.
								We	will	also	need	Sind	(indices	of	non-zero	elements	of	S).
								Both	of	these	are	done	outside	of	the	function,	as	both	will	be	needed	for	other	steps	as	well.
								
								Therefore,	we	use	children	and	Sind	as	input	to	the	function,	instead	of	S.
								As	M	will	have	been	used	in	other	calls,	we	need	to	clear	it	before	we	start.
								
								Inputs:	-children	is	a	hash	table	of	the	children	of	the	set	S	we	are	working	with
																	(S	is	not	input	to	the	function,	as	we	need	to	re-use	children,	Sind	in	multiple	places,	so	
																	there	is	no	need	to	input	S	here	if	we	use	them	instead)
																-Sind	is	a	vector	containing	the	indices	of	non-zero	elements	of	S
																	(S	is	a	bitset,	so	entries	are	either	1	or	0)
																	
								Outputs:	-we	will	return	M,	which	is	a	matrix	with	the	complements	of	children	of	S
																	-M	will	be	size	mxn,	where	n	is	the	number	of	non-zero	entries	in	S	(ie.	length	of	Sind)
																	-M	is	stored	as	a	vector	of	length	m,	where	each	"row"	is	an	entry	in	the	vector	(stored	as	a	bitset)
								
								USES:			<boost/unordered_map.hpp>

								USES:			<boost/unordered_map.hpp>
																<boost/dynamic_bitset.hpp>
																<vector>
																
				*/
				
				dynamic_bitset<>	child,	new_child;	
				M.clear();
																
				auto	it_children	=	children.begin();
				for	(it_children	=	children.begin();	it_children	!=	children.end();	it_children++){
								child	=	(*it_children).first;
								
								/*
												Create	shortened	version	of	child.	
												Go	in	reverse	because	of	push_back.
												Flip	bits	at	end	because	we	want	the	complement.
								*/
								
								new_child.clear();
								auto	it_vec	=	Sind.rbegin();
								for	(it_vec	=	Sind.rbegin();	it_vec	!=	Sind.rend();	it_vec++){
												new_child.push_back(child[*it_vec]);
								}
								M.push_back(new_child.flip());						
				}			
}

void	getIndices(dynamic_bitset<>	S,	vector<int>&	Sind){
				
				/*
				
								Takes	the	bitset	S	and	returns	the	vector	Sind	with	the	indices/locations	of	all	1s	in	S.
								Since	Sind	will	be	filled	and	returned,	we	need	to	clear	it	before	we	fill	it,	as	it	will	be	filled	from	a	previous	call.
								
								USES:			<boost/dynamic_bitset.hpp>
																<vector>
				*/
				
				Sind.clear();
				
				size_t	index	=	S.find_first();
				while(index	!=	boost::dynamic_bitset<>::npos)
				{
												Sind.push_back(index);
												index	=	S.find_next(index);	
				}											

				
}

float	getAvgPrivD(unordered_map<dynamic_bitset<>,	float>&	last_row_weights){
				
				/*
				
								Computes	the	average	database	privacy	score.
								This	is	the	average	of	the	priv_i	scores	over	all	individuals	i	in	the	database	D.
								
								USES:			<boost/unordered_map.hpp>
																<boost/dynamic_bitset.hpp>
				*/
				
				float	sum	=	0;
				int	count	=	0;
				auto	it	=	last_row_weights.begin();
				for	(it	=	last_row_weights.begin();	it	!=	last_row_weights.end();	it++){
								sum	+=	(*it).second;
								count++;
				}
				return	(sum	/	count);
}

/**************************************getAllK	Functions***/
void	getAllK(vector<dynamic_bitset<>>	&M,	
													dynamic_bitset<>	TK,	
													vector<int>	TKIndices,	
													vector<float>	lk,	
													vector<float>	dg,
													float	*max_weight){
				
				/*		M	is	an	mxn	matrix,	represented	as	a	length	m	vector	of	n-length	bitsets.	
								n	is	the	number	of	elements	in	the	original	set	we	are	looking	at!	(not	total	#	attributes)
								M	should	be	a	list	of	the	complements	of	all	children	of	an	element	from	our	POSET.
								min_weight	is	returned	with	the	max	weight	for	the	set	represented	by	M.
								
								-TK	is	our	original	set	from	our	POSET,	of	length	n	(S	above)
								-TKIndices	indicate	which	elements	from	our	full	set	of	features	were	in	TK
																-eg.	if	TK=[1101001011],	TK_Indices=[013689]
				
								Finds	all	K	which	are:

								Finds	all	K	which	are:
												(a)	subsets	of	N={0,1,...,n-1}
												(b)	contain	at	least	one	element	from	each	row	in	M
																(ie.	each	row	represents	a	subset	of	N	-	1	for	an	element	in	it,	0	if	not)
												(c)	minimal	amongst	all	of	these
																ie.	there	is	no	K'	contained	in	K	that	also	satsifies	(a)	and	(b)
								
								M	is	constructed	outside	of	this	function,	but	here	is	the	original	problem:
								Finds	all	K	which	are:
												(1)	subsets	of	N={0,1,...,n-1}
												(2)	NOT	subsets	of	any	row		in	S,	a	list	of	subsets	of	N
																(a	row	is	a	binary	1/0	representation	of	some	subset	of	N;	
																	S	is	mxn	so	each	row	has	n	entries)
												(3)	minimal	amongst	all	of	these
																ie.	there	is	no	K'	contained	in	K	that	also	satsifies	(1)	and	(2)
								K	are	not	returned,	but	are	processed	as	they're	found.
								processK	function	decides	what	we	do	with	the	K	-	to	be	modified	later.
								For	now,	we	just	output	K	as	we	find	them.
								
								ALGORITHM	DISCUSSION:
								To	satisfy	(2),	we	are	looking	for	subsets	of	N	that	are	not	subsets	of	a	list	of	other	subsets	of	N.
								These	other	subsets	are	each	of	the	rows	in	S.
								Example:	N=abcd,	S={ab,	bcd}
																	Subsets	of	N	that	are	not	subsets	of	any	from	S:
																								ac,	ad,	abc,	abd,	acd,	abcd
								To	satisfy	(3),	we	want	the	minimal	sets	K	(ordered	by	containment)	from	the	above	list.
								Example:	ac,	ad	(all	others	have	ac	or	ad	as	a	subset)
								
								To	satisfy	(2):
								Let	N	be	our	original	set	and	S={S1,...,Sm}	be	our	list	of	subsets	of	N.
								If	K	is	a	subset	of	N,	then	K	\subseteq	N.
								If	K	is	NOT	a	subset	of	Si,	then	there	is	at	least	one	element	of	K	not	in	Si.
								Thus,	K	n	(N\Mi)	is	non-empty.
								For	each	i=1,...,m	this	must	happen.
								So	we	need	to	choose	at	least	one	element	from	the	complement	of	S1	in	N,	the	complement
								of	S2	in	N,....,up	to	the	complement	of	Sm	in	N.
								
								To	satisfy	(3):
								If	we	are	ultimately	looking	for	minimal	ones,	a	first	step	is	to	just	choose	one	element
								from	each	of	these	complements.
								However,	this	will	not	guarantee	a	minimal	K.
								Example:	N=abcde,	S={ab,	bcd}
																	Subsets	of	N	that	are	not	subsets	of	any	from	S:
																	e,	ac,	ad,	ae,	be,	ce,	de,	abc,	abd,	abe,	acd,	ace,	bce,	bde,	+	any	4	or	5	element	subset
																	Minimal	K:
																	e,	ac,	ad
								Our	complements	of	sets	in	S	are	C={cde,	ae}.	If	we	took	one	element	from	each,	we	could	take
								d	from	the	first,	and	e	from	the	second,	to	get	de.	But	this	is	not	minimal	because	e	is	smaller!
								e	was	available	to	choose	in	BOTH	complements	-	so	if	we	choose	e	in	one,	we	should	choose	it	in	
								the	other.
								
								Our	algorithm	then	will	look	at	all	of	the	elements	in	the	complements.	M	will	be	our	set	of	these	complements.
								This	algorithm	then	finds	the	minimal	subsets	of	N	that	contain	at	least	one	element	from	each	row	in	M.
								
								ALGORITHM:
								Since	our	rows	in	M	are	all	represented	as	binary	vectors,	each	column	corresponds	to	an	element	in	our	set	N.
								For	column	a,	the	sum	of	1/0	tells	us	how	many	rows	(subsets)	have	the	element	a.
								We	first	sum	all	of	these	up.	Our	first	choice	of	element	for	a	minimal	set	K	will	be	one	with	the	largest	sum.
								We	choose	this	element,	and	this	is	our	choice	of	element	for	each	row	that	had	it.
								We	then	look	at	the	remainder	of	the	rows	that	were	not	matched,	re-calculate	the	sums,	and	choose	an	element
								with	the	largest	sum	amongst	these.
								We	continue	until	we	have	chosen	an	element	for	each	row.	At	this	point	we	have	a	K.
								Once	we	have	found	a	K,	we	remove	our	last	choice	of	element.	We	drop	it	from	our	list	of	sums	and	choose	an	element
								with	the	highest	sum	from	what's	left	(if	possible).	We	again	continue	forwards	until	we	have	a	K.	When	there
								is	no	element	left	(or	the	elements	left	have	a	sum	of	0	or	less	(ie.	they	don't	match	any	new	rows),	we	move	back	a
								step	and	try	again.	Eventually,	we	use	up	everything,	and	move	back	to	the	beginning,	at	which	point	we're	done.
								
								We	use	the	following	variables	to	keep	track	of	all	this:
								
								STACK	VARIABLES:
								
								sum	-	this	is	the	sum	of	the	rows	in	M
												-	we	add	our	revised	sums	here,	rather	than	modifying	a	single	sum	vector
												-	this	allows	us	to	move	back	a	step	and	see	our	sum	from	the	previous	stage,	which	is	needed
								traversal	-	order	in	which	to	traverse	the	elements	at	a	given	stage
																		-	goes	from	highest	matches	in	modified	M	to	lowest	(ie.	order	elements	by	sum	high	to	low)
																		-	sum[traversal[i]]	tells	you	the	number	of	row	matches	for	the	corresponding	traversal	number
																		-	technically	above	should	really	be	sum.top(),	traversal.top()	to	get	a	single	vector	out
								pos	-	tells	you	which	spot	in	the	traversal	vector	we're	currently	at
								rows_matched	-	set	of	new	rows	we	matched	at	this	stage
																					-	not	the	same	as	all	rows	matching	the	element!	
																					-	only	the	ones	we	hadn't	already	matched;	important	for	when	we	take	a	step	back
																					-	adds	a	vector	at	each	stage,	so	we	can	see	the	matches	we	had	when	we	take	a	step	back
								rows_so_far		-	set	of	all	rows	matched	up	to	this	stage
																					-	adds	a	vector	at	each	stage,	so	we	can	see	the	matches	we	had	when	we	take	a	step	back
								els_so_far	-	list	of	elements	we	have	so	far	
																			-	adds	a	vector	at	each	stage,	so	we	can	see	the	matches	we	had	when	we	take	a	step	back
								
								OTHER:
								
								chosen_els	-	elements	chosen	so	far	
																			-	this	is	will	be	a	bitset	y/n	for	each	element

																			-	this	is	will	be	a	bitset	y/n	for	each	element
																			-	we	use	this	to	output	K	since	we	can't	traverse	through	a	stack
																			-	since	bitset,	be	careful	with	indices!!	[0]	is	the	LAST	element,	not	the	first!
								M	-	our	matrix	of	complements
								[m,n]	=	number	of	rows,	columns	in	M
								
								USES:			<stack>
																<vector>
																<boost/dynamic_bitset.hpp>
																
								Functions	used:	column_sum_bitset
																								getTraversal
																								getNewRows
																								getNextSum
																								findNextEl
																								isComplete
																								processK
								
				*/
				
				int	m	=	M.size();
				
				*max_weight	=	0;
				//	If	M	is	empty,	we	compute	weight	for	the	empty	set:
				if	(m==0){
								*max_weight	=	danger(TK,	dg);
								return;
				}
				int	n	=	(M.at(0)).size();
				int	num_features	=	TK.size();
				float	wk;
				
				
				stack<int>	pos,els_so_far;
				stack<vector<int>>	sum,	traversal;	//length	n	vectors
				stack<dynamic_bitset<>>	rows_matched,	rows_so_far;	//	binary	vecs	-	1	if	matched,	0	if	not	;	length	m
				dynamic_bitset<>	chosen_els	(n);	//	default	initializes	to	0s	;	length	n
				vector<int>	first_sum	(n);	//length	n	
				
				/*	is_match	tells	us	if	we	have	a	complete	K
							If	done=1,	we	have	found	all	K.
							next_el	gives	us	our	next	element;	we	use	this	to	find	new	rows	matched.
				*/
				bool	is_match,	done=0;	
				int	next_el;
				
				//	Initialize	first	sum	for	stack:
				column_sum_dynamic_bitset(m,n,M,first_sum);	
				sum.push(first_sum);	
				
				//	Get	first	traversal	order,	and	initialize	position	to	our	first	entry	(0):
				getTraversal(n,	sum.top(),	traversal);
				pos.push(0);	
				
				
				//	Loop	until	done=1	(we're	done	entirely).
				done	=	findNextEl(m,	n,	pos,	sum,	traversal,	rows_matched,	rows_so_far,	els_so_far,	chosen_els);
				
				while	(done!=1)	{
								
								next_el	=	els_so_far.top();
								
								//	Get	new	rows	matched:
								getNewRows(m,	n,	next_el,	M,	rows_matched,	rows_so_far);

								//	Get	new	sum:
								getNextSum(m,	n,	sum,	rows_matched,	M);
												
								
								//Check	if	we're	done:
								is_match	=	isComplete(m,	rows_so_far.top());
								if	(is_match){
												wk	=	processK(n,	num_features,	chosen_els,	TK,	TKIndices,	lk,	dg);
												if	(wk	>	*max_weight){
																*max_weight	=	wk;
												}
								}
								
				
								getTraversal(n,	sum.top(),	traversal);
								
								//	Proceed	to	next	element:
								done	=	findNextEl(m,	n,	pos,	sum,	traversal,	rows_matched,	rows_so_far,	els_so_far,	chosen_els);
								
				}
				
				
}

void	column_sum_dynamic_bitset(int	m,	int	n,	vector<dynamic_bitset<>>	&M,	vector<int>&	sums){
				
				/*		Sums	the	columns	of	the	mxn	bitset	M.

				/*		Sums	the	columns	of	the	mxn	bitset	M.
								Returns	in	sums	array.
								NOTE	1:					Since	values	in	M	are	bits	not	ints,	we	cannot	add	them	directly.
																				Instead,	add	1	when	bit	is	1.
								NOTE	2:					We	have	j	as	the	inner	loop	to	process	elements	consecutively	in	memory.
								
								USES:			<boost/dynamic_bitset.hpp>
																<vector>
																
				*/
				
				int	i,j;
				
				//	Intialize	all	entries	in	sums	to	0:
				sums.assign(n,0);
				
				
				for	(i	=	0;	i	<	m;	i++)	{
								for	(j	=	0;	j	<	n;	j++)	{
												if	(M[i][j]){
																sums[j]++;
												}
												
								}
				}
}

bool	findNextEl(int	m,	int	n,
																stack<int>&	pos,	
																stack<vector<int>>&	sum,	//vecs	length	n
																stack<vector<int>>&	traversal,	//vecs	length	n
																stack<dynamic_bitset<>>&	rows_matched,	//bitsets	length	m
																stack<dynamic_bitset<>>&	rows_so_far,	//bitsets	length	m
																stack<int>&	els_so_far,	
																dynamic_bitset<>&	chosen_els){

				
				/*		Finds	the	next	element	in	K.	Adds	it	to	els_so_far	and	chosen_els	(flip	0	to	1	here).
								Returns	1	if	we're	done	(no	new	elements	to	find	-	ALL	K	have	been	found),	0	otherwise.
								*1	means	all	K	have	been	found,	not	just	our	most	recent	one!	This	is	when	we	end	our	search	for	Ks.
								NOTE:	bitset	indices	go	from	R	to	L	(BUT	the	row	order	in	a	bitset	matrix/stack	is	correct)
														if	we	really	want	index	i,	that	will	be	n-1-i	in	a	bitset	of	length	n	(index	0,..,n-1)
														
								ALGORITHM:
								The	element	in	traversal[curr_pos]	is	our	next	element.
								This	is	an	acceptable	element	if:
												-we	are	not	at	the	end	of	a	traversal	vector	(if	our	index	is	n,	we've	finished	the	vector)
												-corresponding	sum	is	>0	(if	it's	0	or	less,	there	are	no	new	matches	for	this	element)
												-if	sum	is	<=0,	since	we	traverse	in	decreasing	order	based	on	sums,	every	element	after	it
													in	traversal	will	also	be	<=0
												-nothing	more	to	try	here,	so	we	pop	everything
												
								If	we	have	an	acceptable	element,	we	add	it	and	then	set	up	for	the	next	call	to	this	function.
								This	means	increment	our	position	by	1	(the	next	time	we	get	back	to	choosing	an	element	at	this	level,	
								this	will	be	the	position	in	traversal	to	check),	and	push	a	new	0	to	the	position	stack.	This	0	is
								because	we	have	chosen	an	element	at	our	current	level,	and	now	need	to	choose	a	next	element	at	a
								new	level.	
								We	will	create	new	traversal,	rows_matched	(etc)	vectors	to	
								match	with	this	new	0	position	AFTER	returning	from	this	function.
								
								If	we	don't	have	an	acceptable	element,	we	have	exhausted	all	K	we	can	get	with	the	elements	we	have	chosen	so	far.
								Suppose	we've	chosen	r	elements	so	far	(e_1,...,e_r).	We	then	need	to	pop	everything	to	go	back	a	step	to	the	previous	r-1	elements.
								We	then	need	to	find	the	next	rth	element	to	choose.
								Since	we	have	exhausted	all	possible	K	with	elements	e_1,...,e_r,	we	no	longer	want	to	have	e_r	available	to	choose	later	
								along	with	e_1,...,e_{r-1}	((ie.	by	"later"	we	mean	choosing	it	as	an	(r+1)st	or	later	element).	Thus	we	"zero	out"	
								e_r	from	our	last	sum	vector.	By	turning	its	sum	to	0,	any	subtraction	of	rows	will	result	in	a	value	<=0	for	e_r,
								so	it	won't	be	considered.	Note	that	by	"zeroing	it	out"	at	this	stage,	we	are	not	preventing	it	from	being	chosen	again
								if	we	go	back	a	further	step	and	choose	a	different	(r-1)st	element	(we	want	it	possible	at	this	point).
								
								NOTE:	n-1-i	gives	the	index	for	what	we	see	as	i	in	bitset	since	it	reads	R	to	L
								
								USES:			<stack>
																<vector>
																<boost/dynamic_bitset.hp>
																
				*/
				
				int	curr_pos,	new_el;
				
				//	If	all	positions	have	been	cleared,	we	are	done.
				if	(pos.empty()){
								return	1;
				}
				
				/*		Otherwise,	we	proceed.	
				
								ACCEPTABLE	ELEMENT:
								If	our	curr_pos	is	<n,	then	we	can	still	index	in	to	our	latest	traversal	vector.
								If	we	also	have	a	sum	>0,	this	is	an	acceptable	element.
								sum.top()[traversal.top()[curr_pos]]	gives	the	sum	corresponding	to	our	chosen	element.
								We	can	only	define	this	once	we're	sure	curr_pos	<	n!	
								By	using	&&,	it	won't	evaluate	the	second	part	until	we've	verified	our	curr_pos	is	valid.

By	using	&&,	it	won't	evaluate	the	second	part	until	we've	verified	our	curr_pos	is	valid.
								We	add	the	new	element	and	modify	the	position	for	the	next	stage.
								Return	0	since	we	are	not	finished	checking	for	elements.
								
								UNACCEPTABLE	ELEMENT:
								If	our	curr_pos=n,	we	finished	a	traversal	vector,	and	thus	need	to	pop	everything.
								If	curr_pos	is	not	n,	but	we	have	a	sum	<=0,	we	also	have	gone	as	far	as	we	can	in	a	
								traversal	vector,	and	again	need	to	pop	everything.
								We	also	need	to	"zero	out"	our	sum	and	modify	our	chosen	elements.	Before	we	do	this,	we
								need	to	verify	that	we	haven't	popped	back	to	empty	sets	(this	indicates	we	are	done
								entirely).
								We	then	need	to	try	to	find	the	next	element.
								
				*/
				
				curr_pos	=	pos.top();
				
				if	(curr_pos	<	n	&&	sum.top()[traversal.top()[curr_pos]]	>	0){
								new_el	=	traversal.top()[curr_pos];
								els_so_far.push(new_el);	
								chosen_els[n-1-new_el]	=	1;	
								pos.top()++;
								pos.push(0);				
								return	0;
								
				}	else	{
								
								pos.pop();
								//	If	this	is	empty,	we're	done.
								//	WARNING:	We	need	to	check	this	before	we	pop	rows_matched,	so_far,	because	they	could	be	
								//										empty	already.	(Since	we	modify	them	AFTER	we	return	from	this	function).
								if	(pos.empty()){
												return	1;
								}
								sum.pop();
								traversal.pop();
								rows_matched.pop();
								rows_so_far.pop();
								
								
								//	Zero	out	last	element	from	previous	sum	(now	at	the	top):
								sum.top()[els_so_far.top()]	=	0;
								
								//	Flip	last	chosen_els	to	0	along	with	popping	from	els_so_far:
								//	chosen_els	is	a	bitset,	so	n-1-i	is	really	our	usual	i	index
								chosen_els[n-1-els_so_far.top()]=0;
								els_so_far.pop();
								
								return	findNextEl(m,	n,	pos,	sum,	traversal,	rows_matched,	rows_so_far,els_so_far,chosen_els);
								
				}
				
				
								
}

void	getNewRows(int	m,	int	n,	
																int	new_el,	
																vector<dynamic_bitset<>>	M,	//	mxn;	m	vector	entries,	each	an	n-length	bitset
																stack<dynamic_bitset<>>&	rows_matched,	//	bitset	size	m
																stack<dynamic_bitset<>>&	rows_so_far){	//bitset	size	m
				
				/*		Given	new_el,	determines	the	NEW	rows	matched,	and	adds	(pushes)	to	the	rows_matched	list.
								New	rows	matched	are	the	rows	in	M	with	a	1	in	column	new_el,	that	were	not	already	matched	previously.
								Also	adds	(pushes)	a	running	total	of	rows	matched	so	far	to	the	rows_so_far	list.
								
								ALGORITHM:
								Let	col	denote	the	column	of	M	corresponding	to	new_el.
								If	col[i]=1,	row	i	has	been	matched	(by	new_el).	
								It's	possible	this	row	was	already	matched.	We	only	want	a	list	of	the	new	matches.
								If	it	was	matched	before,	it	would	have	a	1	in	our	most	recent	rows_so_far	vector.
								So	we	want	col[i]=1	and	rows_so_far.top()[i]=0	for	row	i	to	be	a	new	match.
								
								NOTE:			&	is	logical	AND	for	bitsets	
																|	is	logical	OR	for	bitsets
																~	is	logical	NOT	for	bitsets
								
								USES:			<stack>
																<vector>
																<boost/dynamic_bitset.hpp>
				*/
				
				int	i;
				dynamic_bitset<>	col	(m);
				dynamic_bitset<>	so_far	(m);
				
				//	Get	column	from	M:
				for	(i=0;	i<m;	i++){
								col[i]	=	M[i][new_el];
				}
				
				/*		If	rows_so_far	is	empty,	we're	at	the	initialization	stage,	so	our	new	rows	matched	will	just	be
								col.	Our	running	total	(our	next	vector	for	rows_so_far)	will	also	be	col.

								col.	Our	running	total	(our	next	vector	for	rows_so_far)	will	also	be	col.
								NOTE:			If	rows_so_far	is	empty,	we	cannot	do	rows_so_far.top()	or	we'll	get	a	segmentation	fault.
																So,	we	need	to	treat	this	case	separately.
				*/
				
				if	(rows_so_far.empty()){
								rows_matched.push(col);
								rows_so_far.push(col);
								return;
				}	
				
				/*		Otherwise,	our	new	matches	will	be	col	AND	(NOT	so_far).
								We	only	want	new	matches,	so	we	need	a	match	in	col,	and	not	a	match	in	so_far.
								Our	running	total	will	be	anything	matched	in	either	col	or	so_far	(or	both),	so	we
								can	take	col	OR	so_far.
				*/
				
				so_far	=	rows_so_far.top();									
				rows_matched.push(col	&	(~so_far));
				rows_so_far.push(col	|	so_far);
				return;

}

void	getNextSum(int	m,	int	n,
																stack<vector<int>>&	sum,	//	length	n	vectors
																stack<dynamic_bitset<>>	rows_matched,		//length	m	bitsets
																vector<dynamic_bitset<>>	M){	//	mxn;	m	vector	entries,	each	an	n-length	bitset
				
				/*		Creates	the	next	sum	vector,	adds	(pushes)	to	sum	list.
								This	is	the	new	sum	after	choosing	a	new	element.	The	previous	sum	is	revised	by	subtracting	newly	matched	rows.
								The	resulting	sum	is	the	sum	for	each	column	in	M,	ignoring	elements	in	rows	we've	already	matched	an	element	with.
								ie.	It's	the	sum	of	the	rows	we	have	yet	to	match	an	element	to.
								Assumes	rows_matched	has	already	been	updated	with	the	new	rows	matched	from	the	latest	element.
								
								ALGORITHM:
								Take	the	last	sum	vector.
								Subtract	each	row	we've	newly	matched	with.	The	rows	are	bits,	so	we	cannot	subtract	from	ints	directly.
								rows[i]=1	means	it's	a	row	we	want	to	subtract.	Then	we	subtract	M[i][j]	from	our	jth	sum	coordinate.
								
								USES:			<boost/dynamic_bitset.hpp>
																<vector>
																<stack>
				*/
				
				int	i,j;
				vector<int>	new_sum	=	sum.top();	//	initialize	to	the	previous	sum
				dynamic_bitset<>	rows	=	rows_matched.top();	//	list	of	newly	matched	rows	(1	means	newly	matched,	0	not)				
				
				for	(i=0;	i<m;	i++){
								if	(rows[i]){
												for	(j=0;	j<n;	j++){
																if	(M[i][j]){
																				new_sum[j]--;
																}
												}
								}
				}
				
				sum.push(new_sum);
				
}

bool	isComplete(int	m,	dynamic_bitset<>	so_far){
				
				
				/*		Checks	if	we	have	a	complete	K.
								Returns	1	if	we	do,	0	if	not.
								
								Input:		most	recent	rows_so_far	vector	(bitset	of	length	m)
																this	keeps	track	of	which	rows	we	have	matched	(1/0	bitset	format)
																
								ALGORITHM:
								We	have	a	complete	K	if	we	have	matched	all	rows.
								This	is	when	so_far	is	all	1s.
								
								USES:			<boost/dynamic_bitset.hpp>
												
				*/
				
				int	i;
				
				for	(i=0;	i<m;	i++){
								if	(!so_far[i]){
												return	0;
								}
				}
				
				return	1;
				
}

}

float	processK(int	n,	int	num_features,	
														dynamic_bitset<>	chosen_els,	//	length	n
														dynamic_bitset<>	TK,	//	length	num_features
														vector<int>	TKIndices,	//	length	n
														vector<float>	lk,	//	length	num_features
														vector<float>	dg){	//	length	num_features
				
				/*		Once	we	have	a	complete	K,	we	need	to	compute	weight(K).
								Returns	weight(K).
								
								Inputs:
												-chosen_els	is	our	K;	this	is	a	list	of	length	n
																-1	means	the	element	is	in	the	set,	0	means	it	is	not.
																-chosen_els[i]	means	element	n-1-i	chosen
																-However,	these	indices	indicate	which	elements	from	within	TK	are	in	K.
																-To	compute	weight(K),	we	need	to	convert	K	back	to	a	bitset	of	length	num_features.
												-TK	is	our	original	set	from	our	POSET,	of	length	n
																-K	is	a	subset	of	TK
												-TKIndices	indicate	which	elements	from	our	full	set	of	features	were	in	TK
																-eg.	if	TK=[1101001011],	TK_Indices=[013689]
												-lk,	dg	are	the	weights	for	each	attribute	needed	to	compute	weight(K)
								
								To	compute	weight(K),	we	need	to	convert	K	back	to	a	vector	of	length	num_features.	This	is	
								what	we	will	store	in	the	variable	K.
								
								NOTE:	bitset	reads	R	to	L	so	we	output	in	reverse	order.
								(i	is	really	n-1-i)
								
				
								
								USES:	<boost/dynamic_bitset.hpp>
														<iostream>	(for	now,	because	of	cout)
				*/
				
				int	i;
				float	wk;
				dynamic_bitset<>	K	(num_features);
				
				for	(i=0;	i<n;	i++){
								if	(chosen_els[i]){
												K[TKIndices[i]]	=	1;
								}
				}
				
				//	Now	we	can	compute	weight(K):
				wk	=	weight(K,	TK,	lk,	dg);
				return	wk;		
				
}

void	getTraversal(int	n,	vector<int>	curr_sum,	
																		stack<vector<int>>&	traversal){
				
				/*		curr_sum	and	traversal	(elements)	are	vectors	of	length	n.
				
								Sorts	curr_sum	from	largest	to	smallest.
								The	corresponding	indices	to	this	sort	tell	us	the	order	to	traverse	(choose	elements)	in.
								These	are	placed	in	a	vector	next_traversal,	which	is	pushed	onto	our	traversal	list.
								
								ALGORITHM:
								Initialize	next_traversal	array	to	be	the	indices	0,1,...,n-1	(use	iota).
								We	get	the	new	index	order	when	we	sort	curr_sum.
								We	use	sort	on	next_traversal	(our	indices),	but	our	comparison	function	is	actually
								looking	at	our	curr_sum	values	to	decide	the	new	order	of	indices.
								
								USES:	<numeric>	(for	iota)
														<algorithm>	(for	sort)
														<stack>
														<vector>
				*/
				
				int	i;
				vector<int>	next_traversal	(n);
				
				//	Initialize	indices	of	next_traversal	to	0,1,...,n-1:
				iota(next_traversal.begin(),	next_traversal.end(),	0);	
				
				//	Sort	and	get	new	indices:
				//	Reference	for	this	part:	https://stackoverflow.com/questions/1577475/c-sorting-and-keeping-track-of-indexes
				sort(next_traversal.begin(),	next_traversal.end(),	[&](int	i,int	j){return	curr_sum[i]>curr_sum[j];});	
				
				//	Add	to	stack:
				traversal.push(next_traversal);
								
}

/******************************WEIGHT	CALCULATIONS**/

float	likelihood(dynamic_bitset<>	K,	vector<float>	lk){
				

				
				/*		Computes	the	likelihood	that	we	know	K.
								Input:
												-	K	as	a	bitset	of	length	NUM_FEATURES.	
												-	lk	array	of	the	likelihood	values	(between	0	and	1)	for	knowing	each	attribute
												
								WARNING:	When	we	call	this	from	processK,	in	all	of	the	getAllK	functions,	we	are	using	a	shorter
																	length	bitset	to	denote	K.	We	need	to	convert	back	to	one	of	length	NUM_FEATURES	first.
								
								ALGORITHM:	Multiply	all	lk(x)	for	each	x	in	K.	
																			This	means	multiply	lk(x)	if	K(x)=1.
																			Since	K	is	stored	as	a	bitset,	indices	are	reversed,	so	x	is	really	NUM_FEATURES-1-x.
																			
								USES:			<boost/dynamic_bitset.hpp>
																<vector>
								
				*/
				
				float	lk_K	=	1;
				int	num_features	=	K.size();
				int	i;
				
				for	(i=0;	i<num_features;	i++){
								if	(K[i]){
												lk_K	*=	lk[num_features-1-i];
								}
				}
				
				return	lk_K;
}

float	danger(dynamic_bitset<>	IK,	vector<float>	dg){
				
				/*		Computes	the	danger	from	inferring	IK.
								Input:
												-	IK	as	a	bitset	of	length	NUM_FEATURES.	
												-	IK	should	be	the	NEW	attributes	we	can	infer	from	knowing	K.
												-	dg	array	of	the	likelihood	values	(between	0	and	1)	for	knowing	each	attribute
												
								WARNING:	When	we	call	this	from	processK,	in	all	of	the	getAllK	functions,	we	are	using	a	shorter
																	length	bitset	to	denote	K.	We	need	to	convert	back	to	one	of	length	NUM_FEATURES	first.
								
								ALGORITHM:		dg(IK)	=	{sum	of	dg(x)	for	each	x	in	IK}/{1	+	this	sum}
																				We	could	add	another	argument	if	we	wanted	to	choose	a	number	other	than	1	to	add	
																				in	the	denominator.
																			
								USES:			<boost/dynamic_bitset.hpp>
																<vector>
								
				*/
				
				float	dg_sum	=	0;
				int	num_features	=	IK.size();
				int	i;
				
				
				for	(i=0;	i<num_features;	i++){
								if	(IK[i]){
												dg_sum	+=	dg[num_features-1-i];
								}
				}
				
				return	(dg_sum	/	(1+dg_sum));
				
}

float	weight(dynamic_bitset<>	K,	dynamic_bitset<>	TK,	
													vector<float>	lk,	vector<float>	dg){
				
				/*		Computes	weight(K)=likelihood(K)	*	danger(IK).
								IK	is	the	set	of	NEW	inferences	from	K,	whereas	TK	is	the	full	set,	including	K.
								IK	=	TK	\	K.
								TK	is	the	set	we	started	with	during	our	getAllK	call.
								ie.	K	=>	TK,	but	IK	are	the	new	inferences	outside	of	K.
								
								ALGORITHM:		We	want	IK	to	be	elements	in	TK	but	not	in	K.
																				Thus	IK	=	TK	&	(~K)	(~	for	not	in	bitsets)
								
								USES:			<boost/dynamic_bitset.hpp>
																<vector>
								
				*/
				
				dynamic_bitset<>	IK	=	TK	&(~K);
				return	(likelihood(K,	lk)	*	danger(IK,	dg));
				
}

/*********************Convert	Between	K,	TK,	IK	of	Length	Num_Features	vs.	Length	=to	that	of	TK**************************/

/*********************Convert	Between	K,	TK,	IK	of	Length	Num_Features	vs.	Length	=to	that	of	TK**************************/

void	getTKIndices(dynamic_bitset<>	TK,	int	num_features,	vector<int>	&TKIndices){
				
				/*		Takes	the	TK	bitset	of	length	num_features	as	input.
								Fills	TKIndices	with	the	indices	where	TK	is	1.
								This	indicates	the	elements	of	the	set	represented	by	TK.
								NOTE:	These	indices	correspond	to	reading	TK	from	R	to	L!
								They	go	in	reverse	order	to	correspond	to	the	order	we	see	things	in.
				*/
				
				int	i;
				
				for	(i=num_features-1;	i>=0;	i--){
								if	(TK[i]){
												TKIndices.push_back(num_features-1-i);
								}
				}
				
				
}

Bibliography

[cpl] std::sort.

[Dow52] C.H. Dowker. Homology groups of relations. Annals of Mathematics,

56:84–95, 1952.

[EH10] Herbert Edelsbrunner and John Harer. Computational Topology - an

Introduction. American Mathematical Society, 2010.

[Erd17] Michael Erdmann. Topology of Privacy: Lattice Structures and Infor-

mation Bubbles for Inference and Obfuscation. arXiv e-prints, page

arXiv:1712.04130, December 2017, 1712.04130.

[Hat02] Allen Hatcher. Algebraic topology. Cambridge University Press, Cam-

bridge, 2002.

[KG06] Daniel Kifer and Johannes Gehrke. l-diversity: Privacy beyond k-

anonymity. In In ICDE, page 24, 2006.

[KK12] P. Kiran and P. KavyaN. A survey on methods, attacks and metric for

privacy preserving data publishing. International Journal of Computer

Applications, 53:20–28, 2012.

[LLV07] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-

Closeness: Privacy Beyond k-Anonymity and l-Diversity. In 23rd In-

ternational Conference on Data Engineering (ICDE 2007), pages 106–

115. IEEE, 2007.

[OZ03] Stanley Oliveira and Osmar Zaane. Privacy preserving frequent itemset

mining. Proceedings of the IEEE ICDM Workshop on Privacy, Security

and Data Mining, 06 2003.

[Sam01] Pierangela Samarati. Protecting respondents’ identities in microdata

release. IEEE Trans. Knowl. Data Eng., 13(6):1010–1027, 2001.

82

A Privacy Score for Anonymous Databases Lindsay A. White

[Swe02] L. Sweeney. k-anonymity: A model for protecting privacy. IEEE Se-

curity and Privacy, 10:1–14, 01 2002.

[Wac06] Michelle L. Wachs. Poset Topology: Tools and Applications. arXiv

e-prints, page arXiv:0602226, February 2006, 0602226.

83

	Introduction
	Preliminaries
	Simplicial Complexes
	Databases and Dowker Complexes
	k-Anonymity

	Database Privacy Score
	Desired Properties
	Description of Score
	Proof of Properties
	Future Considerations

	Algorithms
	Inference Sets
	Intersection Poset
	Computing weight(S)

	Connection to k-Anonymity
	Weights for k-Anonymity
	Effect of k-Anonymity on Privacy Score

	Topological Approach to Improve Privacy
	Topological Description of Privacy Loss
	Modifying Databases to Preserve Privacy

	Future Work
	Conclusion
	C++ Code

