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Abstract

This thesis concerns flat knots and their properties. We study various invariants of
flat knots, such as the crossing number, the u-polynomial, the flat arrow polynomial,
the flat Jones-Krushkal polynomial, the based matrices, and the ϕ-invariant. We
also examine the behavior of these invariants under connected sum and cabling. We
give a matrix-based algorithm to calculate the flat Jones-Krushkal polynomial.

We take a special interest in certain subclasses of flat knots, such as almost
classical flat knots, checkerboard colorable flat knots, and slice flat knots. We explore
how the invariants can be used to obstruct a flat knot from being almost classical,
checkerboard colorable, or slice.

We show that any minimal crossing diagram of a composite flat knot is a con-
nected sum, and we introduce a skein formula for the constant term of the flat arrow
polynomial.

A companion project to this thesis is the interactive website, FlatKnotInfo. It
provides a curated dataset of examples and invariants of flat knots. It also features
a tool for searching flat knots and another tool that crossreferences flat knots with
virtual knots. FlatKnotInfo was used to develop many of the results in this thesis,
and we hope others find it useful for their research on flat knots. The Python code
for calculating based matrices and flat Jones-Krushkal polynomials is included in an
appendix.
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Chapter 1

Introduction

1.1 Knots and Gauss diagrams

In classical knot theory, the objects of interest are smooth or piecewise-linear embed-
dings of S1 in S3 up to isotopy. A classical knot can be represented as a knot diagram
(not uniquely), and an isotopy of knots can be represented by a finite sequence of
Reidemseister moves between diagrams. There is another, purely combinatorial way
to represent classical knots using Gauss codes or Gauss diagrams. The Reidemeister
moves translate into moves between Gauss diagrams, and there is a bijection between
these two representations of classical knots.

Given a knot diagram, there is a unique Gauss diagram corresponding to it, but
not every Gauss diagram arises from a knot diagram. To address this deficiency,
Kauffman introduced a new type of crossing called a virtual crossing, and this led to
the development of virtual knot theory [Kau99]. Virtual knots give a complete theory
of Gauss diagrams in that every Gauss diagram can be realized by some virtual knot.

Virtual knots can also be represented as knots in thickened surfaces. Carter,
Kamada and Saito gave a one-to-one correspondence between virtual knots and
knots in thickened surfaces up to stable equivalence [CKS02]. Thus, the three rep-
resentations of classical knots extend to virtual knots. Many invariants of classical
knots extend to virtual knots such as the Jones polynomial and Khovanov homol-
ogy (cf. [Kau99,GPV00,MI13]), but virtual knots also exhibit new and unexpected
behavior. For example, the operation of connected sum is more complicated; it is
only well-defined in the category of long virtual knots. As well, there exists nontriv-
ial virtual knots with trivial Jones polynomial and even trivial Khovanov homology.
For classical knots, it is an open problem whether the Jones polynomial detects the
unknot, and it is a deep result of Kronheimer and Mrowka [KM11] that Khovanov
homology detects the unknot.

1
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1.2 Flat knots

Flat knots arise from considering virtual knots up to crossing change. As is well-
known, every classical knot diagram can be transformed into a diagram of the unknot
by crossing changes. This property fails for virtual knots, and the Kishino knot
(Figure 1.1) gives an example of a virtual knot that cannot be unknotted by crossing
changes. Thus, if one is interested in studying virtual knots up to crossing change,
one is inexorably led to the study of flat virtual knots, which are represented by flat
virtual knot diagrams in [Kau99]. (In [Tur04], they are called virtual strings.) In this
thesis, we use the terms flat knots and flat knot diagrams. In a flat knot diagram,
the over and under crossings are replaced with self-intersections. Thus, flat knots are
equivalence classes of virtual knots modulo crossing change, and a virtual knot can
be unknotted by crossing changes if and only if it projects to the trivial flat knot.

Figure 1.1: The virtual and flat Kishino knot

A central problem in knot theory is the classification problem, which asks when
are two knots different and when are they equivalent. The prime decomposition
theorem for knots reduces this question to one about prime knots, roughly analo-
gous to tabulating the prime numbers. For virtual knots, the prime decomposition
theorem fails and the analogy breaks down; see [Mat12]. Indeed, the Kishino knot
is nontrivial even though it is a connected sum of two trivial virtual knot diagrams.
For classical knots, connected sum is a commutative operation, whereas for virtual
knots, it is not commutative. These properties are true also for flat knots, and they
reflect the different behavior present in the monoids of long virtual and flat knots.

In this thesis, we study flat knots using invariants such as the u-polynomial, the
flat arrow polynomial, the flat Jones-Krushkal polynomials, primitive based matrices,
and the ϕ-invariants.

1.3 Classification and monotonicity

In [Tur04], Turaev developed an algorithm for classifying flat knots. It has been
implemented by Gibson [Gib08] and is the basis for FlatKnotInfo [FKI]. One of
the advantages of this algorithm is that, under reduction, the number of crossings
monotonically decreases until one achieves a minimal crossing diagram. Further,
any two minimal diagrams of the same flat knot are related by a sequence of flat
Reidemeister 3-moves. (The corresponding statement is not true for classical knots.

2
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In general, one may need to increase the number of crossings in any sequence of
Reidemeister moves relating two minimal crossing diagrams of the same classical
knot. It is an open problem to find a good bound on this number.)

An alternative approach for classifying flat knots was developed by Chu [Chu13],
but her methods apply to long flat knots, and the canonical diagrams that are used
as representatives do not always have minimal crossing number.

The monotonicity result for classifying flat knots and links has a somewhat storied
history. Hass and Scott showed that any curve on a surface can be reduced to minimal
intersection number monotonically in [HS94]. In [Kad03], Kadokami claimed that
any flat link diagram can be reduced in a monotonically decreasing way until one
obtains a minimal crossing diagram. However, Gibson found counterexamples to
Kadokami’s claim in [Gib08]. Cahn showed that Kadokami’s claim is true for flat
knots in [Cah17]. A complete solution was provided by Freund [Fre22], who proved
Kadokami’s claim for nonparallel flat links.

Monotonicity provides the following general scheme for classifying flat knots.
Given a flat knot diagram, we first apply Reidemeister moves to reduce the crossing
number. After a finite number of reductions, one obtains a minimal crossing dia-
gram. Next, one determines all diagrams related to the minimal one by Reidemeister
3-moves. Since any two minimal diagrams of the same flat knot are related by Rei-
demeister 3-moves, this set of minimal diagrams can be used to completely classify
the flat knot type.

This scheme can be implemented as an algorithm for tabulating flat knots up to
n-crossings. The first step is to construct all flat knot diagrams up to n-crossings.
Each flat knot diagram is reduced to a minimal crossing diagram, which is possible by
monotonicity. The next step is to determine the Reidemeister 3 orbit of each minimal
crossing diagram and record a unique representative for each one. This step uses a
linear ordering on the set of flat knot diagrams and results in a unique “name” for
each flat knot. The last step is to validate the results by calculating enough invariants
of the flat knots to distinguish each pair of flat knots in the table. The majority of
non-distinguished flat knots are pairs of permutant flat knots. (Permutant knots are
defined in Section 2.8.)

1.4 FlatKnotInfo

As previously mentioned, Gibson applied this method to tabulate flat knots up to
4 crossings in [Gib08]. He represented flat knots as nanowords (cf. [Tur06]) and
used the u-polynomial, ϕ-invariants, and the 2-parity projection to distinguish the
flat knot types. This approach works for flat knots with up to 4 crossings, but the
invariants are not sufficiently powerful to distinguish flat knots with five or more
crossings.

Inspired by the famous knot theory website KnotInfo [KI], we created a website
for flat knots called FlatKnotInfo [FKI]. We also borrowed the idea from the table

3
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of virtual knots [Gre04] to include a page for each flat knot. In tabulating flat knots
[FKI], we used the following modified approach. Firstly, we represent Gauss diagrams
using Lyndon words with matchings, which is more efficient than using nanowords,
see Figure 1.2. It is especially useful in generating the tables of checkerboard colorable

pair the arcs

(2n)!

n!2n
cases

assign O,U

2n cases

check equivalence by rotation

check equivalence by homotopy

minimal
representation
by rotation

Lyndon word
algorithm,
linear time

match arcs

n! cases

check equivalence by homotopy

Figure 1.2: Two approaches (i) nanowords (Gibson, Turaev) and (ii) Lyndon words
(Boden, White)

flat knots and almost classical flat knots. For those flat knots, the tables include
higher crossing flat knots by using the “OU”-pattern: Along the flat knot Gauss
diagram we label the singular points 1, 2, . . . , 2n. If two singular points are matched
as the head and tail of an arrow, then they should have even and odd numbers and be
non-consecutive. We assume the tails are odd points and pair them up with the even
points. We can always assume the first arrow has the least head-tail difference. This
allows us to consider much fewer than (n−3)((n−1)!) cases. On each pattern, we can
flip the head and tail of the arrow to obtain a checkerboard colorable diagram, so the
case number is multiplied by 2n. For each one, we apply Reidemeister moves until we
obtain a minimal diagram and then we find its 3-orbit and minimal representative
(in the linear ordering).

Secondly, we employ a larger set of flat knot invariants to distinguish the flat
knot types. This includes the u-polynomial, the flat arrow polynomial, the flat
Jones-Krushkal polynomial, and the ϕ-invariants of the flat knots and its cables.

As a result, we are able to tabulate the first 1,289,741 flat knots. We completely
distinguish flat knots up to 6 crossings, and our method works for flat knots with
7 crossings leaving only 5 pairs of ambiguities. For flat knots with 8 crossings, the
method leaves a total of 511 undistinguished, but most of the ambiguities arise from
composite flat knots. Indeed, if we restrict our attention to prime flat knots, the
invariants are able to separate all flat knots up to 8 crossings except for one pair
with 7 crossings.

We also consider the classification problem for the subclasses of checkerboard
colorable and almost classical flat knots. For instance, we tabulate the first 1,379,884

4
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checkerboard colorable flat knots and the first 240,759 almost classical flat knots. For
checkerboard colorable flat knots, the invariants are able to completely distinguish
them up to 7 crossings and the method works for checkerboard colorable flat knots
with 8 crossings leaving only four ambiguities. For almost classical flat knots, the
invariants completely distinguish them up to 8 crossings, leaving only 3 pairs of
9-crossing knots undistinguished.

The table in FlatKnotInfo [FKI] lists diagrammatic invariants such as the Reidemeister-
3 orbit, the symmetry type, and parity projection, as well as many invariants of flat
knots. It also lists concordance information such as the genus of the based matrix
and sliceness of flat knots up to 6 crossings with one exception (6.540). There is a
tool that cross-references each flat knot to the corresponding virtual knot in Green’s
table [Gre04], along with a flat knot calculator that finds the minimal diagram, name,
and symmetry type of a given flat knot diagram.

FlatKnotInfo [FKI] helped to inform and guide much of the research in this thesis.
The code for calculating the based matrix and the Jones-Krushkal polynomials is
included in the appendix.

1.5 Roadmap

The rest of the thesis is structured as follows: Basic definitions and conventions are
given in Chapter 2. In Chapter 3, we review the based matrix and several invariants
derived from it. We show an example of an algebraically slice but not slice flat knot
and a calculation of the (2, 1)-cabled based matrix. In Chapter 4, we discuss the flat
arrow polynomial. We use it to give an obstruction to flat knots being checkerboard
colorable, and we develop a skein model for the constant term of the cabled flat
arrow polynomial. In Chapter 5 we discuss the flat Jones-Krushkal polynomial and
its enhanced version. A matrix-based calculation for the Jones-Krushkal polynomial
is given, and this invariant is helpful in distinguishing almost classical flat knots
with higher crossing number. In Chapter 6, we revisit the notions of sliceness and
concordance for long flat knots. We show an example of a non-slice Brunnian link and
one 6-crossing, eight 7-crossing flat knots whose sliceness status remains unknown.

The final chapter contains a summary of the key theorems and further discussion
of the many open problems. It also presents a table of the numbers of flat knot by
rank and type, as well as a list of open problems for future study.

In addition, there are three appendices. The first is a dictionary for translating
between Kauffman’s terminology (as used here) and Turaev’s terminology (as used
elsewhere). The other two appendices contain the python code used to compute
based matrices and flat Jones-Krushkal polynomials.
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Chapter 2

Basic notions

In this chapter, we introduce classical, virtual, and flat knots. We also discuss
symmetries of flat knots, Alexander numberings, almost classical flat knots, cabling
operations, concordance and connected sum. Throughout this thesis, we use Kauff-
man’s terminology for virtual and flat knots. Appendix A provides a dictionary for
translating these notions into Turaev’s language for virtual strings.

Most of the material presented in this chapter is definitional and thus well-known.
One exception is Section 2.8, where we prove a subadditivity result for the classical
crossing number of composite flat knots.

2.1 Classical knots and their representations

In this section, we introduce basic notions from classical knot theory, including knot
diagrams, Reidemeister moves, and Gauss diagrams.

Definition 2.1. A classical knot, or just knot, is an embedding of S1 into S3. Two
knotsK1 andK2 in S3 are said to be equivalent if there is an ambient isotopy carrying

K1 to K2. A (classical n-component) link is the disjoint union
⊔

n

S1 embedded in

S3, while the components are allowed to tangle with each other. We will use planar
diagrams to represent knots and links.

Definition 2.2. Let π : R3 → R2 be a projection. If π(K) has a finite number of
singular points, and if they are all transverse double points, then π(K) is said to be a
regular projection of K. The double points in the projection are called crossings. A
knot diagram is a regular projection of a knot with every under-crossing line broken
at every double point.

In this thesis, we work with oriented knots, and the orientation is indicated by
placing an arrow sign on the knot diagram. A given knot in S3 have many different
diagrams. Therefore, we need to define an equivalence relation between two diagrams.
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Definition 2.3. The Reidemeister moves are the three moves shown in Figure 2.1.

R1 R1

R2 R3

Figure 2.1: Reidemeister moves

Reidemeister proved that two classical knots are equivalent if and only if their
diagrams are related by a finite sequence of Reidemeister moves and planar isotopies.
The three Reidemeister moves and planar isotopies together generate classical iso-
topies of knot diagrams.

Aside from knot diagrams, there are other ways to represent knots. For instance,
one can represent them using Gauss diagrams.

Definition 2.4. For a knot diagram with n classical crossings, its Gauss diagram
is a counterclockwise oriented circle with 2n points on the circle and n arrows (or
“chords”) connecting those points. This circle is called the skeleton of the Gauss
diagram. Every arrow represents a classical crossing with arrow head associated to
the under-crossing arc and arrow foot to the over-crossing arc. The arrow head is
decorated with a sign ε = ±1 according to the writhe of the crossing as in Figure 2.2.
The order of the points on the skeleton tell us adjacency of the crossings in the knot
diagram.

+1 −1

Figure 2.2: Writhe of a crossing

Definition 2.5. A Gauss code (or Gauss word) is a notation to represent the Gauss
diagram. From 12 o’clock of the skeleton in the Gauss diagram, in the order of
counterclockwise, assign number 1, 2, . . . to the arrows. At each arrow head (or tail),
the point is recorded as “U” (or “O”), followed by this arrow’s assigned number and
sign. Then from 12 o’clock of the skeleton, go counterclockwise and record every
arrow head or tail along the skeleton.
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O3-

O1-

O2- U2-

U1-

U3-

U1-O2-U3-O1-U2-O3-

Figure 2.3: Trefoil and its Gauss diagram

The Gauss diagram and Gauss code for the trefoil knot is shown in Figure 2.3.
Based on this construction, we can obtain a Gauss diagram. The Gauss code is
unique for a given Gauss diagram up to cyclic permutation. The permutation alters
the starting point of the Gauss code. If we delete this point from the skeleton, we
obtain a new category of knots.

Definition 2.6. A Gauss diagram of a long knot is a Gauss diagram of a knot with
one point on the skeleton (where no arrow head/tail is located) removed. A long knot
diagram is a knot diagram with one regular point removed. Two long knot diagrams
are said to be equivalent if they are related by finitely many Reidemeister moves and
planar isotopy.

Note that classical knot diagrams are completely determined by the associated
Gauss diagram, but not every Gauss diagram can be realized as a classical knot
diagram.

If the Gauss diagram can be realized as a classical knot, then one can draw all the
signed crossings as in Figure 2.2 and connect them by arcs following the adjacency
and order given by the Gauss code. Two Gauss diagrams of the same knot are related
by the Gauss diagram version of the Reidemeister moves.

2.2 Virtual knots and their representations

In this section, we introduce virtual knots. As previously mentioned, not every
Gauss diagram is realized by a classical knot. Virtual knots represent the completion
of all Gauss diagrams modulo the Reidemeister moves. Furthermore, the set of
classical knots injects faithfully into the set of virtual knots; see [GPV00]. In [Kup03]
Kuperberg gave a more general geometric argument showing that the set of classical
links injects faithfully into the set of virtual links.

In the last section, we described how to construct a classical knot diagram from a
Gauss code by drawing all the crossings and connecting them by arcs. For some Gauss
codes, it is not possible to connect the crossings in sequence without introducing
additional intersections. In other words, not all Gauss diagrams can be realized by
planar knot diagrams. To circumvent these obstacles, we introduce a new type of
crossing called a virtual crossing, as shown in Figure 2.5. By allowing arcs to intersect
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in this new type of crossing (see Figure 2.4), we are able to realize any Gauss code
using a virtual knot diagram.

−−

U1-O2-O1-U2-

Figure 2.4: Virtual trefoil and its Gauss diagram

Based on this we give the definition of virtual knot diagrams and diagrammatic
equivalence.

Definition 2.7. A virtual knot diagram is a 4-valent planar graph, but each vertex
is now allowed to be a classical crossing or virtual crossing as in Figure 2.5.

Figure 2.5: Classical crossing (left) and virtual crossing (right)

There is an equivalence relation defined on virtual knot diagrams.

Definition 2.8. The virtual Reidemeister moves are the moves in Figure 2.6. Along
with classical isotopies, these virtual Reidemeister moves generate virtual isotopies
of virtual knot diagrams. Virtual and classical Reidemeister moves are collectively
called generalized Reidemeister moves.

VR1 VR2 VR3

VR4 VR4

Figure 2.6: Virtual Reidemeister moves

Alternatively, classical isotopies along with detour moves in Figure 2.7 generate
virtual knot equivalence. This explains why virtual crossings should be thought to
“not really exist”. Indeed, virtual crossings are not indicated by the Gauss diagram,
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and additionally a Gauss diagram does not change under a detour move. Hence
every Gauss diagram represents one virtual diagram up to detour moves and planar
isotopies. The virtual knot type is an equivalence class of virtual knot diagrams under
virtual isotopy.

detour

Figure 2.7: Detour move

Recall that classical knots are embeddings of S1 into S3, with equivalence given
in terms of ambient isotopy. There is an analogous definition for virtual knots.

Definition 2.9. [CKS02] An embedding representation of a virtual knot K is an
embedding eK : S1 → Σg × I, where Σg is a connected, oriented, closed surface of
genus g. Two embedding representations are stably equivalent if they are related by
a finite sequence of stabilizations, destabilizations and ambient isotopies.

We have explained how knot diagrams and Gauss codes are related. There is also a
well-defined map from embedding representations to virtual knot diagrams. A virtual
knot diagram can be realized as a simple closed curve embedded in a thickened surface
in the following way. If we regard the virtual crossing as in Figure 2.8 (left), and if
every classical crossing is realized by thickening the surface as in Figure 2.8 (right),
then every virtual knot can be embedded in a thickened surface with boundary.
Attaching a 2-disk along each boundary component gives a closed surface which is
called the Carter surface of the virtual knot; see [KK00]. This process can be reversed,
namely we can obtain a virtual knot diagram from an embedding representation.
There is a bijection between virtual knots and knots in a thickened surface up to
stable equivalence; see [CKS02] for a detailed explanation.

Figure 2.8: Virtual knots as knots in thickened surfaces

Similarly, we can also obtain a Gauss code directly from the embedding repre-
sentation of a virtual knot. We can firstly get a “shadow” by projecting Σg × I to
Σg. Then at each double point in the “shadow”, the pre-image belongs to two arcs
and the arc has a larger coordinate in I is the over-crossing. The rest is the same as
in Definition 2.4.
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The genus g(K) of a virtual knot K is defined to be the minimal genus of the
Carter surface over all embedding representations of K. Thus a virtual knot K
has genus g(K) = 0 if and only if K is classical. Equivalently, a virtual knot K is
classical if and only if it can be represented by a virtual knot diagram with no virtual
crossings.

2.3 Flat knots and their representations

In this section, we introduce flat knots. They can be described alternatively in terms
of flat knot diagrams, flat Gauss diagrams, or immersed curves on surfaces. The
flat Reidemeister moves generate an equivalence relation called homotopy. Given a
virtual knot diagram, there is an associated flat knot diagram given by flattening all
the crossings. This induces a well-defined map from virtual knots to flat knots which
is denoted π and called the shadow map.

Definition 2.10. A flat knot diagram is a 4-valent planar graph, where each vertex
is now allowed to be either a flat crossing or virtual crossing as in Figure 2.9.

Figure 2.9: A flat crossing (left) and virtual crossing (right)

Definition 2.11. Two flat knot diagrams are said to be homotopic if they are re-
lated by a finite sequence of flat Reidemeister moves shown in Figure 2.10 and
VR1,VR2,VR3 in Figure 2.6 along with ambient isotopies of the surface.

FR1 FR2

FR3 FR4

Figure 2.10: Flat Reidemeister moves plus VR1, 2, 3 from Figure 2.6)
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Remark 2.12. For oriented diagrams, [Pol10, Theorem 1.1] proved that the Rei-
demeister moves R1, R2, and R3 in Figure 2.1 assigned with any orientation can
be generated by four oriented moves. Their flat knot diagram versions are listed in
Figure 2.11.

FR1a FR1b

FR2a FR3a

Figure 2.11: Flat Reidemeister moves generating all FR1, 2, 3 moves

Definition 2.13. An invariant of (oriented) flat knots is a number, polynomial,
group, etc. that can be associated to each flat knot diagram with the property that
the object remains unchanged if the diagram is altered by any of the flat Reidemeister
moves in Definition 2.11.

The crossing number of a flat knot K is denoted cr(K) and defined as follows.
Given a flat knot diagram, its crossing number is the number of flat crossings. (Vir-
tual crossings are not counted.) For a flat knot K, cr(K) is defined as the minimum,
over all diagrams D for K, of the crossing number of D. Thus, cr(K) is an invariant
of the flat knot.

In a similar way, one can define the virtual crossing number of a flat knot K as
the minimum, over all diagrams D for K, of the number of virtual crossings of D.
This also determines an invariant of flat knots.

By Remark 2.12, to check if a flat knot invariant is well-defined, it is enough to
check that it is unchanged under the restricted set of moves in Figure 2.11, VR1, 2,
3, in Figure 2.6, and FR4 in Figure 2.6.

The next problem is a major source of motivation for the rest of this thesis.

Problem 2.14. Find powerful yet computable invariants of flat knots.

Definition 2.15. For a flat knot diagram with n classical crossings, its flat Gauss
diagram is a counterclockwise oriented skeleton with 2n points on the skeleton and
n arrows. Every arrow encodes a crossing as shown in Figure 2.12. The order of the
points on the skeleton tell us adjacency of the crossings in the flat knot diagram.

Definition 2.16. A flat Gauss code ( or flat Gauss word) is a notation to represent
the flat Gauss diagram. From 12 o’clock of the skeleton in the Gauss diagram, in
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the order of counterclockwise, assign numbers 1, 2, . . . to the arrows. At each arrow
head (or tail), the point is recorded as “U” (or “O”), followed by this arrow’s assigned
number. Then from 12 o’clock of the skeleton, go counterclockwise and record every
arrow head or tail along the skeleton.

O U

Figure 2.12: Flat crossings to Gauss diagram arrows

O1U2U1O2

Figure 2.13: Flat virtual trefoil and its Gauss diagram

For example, the flat knot in Figure 1.2 has Gauss code O1O2O3U1U3U2. The OU

word of a Gauss code is the binary string in {O, U} obtained by removing the integers.
For example, the flat knot in Figure 1.2 has OU word OOOUUU.

Remark 2.17. An OU word is Lyndon if it is minimal up to cyclic rotation. Here
the ordering has O < U. The enumeration algorithm for flat knots [FKI] starts with
Lyndon words and then considers matchings on them. One advantage is there is a
linear time algorithm for generating Lyndon words due to Duval [Duv83].

For example, the OU word for the flat knot diagram in Figure 2.14 is Lyndon.
The Gauss diagram also determines a matching, which is a permutation indicating
how each “O” is matched to the corresponding “U”. In fact, the Gauss diagram is
completely determined by its OU word and matching.

To derive the matching, our convention is to first number the O’s sequentially
going counterclockwise from 12 o’clock in the diagram, and then to record the
numbers of the corresponding U’s, again going counterclockwise from 12 o’clock.
Note that the ordering of crossings in the matching can differ from the ordering
in the Gauss word. For example the flat knot in Figure 2.14 has Gauss word
O1O2O3O4O5O6U7O8U2O7U4U1U6U3U8U5; in the matching the order of the last two
crossings is switched.

Similar to virtual knot diagrams, flat knot diagrams are completely determined by
the associated Gauss diagram, up to VR1, VR2, VR3 and FR4 and detour moves. On
Gauss diagrams, the corresponding Reidemeister moves are as shown in Figure 2.15.
Note that VR1, VR2, VR3, FR4 and detour moves do not change the flat Gauss
diagram.
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OU word: OOOOOOUOUOUUUUUU, Matching: [8 2 4 1 6 3 7 5]

Figure 2.14: Lyndon word representation of a flat knot

Remark 2.18. By [Pol10, Theorem 1.1], all the Reidemeister moves for flat Gauss
diagrams are generated by FR1(a,b), FR2(a) and FR3(c,d).

FR1 (a) FR1 (b)

FR2 (a) FR2 (b)

FR3 (a) FR3 (b)

FR3 (c) FR3 (d)

Figure 2.15: Flat Reidemeister moves on Gauss diagrams

Analogous to the embedding representations of virtual knots, flat knots can be
represented as immersed curves in Carter surfaces.

Definition 2.19. An immersion representation (or a diagram on surface Σg) of a
flat knot α is an immersion ωα : S1 ↬ Σg, where Σg is a connected, oriented, closed
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surface of genus g. Two immersion representations are stably equivalent if they are
related by a finite sequence of stabilizations, destabilizations, and homotopies. The
flat genus g(α) of a flat knot α is defined to be the minimal genus over all surfaces
admitting an immersion representation for α.

We can get a planar projection of Σg so that every double point is transverse and
realize all the double points that are not in the immersion as virtual crossings. Thus
we get a flat knot diagram. From a flat knot diagram, if we regard the virtual crossing
as in Figure 2.16 (left), every flat crossing is realized by thickening the surface as in
Figure 2.16 (right), and then attaching 2-disks to that surface along its boundaries
to obtain a Carter surface.

Similarly, the “O,U” of the associated flat Gauss code is given by the sign of
intersection at the double points. Then chose a starting point, one can travel along
the loop and number each arrow by their order. Then the Gauss code is given by
listing each arrow’s assigned number and their “O,U” in the order of the trip along
the loop.

As with virtual knots, there is a bijection between these three representations up
to equivalence. We have already seen that there is a correspondence between flat knot
diagrams and flat Gauss diagrams which is one-to-one on equivalence classes. When
we construct an associated immersion representation from a flat knot diagram, the
immersion is not changed under VR1, VR2, VR3, FR4 and detour moves, while FR1,
FR2, FR3 give homotopy and/or stabilization of the Carter surface. The genus of the
Carter surface can only change under FR2, and the two immersion representations
are related by stabilization and hence equivalent. Note that the above equivalence
also applies to classical knots, which form a subset of virtual knots.

Figure 2.16: Flat knots as immersed loops on surfaces

Throughout this thesis, we will interchangeably use the three representations.
It is worth explaining the relation between classical, virtual and flat knots. Clas-

sical knots are a subset of virtual knots. At the level of diagrams, we know that
virtual knot diagrams are defined based on classical knot diagrams with introducing
a new type of crossing and additional equivalence relations. Two classical knot di-
agrams are equivalent as classical knots if and only if they are equivalent as virtual
knot diagrams.

Definition 2.20. The shadow map or flat projection is the natural map π sending
a virtual knot diagram D to its shadow diagram, which is the flat knot diagram
obtained by replacing all classical crossings with flat crossings as in Figure 2.17-left.
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The shadow map sends Reidemeister moves of virtual knot diagrams to the cor-
responding flat Reidemeister moves of their shadow diagrams. Therefore, it induces
a well-defined map, also denoted π, from virtual knots to flat knots. The shadow
map π is obviously a surjection, for any diagram of flat knot α, we can resolve each
flat crossing positively, and this produces a virtual knot diagram D with π(D) = α.

The shadow map π can be described at the level of Gauss diagrams as well. Given
a Gauss diagram for a virtual knot, we switch the direction of all the negative arrows
and then delete all the signs as shown in Figure 2.17-right. Again, the map is easily
seen to be surjective, for a flat Gauss diagram D, we assign positive signs to all the
arrows and obtain a Gauss diagram D′ of a virtual knot with π(D′) = D.

For geometric representations, from embedding eK : S1 → Σg × I, we can flatten
the Carter surface and allow singular points to occur so that we obtain an immersion
ω : S1 ↬ Σg, which is an immersion representation for the flat knot. For every
immersion representation, we can thicken the Carter surface first and lift an arc at
each singular point of the loop. Then we obtain an embedding in the thickened
Carter surface.

+

.

.

. −

.

Figure 2.17: Flattening classical crossings and the effect on Gauss diagrams

The shadow map π also has a topological interpretation: a classical knot is an
embedding of S1 into S3 or S2 × I, while a virtual knot is an embedding of S1 into
Σg × I. Equivalently, a flat knot can be represented as an immersion of S1 in Σg.
Given a diagram of flat knot α realized as an immersion ωα : S1 ↬ Σg, then the
immersion can be lifted to an embedding S1 → Σg × I representing a virtual knot
which maps to α under the shadow map.

Note that all classical knots lie in the kernel of π for the simple reason that
all classical knots can be unknotted by performing crossing changes. (This is also
evident by considering the ∆-move, which is an unknotting operation for classical
knots and which maps to FR3 under the shadow map.) If K is a virtual knot with
genus g(K) = 1, then its image π(K) under the shadow map is the trivial flat knot.
Indeed, since the fundamental group of a torus is commutative, any immersed loop
on a torus is homotopic to the shadow of a classical knot (more specifically, a torus
knot) and hence trivial as a flat knot.

2.4 Symmetry type of flat knots

In this section, we discuss the symmetries of a flat knot generated by the two invo-
lutions.
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Let α be a flat knot represented as an immersion ωα : S1 ↬ Σg.

1. The reverse −α is given by changing the orientation of S1;
2. The mirror image α∗ is given by changing the orientation of Σg;
3. The reversed mirror image −α∗.

On flat Gauss diagrams, the operation α → −α reverses the orientation of the
skeleton, whereas the operation α → α∗ reverses all the arrows.

5.2 −5.2 5.2∗ −5.2∗

Figure 2.18: Gauss diagrams of ‘siblings’ of the flat knot 5.2

5.2 −5.2

5.2∗ −5.2∗

Figure 2.19: Diagrams of ‘siblings’ of the flat knot 5.2

Definition 2.21. The five symmetry types of flat knots are chiral, reversible, +-
achiral, −-achiral and fully-achiral as defined in Table 2.1.

2.5 Arrow index and Alexander numberings

In this section, we introduce the arrow indices, which are integers associated to each
crossing in a flat knot diagram. When a flat knot is represented as an immersed
curve in a surface, the arrow index can be viewed as an intersection number. A flat
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chiral reversible +-achiral −-achiral fully-achiral

α = −α No Yes No No Yes
α = α∗ No No Yes No Yes
α = −α∗ No No No Yes Yes

Table 2.1: Symmetry types of flat knots

knot diagram whose arrow indices are all trivial is said to be Alexander numberable,
and a flat knot that can be represented by an Alexander numberable diagram is said
to be almost classical (cf. [BG+17]).

a

b

c

d
e

e−
e+

Figure 2.20: Calculation of the arrow index n(e) = −3

e e+e−

Figure 2.21: Loop associated to e

Let D be a flat Gauss diagram and arr(D) be its set of arrows. For an arrow
e ∈ arr(D), let eO denote its arrow tail and eU denote its arrow head. Let e+ denote
open interval on the flat Gauss diagram from eO to eU and let e− denote the open
interval from eU to eO as shown in Figure 2.20.

Definition 2.22. In a flat Gauss diagram, the index n(e) of an arrow e is given by
the number of arrow tails in e+ minus the number of arrow heads in e+.

Now we can calculate the indices of all arrows in Figure 2.20:

n(a) = 4, n(b) = 2, n(c) = 0, n(d) = −3, n(e) = −3.

Note that given an immersion representation ωα : S1 ↬ Σg of α, e+ and e− are
associated to two loops intersecting non-transversally at a singular point correspond-
ing to e. Referring to Figure 2.21, the loop going from the darker arc and back to the
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lighter arc at the singular point is associated to e+. Then one can take the homology
classes [e+], [e−] and consider their intersection number with [ωα(S

1)] ∈ H1(Σg;Z).
Next, we define Alexander numberable flat knot diagrams and almost classical

flat knots, as well as mod p versions of them.

Definition 2.23. A flat knot diagram D is said to be Alexander numberable if
n(e) = 0 for every arrow e of D. A flat knot α is said to be almost classical (AC) if
it admits an Alexander numberable diagram.

Definition 2.24. A flat knot diagram D is said to be mod p Alexander numberable
if n(e) ≡ 0 mod p for every arrow e of D. A flat knot α is said to be mod p almost
classical (mod p AC) if it admits a mod p Alexander numberable diagram. When
p = 2, we say a flat knot is checkerboard colorable if it admits a mod 2 Alexander
numberable diagram.

The index n(e) is the intersection number of the 1-cycles in the Carter surface
associated to the arrow e and the flat knot core element s = [ωα(S

1)]. Refer to
[Tur04, Section 4.2], s ∪ {[e+]}e∈arr(α) is a basis of H1(Σ;Z). Therefore, if n(e) = 0

for all e ∈ arr(α), then ωα(S
1) bounds a surface in Σ. This gives the following

equivalent definition of almost classical flat knots.

Definition 2.25 (Version 2 of Definition 2.23). A flat knot α is called almost classical
if it can be represented as the boundary of an oriented immersed surface in a Carter
surface. This immersed surface is referred to as a flat Seifert surface for α.

Definition 2.26. If α is an almost classical flat knot, then the minimal genus over
all flat Seifert surfaces for α is called the flat Seifert genus of α and denoted gac(α).

If we relax the assumption and require only that the index n(e) ≡ 0 mod 2 for
all arrows e, then the immersion bounds an unoriented surface.

Definition 2.27 (Version 2 of Definition 2.24 for p = 2). A flat knot α is called
checkerboard colorable or mod 2 almost classical, if it can be represented as a curve
bounding an immersed unoriented surface in the Carter surface.

Definition 2.28. Given a flat knot α, its r-th covering is denoted α(r) and defined
to be the flat knot obtained from a Gauss diagram D of α after deleting arrows
{e ∈ arr(D) | n(e) /∈ rZ}.

The r-th covering α(r) of a flat knot was introduced in [Tur04,Tur08b], where it
was shown that the r-th covering is a flat knot invariant representing the lift of ωα

to the r-fold covering of Σ induced by the dual in H1(Σ;Z/r) of [ωα(S
1)].

Manturov gave a purely combinatorial description of the r-th covering of a flat
knot in terms of Gaussian parity projection in [Man10]. A detailed explanation of
the correspondence between lifts to abelian covers and Gaussian parity projection
can be found in [BCG20, Section 5.3].
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2.6 Cabling of flat knots

In this section, we introduce the cabling operation for flat knots and show that it is
well-defined.

Recall that any flat knot diagram is locally smooth. Therefore, given a flat knot
diagram, we obtain a parallel copy of the knot by pushing it off itself in the normal
direction.

Definition 2.29. The n-strand cable αn of flat knot α is a link consisting of n
parallel copies of α as shown in Figure 2.23.

The n-strand cable is well-defined because two homotopic diagrams will have
homotopic n-strand cables. For example, the 2-strand cable homotopy in Figure 2.22
are all generated by flat Reidemeister moves. That is to say, flat Reidemeister moves
are commutative with cabling.

Figure 2.22: Cabled Reidemeister moves are generated by flat Reidemeister moves.

Definition 2.30. The (2, 1)-cable α2,1 of a flat knot α is the flat knot obtained
by adding a crossing between the components in α2 as shown in Figure 2.23. The
(n, 1)-cable αn,1 of a flat knot α is the flat knot is obtained by applying the cyclic
permutation (2, 3, . . . , n, 1) to n parallel arcs in αn.

The (n, 1)-cable is well-defined because the crossings in the permutation (2, 3, . . . , n, 1)
can pass n-parallel virtual or flat crossings in the flat knot diagram; see the exam-
ple for n = 3 in Figure 2.24. If α, β are equivalent flat knot diagrams, then αn is
equivalent to βn, and α(n,1) is equivalent to β(n,1).

2.7 Concordance of flat knots

In this section, we define concordance of flat knots, following Turaev [Tur04].

Definition 2.31. Two flat knots α and β are said to be concordant if there exist

(i) immersion representations ωα : S1 ↬ Σ and ωβ : S1 ↬ Σ′ for α and β,
respectively,
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α2 α2,1

Figure 2.23: The diagrams of the cables α2 and α2,1

↔ ↔

Figure 2.24: The (n, 1)-cable is well-defined.

(ii) a compact, connected oriented 3-manifold M with boundary ∂M = −Σ ⊔ Σ′,
and

(iii) a properly immersed annulus C ↬ M whose boundary is an immersion repre-
sentation for −α∗ ⊔ β.

The definition of sliceness for flat knots is similar to the definition for classical
knots.

Definition 2.32. Let α be a flat knot represented by an immersion ωα : S1 ↬ Σ.
Then α is said to be slice if there exists a compact oriented 3-manifold M with
∂M = Σ and a properly immersed disk D ↬ M whose boundary is ωα(S

1).

Equivalently, a flat knot α is slice if it is concordant to the trivial flat knot.
In Definition 2.31, α is slice if Σ′ is S2 or T 2. Alternatively, a flat knot α is slice
if a diagram of α can be transformed to the trivial diagram by a sequence of flat
Reidemeister moves, births, deaths and saddle moves shown in Figure 2.25. We
further require that the number of saddles is equal to the sum of births and deaths,
and that the cobordism surface is connected. Such a sequence is called a slice movie.
The definition can also be applied to Gauss diagrams. For example, Figure 2.26
shows how one saddle move and Reidemeister moves transform the knot 7.45422 to a
trivial flat knot. The first example of a non-slice flat knot was discovered by Carter
in [Car91].

We also define the slice genus of a flat knot.

Definition 2.33. Let α be a flat knot represented by an immersion ωα : S1 ↬ Σ.
Then α is said to have slice genus gs(α) if there exists a compact oriented 3-manifold
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death

birth

joining saddle

splitting saddle

Figure 2.25: Birth, death, and saddle moves

Figure 2.26: A slice movie for the flat knot 7.45422

M with ∂M = Σ and a properly immersed oriented surface F ↬ M with genus gs(α)
and whose boundary is ωα(S

1), and if F has minimal genus among all such surfaces
in 3-manifolds M with boundary ∂F = ωα(S

1).

A flat knot α is slice if and only if it has slice genus gs(α) = 0.
Note that gs(α) < ∞ for any flat knot α. In fact, we claim that gs(α) ≤ 1

2
cr(α).

To see this, consider the cobordism surface constructed by applying a saddle move
at each crossing. Each saddle reduces the number of crossings, and the end result
is a knot or link diagram without any crossings. Each component can be capped off
with a 2-disk, and the movie describes a cobordism surface bounding the knot. In
any sequence of saddle moves, each one is either a splitting saddle or joining saddle.
Computing the Euler characteristic of the cobordism surface, one sees that its genus
is exactly equal to the number of joining saddles. On the other hand, since no more
than half of the saddle moves can be joining saddles, this implies that gs(α) ≤ 1

2
cr(α).

(This last step uses the fact that we started with a flat knot diagram.)
A classical or virtual knot is said to be ribbon if it admits a slice movie with

only splitting saddles and deaths, no births or joining saddles. Clearly, any classical
or virtual knot that is ribbon is also slice. The slice-ribbon conjecture asserts the
converse is true, namely that every slice knot is ribbon.

Definition 2.34. A flat knot is said to be ribbon if it admits a slice movie with only
saddles and deaths.

Clearly, any flat knot that is ribbon is necessarily slice. The following question is
an interesting analogue of the slice-ribbon conjecture for flat knots.
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Problem 2.35. Is every flat knot that is slice also ribbon?

A different notion of ribbon is defined in [Tur04]. Given a flat knot α, we say
α is strongly ribbon if it admits a Gauss diagram D with D = −D∗. In [Tur04],
Turaev proved that if α is strongly ribbon, then it is slice. In [SW06], Silver and
Williams gave an example of a long flat knot that is slice but not strongly ribbon.
It is not difficult to see that the example in [SW06] is ribbon. In general, strongly
ribbon implies ribbon, and this can be proved using a nested sequence of saddle
moves similar to the slice movie in Figure 6.3. By [SW06], not all ribbon flat knots
are strongly ribbon.

2.8 Composite knots and crossing number

In this section, we define connected sum for flat knots and consider the crossing
number for composite flat knots. We will show that every minimal crossing diagram
of a composite flat knot is a connected sum diagram.

We assume all diagrams in this section are oriented. Given two flat knot dia-
grams D1, D2 and basepoints p1, p2 on them, we can form the connected sum. The
result is a composite flat knot denoted D•

1#D•
2, and it depends on the diagrams

and basepoints, cf. Figure 2.27. In particular, the operation of connected sum is
not well-defined for virtual or flat knots. (However, as we will see in Chapter 6,
connected sum is well-defined for long virtual and long flat knots.) This example
also shows that the decomposition theorem, a theorem stating every flat knot can
be uniquely decomposed as a connected sum of nontrivial prime flat knots, does not
exist for flat knots.

# =

= =#

Figure 2.27: Connected sum of flat knots depends on basepoints

Definition 2.36. Let D1, D2 be flat knot Gauss diagrams. The set of the permutant
diagrams is defined to be the set of the connected sum Gauss diagrams

[D1#D2] = {D•
1#D•

2 | D•
i is the Gauss diagram Di with a choice of basepoint on it}.
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Flat knots obtained as connected sums are called composite flat knots, and a flat
knot is prime if it is not composite.

Note that the connected sum of two trivial flat knot diagrams can produce a non-
trivial flat knot. For example, the flat knots in Figure 2.28 are nontrivial connected
sums of two and three trivial diagrams, respectively. Similarly, one can construct a
nontrivial flat knot as the connected sum of n trivial diagrams. These flat knots can
be shown to be different by computing their based matrices and associated charac-
teristic polynomials. (These invariants are introduced in the next chapter.)

Figure 2.28: Flat knots 4.10 and 6.2064

Proposition 2.37. Let D1 and D2 be two minimal crossing flat Gauss diagrams.
Then any permutant diagram D ∈ [D1#D2] is a minimal crossing number diagram
of its flat knot type.

Proof. Obviously, cr(D) = cr(D1) + cr(D2). For the sake of contradiction, suppose
the crossing number of D can be reduced. By monotonicity, the process must in-
volve finitely many FR3 moves in Figure 2.30 followed by a decreasing FR1, FR2 in
Figure 2.29.

Suppose FR3 can be applied on three arrows, with one from D1 and two from
D2. This can only happen in the versions a, b, c and d of FR3, in the left-to-right
direction, as shown in Figure 2.30. However, such Gauss diagrams of D1 or D2 are
not minimal crossing. For example, as shown in Figure 2.31, if the connected sum
is formed at the red dashed line, then applying an FR1 on D1 reduces the crossing
number. The same argument applies to FR3(b,c,d) as well. Therefore, no FR3 moves
can be applied so that the arrows involved are from both D1, D2. Since D1, D2 are
minimal Gauss diagrams, the diagram obtained after FR3 moves should still be a
connected sum diagram of minimal crossing Gauss diagrams.

Now consider the decreasing FR1,2 applied on a connected sum diagram. Any
such move applied to D can be also applied to either D1 or D2. Then no FR1,2 can
be applied to D to reduce its crossing number.

Lemma 2.38. Let D be a connected-sum diagram D = D•
1#D•

2, where D•
1 and D•

2

are both nontrivial as long flat knots. (Removing the basepoints from D•
1, D

•
2 produces

long flat knot diagrams, see Section 6.1 for the precise definitions of long flat knots.)
Among all flat Reidemeister moves, only increasing FR2-moves can change D to a
non-connected-sum diagram.
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or FR1 or FR2

Figure 2.29: The decreasing FR1 and FR2 moves on Gauss diagrams

FR3 (a) FR3 (b)

FR3 (c) FR3 (d)

Figure 2.30: FR3 moves on Gauss diagrams

Proof. Observe that if a diagram on the left hand side of a decreasing FR1,2-move
in Figure 2.29 is a connected sum, then so is the right hand side. Moreover, no FR3
move can transform a connected-sum diagram to a non-connected sum: as shown in
Figure 2.31 if the connected sum is addressed at the red dashed line, then the blue
dash-dotted line addresses the connected sum on the right hand side. Other FR3
moves follow similarly.

FR3 (a)

Figure 2.31: FR3(a) move on a Gauss diagram

Theorem 2.39. Any minimal crossing diagram of a composite flat knot is a con-
nected sum diagram.

Proof. A composite round flat knot has a Gauss diagram D = D•
1#D•

2, where D•
1

and D•
2 are two Gauss diagrams with a choice of basepoint on them, and removing

the basepoint from either of them produces a nontrivial long flat knot. Assume D′

is a minimal crossing diagram that is flat equivalent to D. By monotonicity, D′ is
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obtained from D by finitely many FR3-moves and decreasing FR1,2-moves. Then
by Lemma 2.38, D′ is a connected sum diagram.

Then we can apply Theorem 2.39 to the tabulation process: if a minimal diagram
of a flat knot α is not a connected sum, then α is a prime flat knot. Furthermore, it
also implies that the flat knot crossing number is sub-additive for connected sums.

Corollary 2.40. For any D ∈ [D1#D2], let α, α1, α2 be the flat knot types of
D,D1, D2, respectively. Then the crossing number cr(α) ≥ cr(α1) + cr(α2)

Proof. The inequality holds if cr(αi) = 0 for i = 1 or i = 2.
Assume α is a composite knot and cr(αi) > 0 for i = 1, 2. Then by Theorem 2.39,

a minimal diagram D′ of α is a connected sum Gauss diagram. Then D′ ∈ [D′
1#D′

2]
for some Gauss diagrams D′

1, D
′
2 of α1, α2, respectively. Then we have

cr(α) = cr(D′) = cr(D′
1) + cr(D′

2) ≥ cr(α1) + cr(α2).

For example, the flat knot diagrams on the left of Figure 2.27 are equivalent to the
flat unknot. However, their connected sum, shown on the right top, is a nontrivial
flat knot with 4 crossings.

26



Chapter 3

Based matrices

In this chapter, we introduce based matrices, their equivalence relations and unique
representations. We use them to define a notion of algebraic sliceness and give an
example of a flat knot that is algebraically slice but not slice. We give formulas for
the based matrix of a composite flat knot and a cabled flat knot, and we derive more
invariants from based matrices and explore their properties.

3.1 Primitive based matrices

In this section, we define the based matrix associated to a flat knot diagram, as well
as elementary reductions and primitive based matrices.

We begin with the abstract definition of a based matrix.

Definition 3.1. A based matrix over an abelian group H is a triple T = (G, s, b),
where G is a finite ordered set, Ḡ = {s}⊔G and b : Ḡ× Ḡ → H is a skew-symmetric
map.

Unless stated otherwise, we take H = Z here and consider based matrices over
the integers.

Definition 3.2. Two based matrices T = (G, s, b) and T ′ = (G′, s′, b′) are said to
be isomorphic (written T ∼ T ′) if there is a bijection i : {s} ⊔ G → {s′} ⊔ G′ with
i(s) = s′ such that b′(i(x), i(y)) = b(x, y) for all x, y ∈ {s} ⊔G.

We now introduce algebraic analogues of the first and second Reidemeister moves
for based matrices.

Definition 3.3. Let T = (G, s, b) be a based matrix. Then we say:

• x ∈ G is an annihilating element if b(x, y) = 0 for all y ∈ G ⊔ {s}.
• x ∈ G is a core element if b(x, y) = b(s, y) for all y ∈ G.
• x, y ∈ G are complementary elements if b(x, z) + b(y, z) = b(s, z) for all z ∈
G ⊔ {s}.
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A based matrix T = (G, s, b) is said to be primitive ifG does not contain annihilating,
core, or complementary elements.

An elementary reduction of the based matrix T = (G, s, b) is the operation of
removing from G an annihilating element, a core element, or a pair of complementary
elements. The inverse operation is called an elementary extension.

Two based matrices are said to be homologous if one can be obtained from the
other by a finite sequence of elementary extensions/reductions and isomorphisms.

Referring to [Tur04, Section 6.1], every skew-symmetric square matrix over an
abelian group determines a based matrix. Every based matrix is obtained from a
primitive based matrix by elementary extensions. Two primitive based matrices are
isomorphic if and only if they are homologous.

For a based matrix T , we use T• to denote the associated primitive based matrix
obtained from T under elementary reduction.

Let α be a flat knot, realized both as a Gauss diagram D and as an immersion
ωα : S1 → Σg, where Σg is an oriented closed surface of genus g. Let b : H1(Σg,Z)×
H1(Σg,Z) → Z be the skew-symmetric form given by the intersection pairing. Let
arr(D) be the set of arrows in D and set G = {[e+] ∈ H1(Σg;Z) | e ∈ arr(D)} as
in Figure 2.20. We regard G as an ordered set, and define the core element to be
s = [ωα(S

1)] ∈ H1(Σg;Z).

Definition 3.4. The based matrix T (D) associated to the triple (G, s, b) with |G| = n
is the (n+ 1)× (n+ 1) skew-symmetric matrix over Z, where the i, j-entry of T (D)
is the intersection pairing of the i-th and j-th element of Ḡ = {s} ⊔G.

By convention, the row/column of the based matrix associated to the core element
s is called the 0-th row/column, so that the last row/column is called the n-th
row/column.

In [Tur04, Section 6.1], Turaev showed that the elementary reductions/extensions
correspond to the flat Reidemeister moves on flat knot diagrams. Specifically, a
decreasing FR1 move corresponds to deleting a core or annihilating element. A
decreasing FR2 move corresponds to deleting a pair of complementary elements.
Moreover, the primary based matrix is a flat knot invariant up to isomorphism: for
any two diagrams D,D′ of the same flat knot, we have T•(D) is isomorphic to T•(D′).

Turaev in [Tur04, Lemma 4.2.1] gave an algorithm for calculating the based ma-
trix T (D) with respect to the Gauss diagram D:

Algorithm 3.5 (Calculation of based matrix). The input is a Gauss diagram D
of the flat knot α with n arrows, and the output is an integral skew-symmetric
(n+ 1)× (n+ 1) matrix T (D).

Fix an ordering of the arrow set arr(D) and use it to order G as in Definition 3.4.
Since it is skew-symmetric, the diagonal entries T (D)i,i = 0, and it is enough to
specify the lower triangular entries T (D)i,j for i > j.
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Let s = [ωα(S
1)] be the core element, and let [e+] and [f+] be the i-th and j-th

elements of G, respectively.
Then the 0-th column of T (D) has T (D)0,0 = 0, and for i > 0, we have

T (D)i,0 = b([e+], s) = n(e)

= |
{
f ∈ arr(D)∖ {e} | fO ∈ e+

}
| − |

{
f ∈ arr(D)∖ {e} | fU ∈ e+

}
|.

Further, we assume that i > j > 0. Then

T (D)i,j = b([e+], [f+]) = |S1| − |S2|+ ε,

where
S1 =

{
g ∈ arr(D)∖ {e, f} | gO ∈ e+ and gU ∈ f+

}
,

S2 =
{
g ∈ arr(D)∖ {e, f} | gU ∈ e+ and gO ∈ f+

}
, and

ε =





+1 if fO ∈ e+ and fU ∈ e−,

−1 if fU ∈ e+ and fO ∈ e−,

0 otherwise.

For example, consider the flat Gauss diagram in Figure 3.1 (this is the same
diagram as Figure 2.20).

a

b

c

d

e

Figure 3.1: A diagram of flat knot 5.1

Then its based matrix with respect to Ḡ = {s, [a+], [b+], [c+], [d+], [e+]} is



0 −4 −2 0 3 3
4 0 1 2 4 3
2 −1 0 1 3 2
0 −2 −1 0 2 1
−3 −4 −3 −2 0 0
−3 −3 −2 −1 0 0



.

By choosing a different ordering of G, one will obtain a different based matrix.
Therefore, the based matrix depends on the choice of diagram and ordering of G.
To obtain invariants of flat knots that are independent of these choices, Turaev
introduced the notions of based matrices, isomorphisms, and homology; see [Tur04].
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3.2 Unique representation of based matrices

In this section, we introduce the ϕ-invariants, which were originally defined by Gibson
[Gib08]. They record the information in a primitive based matrix.

Given a flat knot diagram D with based matrix T (D), Turaev proved that one
can always obtain a primitive based matrix after making finitely many elementary
reductions to T•(D) [Tur04]. He also showed that if D and D′ are homotopic flat
knot diagrams, then their primitive based matrices T•(D) and T•(D′) are isomorphic.
Thus, the isomorphism class of a primitive based matrix is an invariant of the flat
knot up to homotopy.

Note that in Figure 2.15, FR1(a) and FR1(b) generates or removes a core element
and an annihilating element, respectively, while FR2(a,b) adds or subtracts a pair
of complementary elements. FR3(a-d) does not change the based matrices as long
as the ordering of G is not changed. Thus, unless α is a minimal crossing Gauss
diagram, its based matrix is not primitive. However, the converse is not true. The
based matrix of a minimal crossing Gauss diagram need not be primitive.

5.20 3.1

Figure 3.2: Flat knots 5.20 and 3.1

For example, the Gauss diagram of the flat knot 5.20 in Figure 3.2 has based
matrix

T =




0 −1 −3 2 1 1
1 0 −2 2 1 1
3 2 0 3 2 1
−2 −2 −3 0 0 0
−1 −1 −2 0 0 0
−1 −1 −1 0 0 0



.

The 1st and 5th elements in G are a pair of complementary elements. Removing
them results in the primitive matrix

T• =




0 −3 1 2
3 0 2 3
−1 −2 0 0
−2 −3 0 0


 .

Notice that T• cannot be obtained directly from a flat Gauss diagram: The only 3-
crossing nontrivial flat knot is 3.1 and its siblings, and none of the associated based
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matrices are isomorphic to T•. Moreover, the entries of a based matrix obtained
directly from a flat Gauss diagram are strictly less than the crossing number. Thus,
not every integral skew-symmetric matrix is the based matrix obtained directly from
a flat Gauss diagram. We wonder which integral (n + 1) × (n + 1) skew-symmetric
matrices can be realized as based matrices obtained directly from flat Gauss diagrams
(based matrices obtained by only Algorithm 3.5 and no elementary extension or
reduction). More generally, we look for conditions on integral (n + 1) × (n + 1)
skew-symmetric matrices to be either a primitive based matrix or a based matrix
obtained directly from a flat Gauss diagram.

If α is a flat knot with siblings, −α, α∗,−α∗, Turaev gave an algebraic method
for computing the primitive based matrices of −α, α∗,−α∗ in terms of the primitive
based matrix of α.

Theorem 3.6 ([Tur04]). Let α be a flat knot with primitive based matrix T•. Then
the primitive based matrices of −α, α∗ are isomorphic to (T•)′,−(T•)′ respectively,
where (T•)′0,i = −(T•)0,i and (T•)′i,j = (T•)i,j − (T•)i,0 − (T•)0,j for i, j ≥ 1.

Primitive based matrices are only invariants up to isomorphism, and consequently
they are difficult to apply. Gibson introduced an integer vector ϕ that records the
entries in a primitive based matrix below the diagonal in a canonical way. Note that
based matrices are skew-symmetric so the diagonal entries are all zeros. Let D be a
flat knot diagram, T•(D) be a primitive based matrix of α. Define φ(T•(D)) to be
the entries of the columns below the diagonal of T•(D).

For example, if

T•(D) =




0 1 0 0 −1
−1 0 1 0 −2
0 −1 0 1 0
0 0 −1 0 1
1 2 0 −1 0



,

then φ(T•(D)) = [−1, 0, 0, 1,−1, 0, 2,−1, 0,−1].
Let ϕα = min {φ(T•) | T• is a primitive based matrix of a diagram of α}, where

the minimum is taken in lexicographic order. For example, [1, 2, 3] < [2, 2, 3] <
[2, 3, 3].

Next, we give an algorithm for determining the ϕ-invariant ϕα of a flat knot α.

Algorithm 3.7 (Calculation of ϕα.). Let T• be a primitive based matrix of a flat knot
α with respect to Ḡ. There is a canonical way to partition G into subsets: Consider
the index function (see Definition 2.22) n : G → Z with image {n1, . . . , nk} ⊂ Z,
where ni < nj if i < j. Set Pi = {x ∈ G | n(x) = ni}. Then each Pi ̸= ∅ and
P1 ∪ · · · ∪ Pk determines a partition of G. The ϕα can be obtained by applying
permutations on each Pi.

Assume mi = |Pi|. Permutations of G preserving the partition {P1, . . . , Pk}1≤i≤k

form a subgroup isomorphic to Sym(m1) × · · · × Sym(mk), with order
∑k

i=1 mi. A
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permutation σ ∈ Sym(mi) acts on Pi =
{
xi
1, x

i
2, . . . , x

i
mi

}
to give the ordered set

P σ
i =

{
xi
σ(i), x

i
σ(2), . . . , x

i
σ(mi)

}
. The algorithm we use will consider the restrictions

on Sym(m1) × · · · × Sym(mk) and narrow it down to a subset. The complexity of
the process lies in the ambiguity after ordering by indices; it can be measured by the
number of Pi’s where |Pi| > 1. The simplest case (complexity 0) is when |Pi| = 1 for
all 1 ≤ i ≤ k. The next simplest case is complexity 1.

Set Hi = Sym(mi) for 1 ≤ i ≤ k.
Let H ′

1 be the subset of H1 that minimizes

{
[b(x1

σ(2), x
1
σ(1)), b(x

1
σ(3), x

1
σ(1)), . . . , b(x

1
σ(m1)

, x1
σ(1))]

}
σ∈H1

in lexicographic order. Then let H1 = H ′
1.

If |H1| > 1, then let pj := {j-th element of P σ
1 | σ ∈ H1} for j = 1, . . . ,m1 and

repeat the step below until |H1| = 1 or to finish.
For i = 2, . . . , k, let H ′

i, p
′
j be the subset of Hi, pj respectively, such that it mini-

mizes {
[b(xi

σ(1), y), b(x
i
σ(2), y), . . . , b(x

i
σ(mi)

, y)]
}
σ∈Hi,y∈pj

in lexicographic order. Then let pj = p′j, Hi = H ′
i, H1 = {σ ∈ H1 | j-th element of P σ

1 ∈ pj}.
In reality, the ambiguity is often eliminated after the first few steps. If we stop

at this step and if |Hi| ≠ 1 for some i, we can simply calculate all the ϕ’s and choose
the smallest one.

To finish the algorithm for a more general case, replace H1 by Hi and then repeat
for 1 ≤ i ≤ k until |Hi| = 1. If at the final step |Hi| ̸= 1 for some i, then it means
that there is more than one way to reorder G to reach the same minimum. This
occurs, for instance, for periodic flat knot diagrams. For that case, one might as well
consider treating periodic cases separately to enhance the efficiency.

We give an example which calculates the ϕ-invariant using this algorithm.

T• =




0 1 1 0 0 −2
−1 0 1 0 2 0
−1 −1 0 1 0 0
0 0 −1 0 1 1
0 −2 0 −1 0 0
2 0 0 −1 0 0




has |P1| = |P2| = 2. Assume the generators associated with T• are s, x, y, z, w, v.
Then at the first step we have b(y, x) = −1 and b(x, y) = 1 so p1 = {x} and

|H1| = 1.

For the second step, P
Sym(2)
2 = {(z, w), (w, z)}. We calculate [b(z, x), b(w, x)] =

[0,−2] and [b(z, x), b(z, x)] = [−2, 0]. Therefore, we obtain H1 = {(x, y)}. H2 =

32



PhD Thesis - J. Chen; McMaster University - Mathematics

{(w, z)}. Then the based matrix is



0 1 1 0 0 −2
−1 0 1 2 0 0
−1 −1 0 0 1 0
0 −2 0 0 −1 1
0 0 −1 1 0 0
2 0 0 −1 0 0



,

and ϕα = [−1,−1, 0, 0, 2,−1,−2, 0, 0, 0,−1, 1, 0].
The based matrix is a very powerful invariant. It can be used to separate sym-

metric siblings of a flat knot in many cases.
For example, using the flat Gauss diagrams of the flat knot 5.2, we obtain four

different ϕ-invariants. in Figure 2.18. They are

ϕα = [−3,−2,−1, 2, 4, 1, 1, 2, 3, 1, 3, 4, 1, 2, 1],

ϕ−α = [−4,−2, 1, 2, 3, 1, 3, 2, 4, 2, 1, 3, 0, 1, 0],

ϕα∗ = [−3,−2,−1, 2, 4, 0, 1, 3, 4, 0, 1, 2, 2, 3, 1],

ϕ−α∗ = [−4,−2, 1, 2, 3, 1, 2, 4, 3, 1, 3, 2, 1, 1, 1].

Therefore, the flat knot 5.2 and its siblings are all distinct.
Using the ϕ-invariant alone, we can distinguish flat knots up to 4 crossings as

shown in Table 3.1.

Crossings # Flat knots # Non-distinguished by ϕ

3 1 0
4 11 0
5 120 8
6 2086 74
7 46233 1375

Table 3.1: Distinguishing flat knots using ϕ

The first non-distinguished flat knots are the two pairs {5.47, 5.65} and {5.89, 5.104}
of 5-crossing flat knots in Figure 3.3. Their minimal ϕ-invariants, up to symmetry,
are given by

ϕ5.47 = ϕ5.65 = [−2,−1, 0, 1, 2,−1, 1, 1, 3, 1, 0, 1, 0, 1, 0],

ϕ5.89 = ϕ5.104 = [−1,−1, 0, 1, 1,−1, 0, 1, 1, 0, 1, 1, 1, 1,−1].

Up to 5 crossings, every flat knot has nontrivial primitive based matrix. The
first examples of flat knots with trivial primitive based matrix occur among the 6-
crossing flat knots, namely 6.129 and 6.899 in Figure 3.4. These flat knots cannot
be distinguished from the unknot by the ϕ-invariant.
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5.47 5.65 5.89 5.104

Figure 3.3: Two pairs of non-distinguished flat knots with 5 crossings

6.129 6.899 6.1258

Figure 3.4: Three 6-crossing flat knots with trivial primitive based matrix

Note that in Table 3.1, the invariants of the flat knots with n crossings are
compared to those of all flat knots with n or fewer crossings. Specifically, there are
three 6-crossing flat knots with trivial ϕ-invariant, and 19 7-crossing flat knots with
trivial ϕ-invariant. In particular, these flat knots cannot by distinguished from the
unknot using only ϕ-invariants.

3.3 The u-polynomial

In this section, we discuss the u-polynomial of flat knots, which was first introduced
by Turaev [Tur04]. In that paper, he gives necessary and sufficient conditions for a
polynomial u ∈ Z[t] to be the u-polynomial of a flat knot. He also proves that the
u-polynomial is additive under connected sum and invariant under concordance of
flat knots.

In the previous section, we showed that the 0-th column of the based matrix
of Gauss diagram D consists of indices n(e) of all the arrows e in arr(D); see also
Definition 2.22.

Definition 3.8 ([Tur04]). Let α be a flat knot with Gauss diagram D. Then the
u-polynomial of α is defined as

uα(t) =
∑

e∈arr(D)

sign(n(e))t|n(e)|.

To see that the u-polynomial is an invariant of flat knots, notice that it does not
change under the flat Reidemeister moves. The reason is that the indices do not
change under FR3 in Figure 2.15; FR1 introduces a new arrow of index zero, while
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FR2 introduces a pair of arrows with opposite indices. Therefore, we have that the
flat Reidemeister moves on Gauss diagrams do not change the u-polynomial. One
can define the u-polynomial of a based matrix.

Definition 3.9 ([Tur04]). The u-polynomial of an (n+1)× (n+1) based matrix T
is defined as

uT (t) =
n∑

i=1

sign(Ti,0)t
|Ti,0|.

The u-polynomial is an invariant of the homology class of based matrices: the
elementary reductions, extensions and isomorphism do not change the u-polynomial;
see [Tur04].

Referring to the flat knot in Figure 2.20, we have calculated its arrow indices,
which are n(a) = 4, n(b) = 2, n(c) = 0, n(d) = −3, n(e) = −3. Therefore, this flat
knot as u-polynomial uα(t) = t4 − 2t3 + t2.

In the next few sections, we will use the u-polynomial as a tool to study sliceness
and cabling of flat knots.

3.4 Characteristic polynomials

In this section, we introduce two new polynomial invariants of flat knots: the inner
and outer characteristic polynomials of the primitive based matrix. The motivation
for defining the characteristic polynomials comes from the complexity of calculating
the ϕ-invariant. The characteristic polynomials are weaker invariants but also simpler
to compute. As well, they are somewhat analogous to the Alexander polynomial,
which for fibered knots can be interpreted as the characteristic polynomial of the
monodromy.

Definition 3.10. Let T be a primitive based matrix and set PT (t) = det(T − tI),

the characteristic polynomial of T . Further, let T̂ be the matrix obtained from T
by deleting its first row and column, and set pT (t) = det(T̂ − tI), the characteristic

polynomial of T̂ . Then pT (t) and PT (t) are called the inner and outer characteristic
polynomials of T , respectively.

The next result shows that inner and outer characteristic polynomials are invari-
ant under isomorphism of primitive based matrices.

Proposition 3.11. Let T and T ′ be primitive based matrices. If T and T ′ are
isomorphic, then PT (t) = PT ′(t) and pT (t) = pT ′(t).

Proof. Recall that isomorphism of primitive based matrices is defined as a congruence
by permutation matrices. But two matrices that are congruent by permutation
matrices are necessarily conjugate. Since the characteristic polynomial is invariant
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under conjugation, it follows that PT (t) = PT ′(t). Note that the permutation sends
the first element of the ordered set Ḡ to the first element of Ḡ′. Therefore, a similar
argument shows that T̂ and T̂ ′ are conjugate, and it follows that pT (t) = pT ′(t).

By [Tur04], any two primitive based matrices of a flat knot are isomorphic. There-
fore, if α is a flat knot with primitive based matrix T , Proposition 3.11 implies that
the inner and outer characteristic polynomials of T give well-defined invariants by
setting pα(t) = pT (t) and Pα(t) = PT (t).

For example, let U be the flat unknot. It has primitive based matrix [0]. Thus
its inner and outer polynomials are pU(t) = 1 and PU(t) = t.

Recall that a flat Gauss diagram D is almost classical if its indices n(e) = 0 for
all e ∈ arr(D). Let BAC be the set of based matrices whose first row and column
have zero entries.

Proposition 3.12. If T ∈ BAC, then PT (t) = t · pT (t).
Proof. Let T̂ be the matrix obtained from T removing its first row and column.
For T ∈ BAC , since the first row and column are zero vectors, we have PT (t) =

det(T − tI) = t · det(T̂ − tI) = t · pT (t).
Remark 3.13. The inner and outer polynomials provide a concise way to encode
the information from a primitive based matrix up to permutation. For example, the
based matrix obtained from diagram of 4.1 (Figure 4.10) is




0 −3 −1 2 2
3 0 1 3 2
1 −1 0 2 1
−2 −3 −2 0 0
−2 −2 −1 0 0



.

This is a primitive matrix. Then its inner characteristic polynomial is

p4.1(t) = t4 + 19t2 + 1,

while its outer characteristic polynomial is

P4.1(t) = t5 + 37t3 + 11t.

There exists no other flat knot up to 7 crossings sharing the same outer characteristic
polynomial [FKI].

Problem 3.14. What polynomials can be realized as inner and outer characteristic
polynomials?

Problem 3.15. Is there a nice geometric interpretation of the inner and outer char-
acteristic polynomials?

Problem 3.16. Can one use the characteristic polynomials to detect sliceness of flat
knots?
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3.5 Algebraic sliceness does not imply sliceness

In this section, we recall the genus of a based matrix and use it to define a notion of
algebraic sliceness for flat knots, following Turaev [Tur04]. We present an example
of a flat knot that is algebraically slice but not slice.

Definition 3.17. Given a based matrix T with respect to the triple (G, s, b), a filling
χ = {Xi}1≤i≤k is a partition of G such that G =

⋃
1≤i≤k Xi where Xi ∩ Xj = ∅ if

i ̸= j, and |Xi| ∈ {1, 2} for any i. Let yi =
∑

x∈Xi
x (as the formal sum in the free

module ZG) and G′ = {yi}1≤i≤k. The intersection form b extends to G′ by linearity.
Then we obtain a new triple (G′, s, b) from this filling, and a new based matrix

T̂ associated to it. The genus of a based matrix σ(T ) is defined to be 1
2
min rank(T̂ )

over all possible fillings, where the rank( · ) refers to the rank of the integral matrix.
A based matrix T is said to be null-concordant if σ(T ) = 0.

When the first row (or column) is the zero vector, we say the based matrix or the
flat knot associated to it is algebraically almost classical or simply algebraically AC.

By [Tur04, Lemma 7.1.1], the genus of the based matrix gives an invariant of flat
knots which we call its algebraic genus.

Definition 3.18. The algebraic genus of a flat knot is denoted ga(α) and given by
the genus σ(T ) of its based matrix (not necessarily primitive).

A flat knot α is algebraically slice if ga(α) = 0, namely if its based matrix is
null-concordant.

Thus we can visualize the fillings on a Gauss diagram since the generator set of
a based matrix corresponds to the arrow set of the Gauss diagram. As shown in
Figure 3.5, the based matrix of the diagram is




0 −1 1 −2 0 2
1 0 1 −2 0 2
−1 −1 0 −2 0 2
2 2 2 0 1 2
0 0 0 −1 0 1
−2 −2 −2 −2 −1 0




The last five rows correspond to the five arrows from 12 o’clock of the Gauss diagram
in counterclockwise order. The filling [(1, 2), (3, 5), (4)], denoted by dashed brown,
black, and dotted blue, respectively, gives the algebraic genus zero. When a diagram
has a slice movie consisting of only splitting saddles, deaths, FR3 and decreasing
FR1 and FR2 moves, the FR1 and FR2 moves determine a filling with σ(T ) = 0.
For example, after applying a splitting saddle move to the diagram in Figure 3.5, the
arrow pairs (1,2) and (3,5) can be removed by FR2 moves, and the 4th arrow can be
removed by a FR1 move.
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Figure 3.5: Fillings to show ga(5.21) = 0

Every slice flat knot is algebraically slice, and it is natural to ask whether the
converse is true. We will give a counterexample to show that it is not true. Recall
the r-th covering α(r) of flat knot α in Definition 2.28. In the proof of [Tur04,
Corollary 5.17], Turaev showed that if α is slice, then its r-th covering α(r) is also
slice. We use this with r = 3 to give an example of a flat knot that is algebraically
slice but not slice, see Figure 3.6.

Example 3.19. The flat knot 6.464 is algebraically slice but not slice.

Proof. Consider the flat knot 6.464 in Figure 3.6. Its based matrix can be shown to
have genus 0 since there exists a filling as in Figure 3.7-left. Thus, the based matrix
is null-concordant. Therefore 6.464 has ga(α) = 0 and is algebraically slice. On the
other hand, its 3-fold covering is the flat knot −4.2. By our calculation [FKI], the
based matrix of 4.2 has genus 1, all the corresponding fillings of minimal diagrams are
listed in Figure 3.7-right. Thus 4.2 is not algebraically slice and not slice. Therefore,
6.464 is also not slice.

An alternative argument to show that the flat knot 4.2 is not slice is to use the
fact that its u-polynomial is −t3 + t2 + t and to recall that any flat knot that is slice
must have trivial u-polynomial. By [FKI], up to 6 crossings, 6.464 is the only known
flat knot that is algebraically slice but not slice. The only other potential example
is 6.540, which is algebraically slice but not known to be slice. In fact, 6.540 is the
only flat knot up to 6 crossings whose slice state is unknown.

6.464

3-fold covering

-4.2

Figure 3.6: The 3-fold covering of the flat knot 6.464

A slice obstruction arising solely from based matrices is regarded as a primary
obstruction. In [Tur04, Question 2], Turaev asks if one can detect non-slice flat knots
using the secondary obstructions, see [Tur04, Section 8.4]. Note that the flat knot
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[(2, 6), (1, 5), (3, 4)] [(1, 4), (2, 3)] [(2, 4), (1, 3)] [(3, 4), (1, 2)] [(4), (2, 3), (1)]

Figure 3.7: Fillings to show ga(6.464) = 0 (left) and ga(4.2) = 1 (right).

6.464 gives an example, and it is actually the first one in the tabulation of [FKI].
By [Tur04, Lemma 8.4.1], the arrows annihilated by the core element should form a
slice flat knot. Therefore, the flat knot 6.464 is seen to be non-slice by the secondary
obstructions.

There are additional examples of flat knots which are algebraically slice but not
slice in Figure 3.8. Each is seen to be non-slice using parity projection, and one of
them even has trivial primitive based matrix.

Example 3.20. The flat knot 7.25725 has trivial primitive based matrix, so it is
algebraically slice but not slice.

7.25725

2-fold
covering

5.34 7.28874

2-fold
covering

5.118

7.32821

2-fold
covering

5.47 7.42715

3-fold
covering

5.108

7.42736

3-fold
covering

5.77 7.43552

3-fold
covering

3.1

Figure 3.8: Six algebraically slice flat knots that are not slice
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3.6 Based matrices and cabling

In this section, we study the based matrices of the (p, q)-cables of flat knots.
Recall the (p, q)-cable of a flat knot is well defined up to flat knot equivalence

(see Definition 2.30). When p, q are coprime, the (p, q)-cable αp,q is again a flat knot
(rather than a flat link). Hence the primitive based matrices of αp,q are well-defined
flat knot invariants of α. We call such a matrix the (p, q)-cabled based matrix of α.

Proposition 3.21. If the flat knots α and β have isomorphic based matrices from
their diagrams, then α2,1 and β2,1 also have isomorphic based matrices.

Proof. By reordering the crossings, we assume α, β have the same based matrix. In
β2,1, the crossings either come in quadruple as A,B,C,D or alone as E in shown in
Figure 3.9. Let s, x, y ∈ H1(Σg) be corresponding to the whole knot, the quadruples
A,B,C,D and M,N,P,Q.

We use the same Carter surface Σg as an immersion representation for β2,1. Then
we obtain [E+] = s ∈ H1(Σg), [A

+] = [D+] = x ∈ H1(Σg), [M
+] = [O+] = y ∈

H1(Σg), [B
+] = [C+] = x+ s ∈ H1(Σg), [N

+] = [P+] = y + s ∈ H1(Σg). Therefore,

b([A+], [E+]) = b([B+], [E+]) = b([C+], [E+]) = b([D+], [E+]) = b(x, s),

b([A+], [M+]) = b([D+], [O+]) = b(x, y),

b([A+], [N+]) = b([D+], [N+]) = b([A+], [P+]) = b([D+], [P+])

= b(x, y) + b(y, s),

b([B+], [N+]) = b([C+], [N+]) = b([B+], [P+]) = b([C+], [P+])

= b(x, y) + b(x, s) + b(s, y).

Let t ∈ H1(Σg) be corresponding to the whole knot α2,1. Then we have t = 2s and
hence b([A+], t) = 2b([A+], s). Then, if flat knots α and β have isomorphic based
matrices from their diagrams, there exist a based matrix as constructed above that
belong to α2,1 and β2,1. Then they have isomorphic based matrices as well.

A B

DC

E

M N

OP

Figure 3.9: Crossings in (2, 1)-cable

Remark 3.22. Once we know a based matrix for α, then a based matrix for α2,1

can be constructed easily, as in shown in Figure 3.10.
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0 −CT

HC

C = [C, . . . , C], where dim(C) =dim(H).

0 0

00

−2CT −2CT −2CT −2CT

−CT −CT −CT −CT

2C

2C

2C

2C

C

C

C

C

H

H

H

H

H + C

H + C

H + C

H + C

H + C − CT

H + C − CT

H + C − CT

H + C − CT

H − CT

H − CT

H − CT

H − CT

Figure 3.10: Based matrix for α (left) and based matrix for α2,1 (right)

For example, we calculated the based matrix of the flat knot 4.1 in Remark 3.13.
Its (2, 1)-cable has based matrix




0 −6 −2 4 4 −6 −2 4 4 −6 −2 4 4 −6 −2 4 4 0
6 0 1 3 2 3 4 6 5 3 4 6 5 0 1 3 2 3
2 −1 0 2 1 0 1 3 2 0 1 3 2 −1 0 2 1 1

−4 −3 −2 0 0 −5 −4 −2 −2 −5 −4 −2 −2 −3 −2 0 0 −2
−4 −2 −1 0 0 −4 −3 −2 −2 −4 −3 −2 −2 −2 −1 0 0 −2
6 −3 0 5 4 0 3 8 7 0 3 8 7 −3 0 5 4 3
2 −4 −1 4 3 −3 0 5 4 −3 0 5 4 −4 −1 4 3 1

−4 −6 −3 2 2 −8 −5 0 0 −8 −5 0 0 −6 −3 2 2 −2
−4 −5 −2 2 2 −7 −4 0 0 −7 −4 0 0 −5 −2 2 2 −2
6 −3 0 5 4 0 3 8 7 0 3 8 7 −3 0 5 4 3
2 −4 −1 4 3 −3 0 5 4 −3 0 5 4 −4 −1 4 3 1

−4 −6 −3 2 2 −8 −5 0 0 −8 −5 0 0 −6 −3 2 2 −2
−4 −5 −2 2 2 −7 −4 0 0 −7 −4 0 0 −5 −2 2 2 −2
6 0 1 3 2 3 4 6 5 3 4 6 5 0 1 3 2 3
2 −1 0 2 1 0 1 3 2 0 1 3 2 −1 0 2 1 1

−4 −3 −2 0 0 −5 −4 −2 −2 −5 −4 −2 −2 −3 −2 0 0 −2
−4 −2 −1 0 0 −4 −3 −2 −2 −4 −3 −2 −2 −2 −1 0 0 −2
0 −3 −1 2 2 −3 −1 2 2 −3 −1 2 2 −3 −1 2 2 0




.

Corollary 3.23. If the flat knots α and β have homologous based matrices, then the
cabled knots α2,1 and β2,1 also have homologous based matrices.

Proof. By same notation in the proof of Proposition 3.21, if x is an annihilating
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element in Gα, then [B+], [C+] are a pair of complementary elements in Gα2,1 since
b([B+], ·) + b([C+], ·) = 2b(s, ·) = b(t, ·), and [A+], [D+] are annihilating elements in
Gα2,1 . If x is a core element in Gα, then [A+], [D+] is a complementary pair in Gα2,1

since b([A+], ·) + b([D+], ·) = 2b(s, ·) = b(t, ·), while [B+], [C+] are two core elements
in Gα2,1 since b([B+], ·) = b([C+], ·) = 2b(s, ·) = b(t, ·). If x, y are a complementary
pair in Gα, then [A+], [N+], [B+], [O+], [D+], [P+] and [C+], [M+] are four pairs in
Gα2,1 .

Note that by this argument, we can construct the based matrix of α2,1 solely
from a based matrix of α. On one hand, this also means that cabled based matrices
are no more powerful than the based matrix as a flat knot invariant. On the other
hand, this gives us some results on the cabling behavior of flat knots. Recall that
the r-th covering of a flat knot α, realized as ωα : S1 → Σ, is the lift of α to the
r-fold covering of Σ induced by the dual in H1(Σ;Z/r) of [ω(S1)].

Corollary 3.24. For any flat knot α and any odd integer q, the indices of α2,q are
in 2Z. Hence the 2-fold covering of α2,q is α2,q itself.

Corollary 3.25. For any flat knot α, if 2p and q are coprime, then the cabling α2p,q

is checkerboard colorable.

Corollary 3.26. Let p and q be coprime integers and let D1 and D2 be Gauss
diagrams of the two flat knots α and β. If the based matrices of D1 and D2 are
homologous, then αp,q and βp,q also have homologous based matrices.

Proof. We can calculate the based matrices of D
(p,q)
1 and D

(p,q)
2 as in the proof of

Proposition 3.21. If D1 and D2 have isomorphic based matrices, then the matrices
obtained by cabling are isomorphic.

The argument in the proof of Corollary 3.23 can be generalized to (p, q)-cable.
Note that the (p, q)-cabling gives a permutation in the p strands. Take one strand as
the 1-st strand, we can name the remaining strands 2, . . . , p-th strands in the order of
the permutation. An arrow e ∈ arr(D) will give p2 arrows {ei,j}1≤i,j≤p ⊂ arr(D(2,1)),
such that the tail of the arrow ei,j is on the i-th strand and the head of the arrow
ei,j is on the j-th strand; see Figure 2.12 for the correspondence between arcs and
arrow heads/tails.

Let x, y, s be [e+], [f+] and the core element in ḠD of D. Then [e+i,j] = x + ks,
where k ≡ j − i mod p and 0 ≤ k ≤ p − 1. If x is an annihilating element in ḠD,
then [e+i,j] + [e+j,i] = ns for i ̸= j and [e+i,j] + [e+j,i] = 0 for i = j. The two elements
[e+i,j], [e

+
j,i] are either a pair of complementary elements or two annihilating elements.

If x is a core element in ḠD, then for each k = 1, 2, . . . , n, there are n elements
in

{
[e+i,j]

}
that is equal to ks, so

{
[e+i,j]

}
consists of n(n−1)

2
pairs of complementary

elements and n core elements.
If x+ y = s then [e+i,j] + [f+

j,i] = ns, so the two elements [e+i,j], [f
+
j,i] form a pair of

complementary elements.

42



PhD Thesis - J. Chen; McMaster University - Mathematics

Proposition 3.27. The u-polynomial of α2,1 is given by uα2,1(t) = 4uα(t
2).

Proof. By the based matrix of α2,1 given in Remark 3.22, we obtain that uα2,1(t) =
4uα(t

2).

For example, since the flat knot 4.1 in Remark 3.13 has u-polynomial t3−2t2+ t,
Proposition 3.27 applies to show that its (2, 1)-cable has u-polynomial 4t6−8t4+4t2.

3.7 Realization of based matrices

In this section, we study the realization problem for based matrices of almost classical
flat knots.

Recall that in Figure 2.27, we saw that the connected sum of round flat knot
diagrams is not well defined. Recall also the set of permutant diagrams in Defini-
tion 2.36. In general, permutant diagrams need not have isomorphic based matrices.
For example, the diagrams D3, D4 in Figure 3.11 are permutant diagrams with prim-
itive based matrices given by:

T•(D3) =




0 −1 1 −2 0 2
1 0 1 −2 0 2
−1 −1 0 −2 0 2
2 2 2 0 1 2
0 0 0 −1 0 1
−2 −2 −2 −2 −1 0



, T•(D4) =

[
0
]
.

D1 D2 D3 D4

Figure 3.11: D3, D4 ∈ [D1#D2]

The next theorem below shows that permutant almost classical flat knots have
isomorphic based matrices. In particular, based matrices are unable to separate
permutant pairs of almost classical flat knots.

Proposition 3.28. Let D1, D2 be two almost classical diagrams with based matrices
T1, T2, respectively. Then every permutant diagram in [D1#D2] has based matrix

isomorphic to

[
T1 0
0 T2

]
.
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Proof. Since every almost classical Gauss diagram has all its indices equal to zero,
the based matrices T1 and T2 both have zeros in the first rows and columns.

The intersection number b(e, f) is equal to zero if e, f are associated to arrows
from D1, D2, respectively. Otherwise, the intersection number before and after the
connected sum are the same. 1 Therefore, every permutant diagram in [D1#D2] has

based matrix isomorphic to

[
T1 0
0 T2

]
.

Consequently, the based matrices of the Gauss diagrams in Figure 3.12 are iden-
tical.

Figure 3.12: Six distinct almost classical permutant flat knots with the same based
matrix.

Problem 3.29. What matrices can be realized as based matrices or primitive based
matrices for (almost classical) flat knots?

In Chapter 6, we recall Turaev’s construction of FG, the algebraic concordance
group of flat knots. Elements of FG are algebraic concordance classes of long flat
knots, and each can be represented by (primitive) based matrices. This situation is
roughly analogous to that of classical knots, where algebraic concordance classes can
be represented by Seifert matrices. To gain a better understanding of topological
concordance of flat knots, it would be helpful to know exactly which based matrices
occur, or to have necessary and sufficient criteria for a based matrix to occur as that
of a flat knot.

Let B be the set of all skew-symmetric matrices over Z. Recall that in Section
3.4, we defined BAC to be a subset of B of matrices whose first row and column
have all zero entries. Let B0

AC denote the subset of BAC consisting of matrices such
that the sum of entries in each column is equal to zero.

Example 3.30 shows there are matrices in B0
AC that cannot be realized as based

matrices of almost classical flat knots. It is an intriguing problem to better under-
stand the subtle conditions satisfied by based matrices of almost classical flat knots.
Any flat knot realizing the based matrix in Example 3.30 below is not algebraically
slice. In particular, if the matrix is realized by an almost classical flat knot, then
that would be an almost classical flat knot that is not slice and would thus answer
Problem 6.26. On the other hand, the evidence from the knot tables supports the
conjecture that every almost classical flat knot is slice.

1Referring to [Tur04, Section 12.5], the general case is reviewed in Equation (6.1).
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Example 3.30. There exists a based matrix in B0
AC that is not null-concordant.

Proof. The matrix below is a primitive based matrix in B0
AC , but it is not alge-

braically slice because its algebraic genus is 2.



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 1 0 0 0 0 0 −1 1 0 0
0 0 0 −1 1 0 −1 1 0 0 0 1 0 0 −1
0 0 1 0 −1 −1 1 0 0 0 0 −1 −1 1 1
0 1 −1 1 0 0 0 −1 1 −1 1 0 0 0 −1
0 −1 0 1 0 0 0 0 −1 0 1 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 −1 0 0 0 1
0 0 −1 0 1 0 0 0 0 1 −1 1 0 −1 0
0 0 0 0 −1 1 0 0 0 0 0 −1 1 0 0
0 0 0 0 1 0 0 −1 0 0 −1 1 0 −1 1
0 0 0 0 −1 −1 1 1 0 1 0 −1 −1 1 0
0 1 −1 1 0 0 0 −1 1 −1 1 0 0 0 −1
0 −1 0 1 0 0 0 0 −1 0 1 0 0 0 0
0 0 0 −1 0 0 0 1 0 1 −1 0 0 0 0
0 0 1 −1 1 0 −1 0 0 −1 0 1 0 0 0




Example 3.31. There exists T ∈ B0
AC , such that T is a primitive based matrix of

a flat knot that is not almost classical. Moreover, there exists T ∈ BAC , such that
T is a primitive based matrix of a flat knot that is neither almost classical nor slice.

7.45422 8.1038682 8.1058826

Figure 3.13: Three non-AC flat knots with primitive based matrices in BAC

Proof. There are 5 non-AC flat knots with 7 crossings whose primitive based matrices
are inBAC , and 42 non-AC flat knots with 8 crossings whose primitive based matrices
are in BAC . This includes the three flat knots in Figure 3.13. For the flat knot
7.45422, its based matrix and primitive based matrix are




0 0 0 0 1 0 −1 0
0 0 0 0 1 0 −1 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 −1 0 0
−1 −1 0 0 0 0 −1 0
0 0 0 1 0 0 0 0
1 1 0 0 1 0 0 0
0 0 1 0 0 0 0 0




and




0 0 0 0 0
0 0 0 0 −1
0 0 0 −1 0
0 0 1 0 0
0 1 0 0 0



,
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respectively. Note that the primitive based matrices for the flat knots 7.45422,
8.1038682 and 8.1058826 lie in BAC but not in B0

AC . Figure 2.26 shows that 7.45422
is a slice knot. On the other hand, the genus of the based matrices for 8.1038682
and 8.1058826 are both 1, so these flat knots are not algebraically slice.

Remark 3.32. We list criteria for a matrix to occur as the based matrix of a flat
knot; see [Tur04] for more details. For a based matrix T ∈ B to occur as a based
matrix of a flat knot:

1. the sum of the entries in the first row and column of T should equal zero,
2. every entry of T should be strictly less than dim(T )− 1.

For a matrix T ∈ BAC to occur as the based matrix of an almost classical flat knot:

1. the sum of the entries in any row or column of T should equal zero,
2. every entry of T should be strictly less than 1

2
(dim(T )− 1).

Conjecture 3.33. If T ∈ B0
AC is realized as a (primitive or not) based matrix of a

flat knot (not necessarily almost classical), then T is null-concordant.

The core of this question is to find finer criteria for based matrices to be realized
from flat knots. If this conjecture is true, then the matrix in Example 3.30 is not a
based matrix of any flat knot.
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Chapter 4

The flat arrow polynomial

In this chapter, we define the flat arrow polynomial, and we discuss a skein theoretic
formula for the leading term in the flat arrow polynomial. We also combine cabling
with the flat arrow polynomial to produce more powerful invariants of flat knots.

4.1 Definition and basic properties

In this section, we define the flat arrow polynomial of a flat knot α. It is closely
related to the arrow polynomial of virtual knots, which was originally introduced by
Dye and Kauffman as a powerful generalization of the Jones polynomial defined for
virtual knots, see [Jon85,Kau99,DK09].

The flat arrow polynomial is defined by applying the skein relation of Figure 4.1(i)
to each flat crossing of a flat knot diagram D. If α has n crossings, then this gives
2n states. The solid triangles in Figure 4.1(ii) are called cusps and follow the rule
of reduction as shown. For each state S, after reduction, each loop in S can be
assigned as in Figure 4.1(iii). Denote by ⟨S⟩ the product of the image in polynomial
ring Z[K1, K2, . . . , Kn] of all loops in S.

〈 〉
=

〈 〉
+
〈 〉

(i)

〈 〉
=

〈 〉
(ii)

→ 1, → K1 , →K2 ,
. . . →Kn (iii)

Figure 4.1: State sum model for the flat arrow polynomial

Definition 4.1. For a flat knot or link diagram D, the flat arrow polynomial is
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defined to be
A(D) =

∑

S

(−2)|S|−1⟨S⟩,

where the sum is over all states S and |S| denotes the number of loops in S.
The (normalized) arrow polynomial of flat knot α is defined to be

Ā(α) = (−1)cr(D)A(D),

where D is a flat knot diagram of α.

Proposition 4.2. The normalized flat arrow polynomial is an invariant of flat knots.

Proof. If two flat knot diagrams are homotopic then they are related by a finite
sequence of flat Reidemeister moves. Observe that VR1,2,3 and FR4 do not change
the calculation. As mentioned in Remark 2.12, we only need to show the flat arrow
polynomial is invariant under FR1(a,b), FR2(a) and FR3(a) for oriented flat knot
diagrams. The calculation details are shown below.

⟨ ⟩ = ⟨ ⟩+ ⟨ ⟩
A( ) = −2⟨ ⟩+ ⟨ ⟩ = −⟨ ⟩ = −A( )

⟨ ⟩ = ⟨ ⟩+ ⟨ ⟩
A( ) = −2⟨ ⟩+ ⟨ ⟩ = −⟨ ⟩ = −A( )

⟨ ⟩ = ⟨ ⟩+ ⟨ ⟩+ ⟨ ⟩+ ⟨ ⟩
A( ) = ⟨ ⟩+ ⟨ ⟩+ ⟨ ⟩ − 2⟨ ⟩ = ⟨ ⟩ = A( )

⟨ ⟩ = ⟨ ⟩+ ⟨ ⟩+ ⟨ ⟩+ ⟨ ⟩+ ⟨ ⟩+ ⟨ ⟩+ ⟨ ⟩+ ⟨ ⟩

A( ) = ⟨ ⟩+ ⟨ ⟩+ ⟨ ⟩ − 2⟨ ⟩+ ⟨ ⟩+ ⟨ ⟩+ ⟨ ⟩+ ⟨ ⟩

⟨ ⟩ = ⟨ ⟩+ ⟨ ⟩+ ⟨ ⟩+ ⟨ ⟩+ ⟨ ⟩+ ⟨ ⟩+ ⟨ ⟩+ ⟨ ⟩

A( ) = ⟨ ⟩+ ⟨ ⟩+ ⟨ ⟩ − 2⟨ ⟩+ ⟨ ⟩+ ⟨ ⟩+ ⟨ ⟩+ ⟨ ⟩

A( ) = A( )

Therefore, we conclude that the normalized flat arrow polynomial is an invariant
of flat knots.
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Proposition 4.2 can also be proved using the arrow polynomial of virtual knots
and shadow projection from virtual knots to flat knots. The arrow polynomial is
an invariant of virtual knots taking values in Z[a, a−1, K1, K2, . . . , Kn] [DK09]. Let
K be a virtual knot and let π be the shadow map from virtual knots to flat knots
(cf. Definition 2.20). Hence the normalized flat arrow polynomial is an invariant of
flat knots.

Proposition 4.3. The following statements are true.

1. An n crossing diagram of the trivial flat knot has flat arrow polynomial (−1)n.
2. Let K be a virtual knot with arrow polynomial f(K) ∈ Z[a, a−1, K1, K2, . . . , Kn]

(c.f. [DK09]). Then Āπ(K) = f(K)|a=1.
3. For any flat knot α, we have Ā(α)|Ki=1 = 1.

Proof. The first claim follows immediately from Proposition 4.2.
The shadow projection π equalizes the over and under crossings in virtual knot

diagrams. Observe that in the definition of arrow polynomial of virtual knots, chang-
ing the over crossing to under crossing only changes the a to a−1. By the definition
of flat knot arrow polynomial, by setting a = 1 of the arrow polynomial of a virtual
knot K, we obtain Ā(π(K)).

By [Dye16, Equation 10.8, 10.9], the Jones polynomial of a virtual knot is ob-
tained from its arrow polynomial by setting all Ki’s to be 1. Moreover, it is well
known that assigning a = 1 sends all Jones polynomials to (−2)n−1, where n is
the number of the components; see [Dye16, Theorem 10.1]. Therefore, we have
Ā(α)|Ki=1 = 1.

The operation of connected sum for virtual and flat knots is introduced in Section
2.8. The following example shows that the flat arrow polynomial is not multiplica-
tive under connected sum. For example, the flat knots 4.5 and 6.132 in Figure 4.2
are connected sums of two diagrams of the flat unknot. However, their flat arrow
polynomials are

Ā(4.5) = −4K2
1 + 2K2 + 3,

Ā(6.132) = −16K4
1 + 8K2

1K2 + 8K2
1 + 1.

If the flat arrow polynomial were multiplicative, then we would have Ā(4.5) =
Ā(6.132) = 1. Since that is not the case, we conclude that Ā(α) is not multiplicative
under connected sum.

Moreover, permutant diagrams can have different flat arrow polynomials. The
flat knots 6.139 and 6.549 in Figure 4.2 are permutant since both can be realized as
D#D′, where for minimal crossing diagrams D and D; of −3.1 and 3.1, respectively.
However, their flat arrow polynomials are

Ā(6.139) = 4K2
1K2 − 4K1K3 +K4,

Ā(6.549) = 1.
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Observe that the flat arrow polynomial of D is nontrivial, indeed Ā(3.1) = 2K2
1−K2.

The same is true for D′. However, their connected sum 6.549 = D#D′ has trivial
flat arrow polynomial. These examples also show that the constant term of the flat
arrow polynomial is not multiplicative under connected sum.

4.5 6.132 6.139 6.549

Figure 4.2: Flat arrow polynomial is not multiplicative under connected sum.

4.2 Free equivalence, checkerboard colorability, and

almost classicality

In this section, we relate checkerboard colorability and almost classicality of flat
knots. When the flat knot is almost classical, we show that its flat arrow polynomial
is trivial, and when it is checkerboard colorable, we show its flat arrow polynomial
has odd constant term.

We begin by defining the notion of free equivalence of flat knots.

Definition 4.4 ([Tur08a]). Two flat knots are said to be free-equivalent if they are
related by the following relation. The set of free knots consists of flat knots modulo
free-equivalence.

free free

Figure 4.3: Free-equivalence on a flat knot diagram and a flat Gauss diagram

Note that all flat knots up to crossing number 4 are free-equivalent to the unknot.
In [Man12], Manturov defined a non-negative integer-valued invariant L of free knots
(cf. [CFG+20, Section 6]). It is an obstruction to the knot being freely slice. There
are examples of free knots with nontrivial L-invariant. Figure 4.4 shows two flat
knots with 5 crossings that are nontrivial as free knots. In fact, they are not freely
slice.

Definition 4.5. A flat Gauss diagram is said to be of alternating pattern if its
underlying OU-word is “OUOU · · · OU”.
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L(5.19)=4 L(5.36)=4

Figure 4.4: Flat knots that are not freely trivial

Note that this definition is adapted from the definition of alternating pattern for
virtual knot in [Kar18].

Lemma 4.6 ([Kar18]). Every flat knot with alternating pattern is almost classical.

Lemma 4.7. Any flat knot free-equivalent to a checkerboard colorable flat knot is
also checkerboard colorable.

Proof. We consider the effect on the arrow index n(f) of applying a free-equivalence
to an arrow e. Suppose first that e ̸= f . If f+ contains both eO and eU , then the
index n(f) does not change. The same is true if f+ does not contain either eO or eU .
If f+ contains only one of eO and eU , then the index n(f) changes by ±2. In case
e = f , it is easy to verify that the index n(e) changes by sign. Therefore, the parity
(even /odd) of an arrow is preserved under free-equivalence, and whether a chord is
even or odd is well-defined for free knots. In particular, if two flat knot diagrams
D1, D2 are free-equivalent and if all the arrows of D1 are even (i.e., if n(e) ≡ 0 mod 2
for all e ∈ arr(D1)), then the same must be true for D2.

Lemma 4.8. A flat knot is almost classical if and only if it has a diagram (not
necessarily minimal) of alternating pattern.

Proof. An almost classical flat knot represents an immersed loop bounding an im-
mersed oriented surface F in a Carter surface. At the cost of increasing the crossing
number, we can turn F to a disk attached by finitely many bands, where crossings
only occur in quadruples when a band crosses another band. In this way, F has
only one side facing to the positive side of the Carter surface. By this construction,
the crossings are alternating. Conversely, by Lemma 4.6, a Gauss diagram with al-
ternating pattern “OUOU · · · OU” has only chords of index zero and hence is almost
classical.

The alternating pattern cannot always be chosen to have minimal crossing num-
ber. For example, the almost classical flat knots ac8.16 and ac10.1088 in Figure 4.5
do not have minimal crossing alternating pattern diagrams.

Lemma 4.9. A flat knot is checkerboard colorable if and only if it has a Gauss
diagram that is free-equivalent to a diagram of alternating pattern.
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O1O2U3O4U2U1O5O3U6U7O8U5O7O6U4U8 O1O2U3U4O5O6U7U8O4O3U9U10O8O7U2U1O10O9U6U5

Figure 4.5: Almost classical flat knots ac8.16 and ac10.1088.

Proof. A flat checkerboard colorable diagram lifts to checkerboard colorable virtual
diagrams. By [Kam02, Lemma 7], a checkerboard colorable virtual diagram can be
made alternating by crossing changes, which does not change the flat knot type it
projects to. Therefore, for every flat checkerboard colorable diagram, there exists
an alternating virtual diagram D projecting to it. Apply free-moves at all negative
crossings of flat diagram π(D), we obtain a flat diagram of alternating pattern.

Lemma 4.10. If flat knot α is almost classical, then A(α) = 1.

Proof. We know α can be represented as the boundary of an immersed Seifert surface
F ↬ Σ and we can alter the singular points so that we get an embedding F → Σ×I,
whose boundary represents a virtual knot, say K. By this construction, we have K is
also almost classical (also called null-homologous) π(K) = α, where π is the shadow
projection. By [Mil23, Theorem 3.21], if the virtual knot Kis almost classical then its
arrow polynomial is the same as its Jones polynomial. Then by Proposition 4.3-(3),
Ā(α) = 1.

We use C(D) to denote the constant term of A(D) for a flat knot diagram D,
and we use C̄(α) for the constant term of Ā(α) for a flat knot α. If D is a diagram
with n crossings representing α, then these are related by C̄(α) = (−1)nC(D).

Theorem 4.11. If the flat knot α is checkerboard colorable, then C(α) ≡ 1 mod 2.

Proof. By Lemma 4.8, Lemma 4.9 and Lemma 4.10, α is obtained from some almost
classical Gauss diagram D with C(D) = ±1 by free-move or (arrow-change in Gauss
diagram). Observe that when we apply one free-move in Figure 4.3, the state res-
olution described in Figure 4.1 does not change except that the cusps in (1) are in
opposite directions. If the state S has more than two loops, then (−1)n(−2)|S|−1⟨S⟩
either has zero constant term or (−2)|S|−1. If the state S has only one loop, then
the two cusps are in the same loop, then either the number of cusps after deduction
is either changed by at most ±4. However, by [Mil23, Theorem 3.31], the cusps
number before and after a free-move can be only be 8n: since before and after the
move the flat knot remains checkerboard colorable and thus they both lift to some

52



PhD Thesis - J. Chen; McMaster University - Mathematics

checkerboard colorable virtual knots which has only K4n for single-loop states map-
ping to monomials in their arrow polynomials. Therefore, the constant term of an
checkerboard colorable knot remains an odd number.

3.1 4.2 4.6

Figure 4.6: Three non-checkerboard-colorable flat knots

The flat knots shown in Figure 4.6 have C̄(3.1) = 0, C̄(4.2) = 2, C̄(4.6) = 2.
Since these are all even, Theorem 4.11 applies to show that these flat knots are not
checkerboard colorable.

Remark 4.12. For all flat knots up to 7 crossings, one can check that C̄(α) is odd
whenever α is slice (refer to Definition 2.32. for the definition of sliceness). However,
there exist flat knots β that are slice such that C̄(β) is even. For example, the flat
knot 8.11946 in Figure 4.7 is slice and has Ā(8.11946) = 12K3

1 + 4K2
1K2 + 4K2

1K3 −
12K2

1 + 4K1K
2
2 − 20K1K2 − 4K1K3 − 4K2K3 + 6K2 + 4K3 + K4 + 6 and hence

C̄(8.11946) = 6.

Figure 4.7: Flat knot 8.11946 and saddle move to slice it

4.3 The cabled flat arrow polynomial

In this section, we combine the cabling operation with the flat arrow polynomial to
produce stronger invariants for flat knots. These resulting invariants are analogues
of the colored Jones polynomials for classical knots. Cabling can often be used to
produce powerful knot and link invariants, and we will see that is true for flat knots.

We give two examples to illustrate how cabling produces more powerful invariants.
First consider the flat knot α = 4.4. It has trivial flat arrow polynomial but its 2-
strand cable α2 has flat arrow polynomial A(α2) = −128K4

2 +128K2
2K4−32K2

4 +30.
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Now consider the flat knots α = 4.1 and β = 4.3. Both of these flat knots have
flat arrow polynomial A(α) = A(β) = −2K1K2+K1+K3+1. Their 2-strand cables
have flat arrow polynomials

A(α2) = 128K2
1K

2
2 + 48K2

1K2 − 88K2
1 + 64K1K

3
2K3 + 224K1K2K3

+ 16K1K3K4 − 32K4
2 − 64K2

2K
2
3 − 8K2

2K
2
4 + 8K2

2K4 − 54K2
2

+ 16K2K3K5 + 8K2K4K6 − 88K2
3 − 12K2

4 − 2K2
6 + 90,

and

A(β2) = − 72K2
1 + 96K1K2K3 + 48K1K3K4 − 8K2

2K
2
4 + 40K2

2K4

− 86K2
2 + 8K2K4K6 − 72K2

3 − 44K2
4 − 2K2

6 + 90.

Although the flat knots α and β are not distinguished by the flat arrow polynomials,
they are distinguished by their 2-strand cabled flat arrow polynomials. These exam-
ples show that under cabling, the flat arrow polynomial produces a more powerful
invariant of flat knots.

However, the complexity of calculating the flat arrow polynomial is exponential
in the crossing number, and the crossing number increases rapidly under cabling. We
use the divide-and-conquer method described in [KAT1] by Bar-Natan to calculate
the 2-strand cable. However, it is impractical to calculate the flat arrow polynomial
of higher cables. An alternative which is much faster and quite effective is to calculate
only the constant term C̄(α) of the flat arrow polynomial. As an invariant, C̄ of the
cables is quite powerful. For example, by calculating the constant term C̄ of the
3-strand cables, we are able to distinguish the flat knots in Figure 4.8.

C̄(α3) = 74297683 C̄(β3) = 75299554

Figure 4.8: Permutant pair with same ϕ-invariants, Ā(α), Ā(α2) but separated by
C̄(α3).

Recall the attempt we have made to relate the flat arrow polynomial or its con-
stant term to sliceness in Remark 4.12. The calculation we have done in [FKI]
suggests the conjecture below.

Conjecture 4.13. If the flat knot α is slice, then C̄(α2) ≡ 2 mod 4.
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4.4 A skein formula

In this section, we derive a skein formula for the constant term in the flat arrow
polynomial.

Proposition 4.14. For flat knot (or link) Gauss diagrams, it holds that

C( ) = C( ) + C( )− C( ), (4.1)

C( ) = C( ) (4.2)

C( ) = C( ), (4.3)

C( ) = C( ). (4.4)

Proof. The state sum for the Gauss diagrams in Equation (4.1) is given below. Since
C(D) = A(D)|Ki=0, we obtain the equation in the fourth line. Representing the
fourth line in terms of Gauss diagrams gives Equation (4.1).

C(           ) 

A(           ) = <          >+<          >+<         >+< >

= C(          ) +

A(          ) =

C(        )  - C(          )

 = K1 <          >+<          >+

<          >+<        >

<         >+<         >

<         >+<         >A(        ) =
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If we replace the left hand side of (1) by C( ), the right hand side stays the
same, which gives Equation (4.2).

To obtain Equation (4.3) and (4.4), we can switch two arrows (also called chords)

on and . Then apply FR2 (a).

The flat arrow polynomial of Gauss diagram A( ) can be calculated as below
(in terms of flat knot diagram).

A(           ) = <          >  + <          > + <         >  + <         >

=<       >  + <          > + <         > - 2<          >

=<       > 

Corollary 4.15. The C(D) of flat link Gauss diagram in Figure 4.9 (left) is equal
to n mod 2.

Corollary 4.16. The C(D) of flat Gauss diagram in Figure 4.9 (right) is given in
the following table.

C(D) n ≡ 0 mod 4 n ≡ ±1 mod 4 n ≡ 2 mod 4
m ≡ 1 mod 2 −1 −1 1
m ≡ 0 mod 2 1 0 1

.

..
n
.
..

...
n

... m

Figure 4.9: Gauss diagrams

For example, as shown in Figure 4.10, the flat knot 4.1 has m = 2, n = 2, so
C̄(4.1) = 1; the flat knot 5.1 has m = 2, n = 3, so C̄(5.1) = 0; the flat knot 5.3 has
m = 3, n = 2, so C̄(5.3) = −1; the flat knot 5.12 has m = 4, n = 1, so C̄(5.12) = 0.

Along with Definition 4.1, we can calculate C̄(α) in much fewer steps than A(α).
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4.1 5.1 5.3 5.12

Figure 4.10: Flat knots 4.1, 5.1, 5.3, and 5.12

4.5 Distinguishing flat knots

Using 2-strand cabled arrow polynomials alone, we can distinguish flat knots up to
4 crossings completely. Combined with the ϕ-invariant, we can further distinguish
flat knots completely up to 6 crossings and with just 6 pairs of 7-crossing knots not
separated, see Table 4.1.1

Crossings # Flat knots ϕ A(α) A(α2) A(α2), C(α3) and ϕ

3 1 0 0 0 0
4 11 0 10 0 0
5 120 8 111 2 0
6 2086 74 1919 10 0
7 46233 1375 42163 — 12

Table 4.1: Number of non-distinguished flat knots using the invariant(s)

Specifically, there are two 4-crossing flat knots, eight 5-crossing flat knots, 106
6-crossing flat knots, and 674 7-crossing flat knots that are not distinguished from
the unknot by A(α).

The first pair of flat knots that cannot be distinguished by the 2-strand cabled
arrow polynomial are 5.112 and 5.113:

A(5.1122) = A(5.1122) = −64K4
1 + 144K2

1K2 − 80K2
1 − 56K2

2 + 54

5.112 5.113

Figure 4.11: Flat knots 5.112 and 5.113

1When cr(α) ≥ 7, we only calculated A(α2), C(α3) if they are not distinguished by other invari-
ants. Some calculation of C(α3) of some 7-crossing flat knots are not finished due to the workload
of the calculation.
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We know that the arrow polynomial and cabled arrow polynomials of any almost
classical flat knot are trivial. To distinguish almost classical knots, we rely on the
primitive based matrices. However, there exist nontrivial flat knots with trivial
primitive based matrices. For example, the flat knot ac8.19 in Figure 4.12.

In fact, every invariant of flat knots studied up to now is trivial for the flat knot
ac8.19 (also called 8.1241248). This flat knot, O1O2U3U1O4O3U5U4O6O5U7U6O8O7U2U8,
is the 19-th 8-crossing almost classical knot and 1241248-th 8-crossing flat knot; see
Remark 2.17 and Figure2.14 for how the flat knots are ordered in the tabulation.
One can find the knot on [FKI] by 8.1241248.) The monotonicity algorithm is the
only way to deduce that ac8.19 is nontrivial as a flat knot.

O1O2U3U1O4O3U5U4O6O5U7U6O8O7U2U8

Figure 4.12: Almost classical flat knot ac8.19 has trivial primitive based matrix.

Problem 4.17. Find a flat knot invariant that distinguishes ac8.19 from the flat
unknot.

In the next chapter, we will introduce new invariants of flat knots and use them
to address this question.

There are other examples of almost classical flat knots with trivial primitive based
matrices as shown in Table 4.2.

Almost classical name Gauss word
ac10.174 O1O2U3O4U2O5U4O6U7O3U6U8O9O7U5U10O8U1O10U9

ac10.175 O1O2U3O4U2O5U6O7U5O3U7U8O9O6U4U10O8U1O10U9

ac10.561 O1O2U3O4U2O5U4U6O7O8U5O9U8O3U9U10O6U1O10U7

ac10.760 O1O2U3O4U5O3U6U1O7O6U4U8O9O5U10U7O8O10U2U9

ac10.1103 O1U2O3U4O2U5O6U1O4U6O7U8O9U7O10U3O8U10O5U9

ac10.1160 O1U2O3U4O2U5O6U3O7U8O5U7O9U1O8U10O4U9O10U6

ac10.1170 O1U2O3U4O2U5O4U6O7U3O5U8O9U1O6U9O10U7O8U10

ac10.1310 O1U2O3U4O2U5O4U6O5U7O6U8O9U3O7U10O8U1O10U9

ac10.1454 O1U2O3U4O2U5O4U6O7U8O5U9O8U3O9U10O6U1O10U7

ac10.1643 O1U2O3U4O2U5O6U7O4U8O5U9O7U1O8U10O9U3O10U6

ac10.1657 O1U2O3U4O5U6O2U7O4U8O6U9O7U10O8U1O9U3O10U5

Table 4.2: Almost classical knots with 10-crossings and trivial primitive based matrix

The invariants introduced in the next chapter can also be used to distinguish
these flat knots from the flat unknot.
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4.6 Open questions

We conclude this chapter with a few open problems.

Problem 4.18. Is there a bigraded invariant that categorifies the flat arrow polyno-
mial, cf. [DKM11]?

Problem 4.19. Can one use the flat arrow polynomial to extract slice obstructions
for flat knots?

Problem 4.20. Which polynomials can be realized as flat arrow polynomials of flat
knots?

Problem 4.21. Is there a polynomial-time algorithm for computing the constant
term C(D) via skein theory; see Section 4.4?
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Chapter 5

The flat Jones-Krushkal
polynomial

In this chapter, we define the flat Jones-Krushkal polynomial, as well as a normal-
ization and enhancement of it. We give a matrix-based algorithm to calculate these
polynomials, and we apply them to the problem of distinguishing flat knots.

5.1 Definition

We begin by introducing the flat Jones-Krushkal polynomial, which is defined for
flat knot diagrams on closed surfaces. It is closely related to the homological Jones
polynomial for links in thickened surfaces, which was introduced by Krushkal in
[Kru11] and further studied in [BK22].

Let D be a flat knot diagram with n crossings on a closed surface Σ. By applying
the skein relation of Figure 5.1(1) to each flat crossing of D, we obtain 2n states.
The states can be indexed by a map {1, . . . , n} → {0, 1}. Denote this set of states
by S.

“0” smoothing “1” smoothing

Figure 5.1: Two types of smoothings

Each state S ∈ S contains simple closed loops embedded in Σ. The embedding
induces a map i∗ : H1(S;Z/2) → H1(Σg;Z/2).

Definition 5.1. The homological Kauffman bracket of state S is denoted by ⟨D |S⟩Σ
and given by

⟨D |S⟩Σ = (−2)k(S)zr(S),

where
k(S) = dim(ker(i∗ : H1(S;Z/2) → H1(Σg;Z/2))),
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r(S) = dim(im(i∗ : H1(S;Z/2) → H1(Σg;Z/2))).

Given a flat knot diagram D on the closed surface Σ, the flat Jones-Krushkal poly-
nomial is defined by

JD(z) = (−1)cr(D)
∑

S∈S
⟨D |S⟩Σ = (−1)cr(D)

∑

S∈S
(−2)k(S)zr(S).

Proposition 5.2. If D is checkerboard colorable, then 2|JD. If D is not checkerboard
colorable, then z|JD.

Proof. Let ωD(S
1) be the flat knot diagram on Σ. Then the sum of loops in each

state S of ωD(S
1) is equal to [ωD(S

1)] ∈ H1(Σ;Z/2). Therefore, if D is checkerboard
colorable, then k(S) > 0 for each state. If D is not checkerboard colorable, then
r(S) > 0 for each state.

Note that when z|JD, the flat Jones-Krushkal polynomial has zero constant term,
i.e., JD(0) = 0.

Now we show JD(z) is an invariant under FR3 moves in Figure 2.10 for flat
diagrams on the same surface.

Proposition 5.3. Let D,D′ be two flat diagram on surface Σ, if D,D′ are related
by one FR3 move, then JD(z) = JD′(z).

Proof. The calculation details are given below.

⟨ ⟩Σ
= ⟨ ⟩Σ + ⟨ ⟩Σ + ⟨ ⟩Σ + ⟨ ⟩Σ + ⟨ ⟩Σ + ⟨ ⟩Σ + ⟨ ⟩Σ + ⟨ ⟩Σ
= ⟨ ⟩Σ + ⟨ ⟩Σ + ⟨ ⟩Σ − 2⟨ ⟩Σ + ⟨ ⟩Σ + ⟨ ⟩Σ + ⟨ ⟩Σ + ⟨ ⟩Σ
= ⟨ ⟩Σ + ⟨ ⟩Σ + ⟨ ⟩Σ + ⟨ ⟩Σ + ⟨ ⟩Σ
= ⟨ ⟩Σ + ⟨ ⟩Σ + ⟨ ⟩Σ − 2⟨ ⟩Σ + ⟨ ⟩Σ + ⟨ ⟩Σ + ⟨ ⟩Σ + ⟨ ⟩Σ
= ⟨ ⟩Σ + ⟨ ⟩Σ + ⟨ ⟩Σ + ⟨ ⟩Σ + ⟨ ⟩Σ + ⟨ ⟩Σ + ⟨ ⟩Σ + ⟨ ⟩Σ
= ⟨ ⟩Σ

Proposition 5.4. Let D,D′ be two minimal genus diagrams of flat knot α. Then
JD(z) = JD′(z).
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Proof. By [IMN11, Theorem 3.2], any two minimal genus diagrams are related by
homotopy on the surface, namely, the FR1,FR3-moves and the FR2 moves that do
not change the genus.

We can check that the FR1 move changes the sign of the homological Kauffman
bracket:

⟨ ⟩Σ = ⟨ ⟩Σ + ⟨ ⟩Σ
= −2⟨ ⟩Σ + ⟨ ⟩Σ
= −⟨ ⟩Σ.

Since the FR1-move also changes the number of the crossings by one, we conclude
that the flat Jones-Krushkal polynomial does not change under the FR1 move.

For the FR2 move, we can calculate the homological Kauffman bracket as below.

⟨ ⟩Σ = ⟨ ⟩Σ + ⟨ ⟩Σ + ⟨ ⟩Σ + ⟨ ⟩Σ
= ⟨ ⟩Σ + ⟨ ⟩Σ + ⟨ ⟩Σ − 2⟨ ⟩Σ
= ⟨ ⟩Σ.

Therefore, the flat Jones-Krushkal polynomial is an invariant for minimal genus
diagrams of flat knots.

Definition 5.5. The flat Jones-Krushkal polynomial Jα(z) of flat knot α is defined
as JD(z) where D is a minimal genus diagram of α.

The minimal genus is essential for JD(z) to be well-defined. For example, both
the Gauss diagrams below represent the unknot. But the left one has JD(z) = 1 and
the right one has JD′(z) = 2z + 2.

Figure 5.2: Two Gauss diagrams of the unknot

Corollary 5.6. Let D,D′ be two minimal crossing Gauss diagrams of the same flat
knot α. Then JD(z) = JD′(z) = Jα(z).

Proof. By [IMN11, Corollary 3.1], a minimal crossing Gauss diagram of α achieves
its minimal flat genus, and two minimal crossing diagrams D,D′ of the same flat knot
are related by a finite sequence of FR3 moves. Therefore, their flat Jones-Krushkal
polynomials satisfy JD(z) = JD′(z).
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In [FKI], each flat knot type is represented by a minimal crossing Gauss dia-
gram. One can directly use that Gauss diagram to calculate the flat Jones-Krushkal
polynomial.

Note that by [BR21], a minimal crossing flat link diagram also achieves its min-
imal flat genus. In Section 1.3 we referred to the results that collectively showed
monotonicity hold for nonparallel flat links. Therefore, one can calculate the flat
Jones-Krushkal polynomial of nonparallel flat links using minimal crossing diagrams.

5.2 Matrix-based calculation

One can compute the flat Jones-Krushkal polynomial by drawing all the states on
the Carter surface realizing a minimal diagram of α; refer to [BK22] for detailed
calculations on surfaces. In this section, we give a matrix-based algorithm to calculate
the flat Jones-Krushkal polynomial, which is easy to code up and more time-efficient
even for hand calculation.

In Definition 3.4, we defined the based matrix of a representation ωD : S1 ↬ Σ
of a Gauss diagram D. The set Ḡ in Definition 3.4 is a generator set of H1(Σ;Z/2);
see [Tur04, Section 4.2]. Notice that the set Ḡ may contain redundant elements. Let
L ⊂ Ḡ be a reduced generating set of H1(Σ;Z/2), and with respect to which we
obtain a mod 2 based matrix, say M .

Now consider a parallel copy ωD′(S1) of the ωD(S
1) as in Figure 5.3. Assume

ωD(S
1) has n crossings, then so does ωD′(S1). The crossings cut ωD′(S1) in to 2n

arcs, denoted by arc(D′). Every arc in arc(D′) has an intersection number with the
loops in L.

Figure 5.3: A parallel copy (blue) of ωD(S
1) (red)

There are two types of smoothings: the oriented and non-oriented smoothings in
Figure 5.1. Then at each arrow on a Gauss diagram we can apply the smoothing
accordingly. If the smoothing in Figure 5.4 is oriented then the arcs a,d are connected
and so are the arcs b,c. If the smoothing is non-oriented, then the arcs a,c are
connected and so are the arcs b,d.

We obtain a set of loops for each state S by applying smoothing at all crossings
accordingly. Each loop consists of some arcs in arc(D′). Then we can get the inter-
section numbers of these loops with L. This gives a mod 2 matrix N representing
these loops in terms of the dual set of L. Then r(S) = rank(N), k(S) = nullity(N).
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ab

c d

Oriented smoothing → (a,d),(b,c).

Non-oriented smoothing → (a,c),(b,d).

Figure 5.4: An arrow of a Gauss diagram

(1)

(2)

(3)

(4)

(5)

(6)

Figure 5.5: Six arcs on the minimal diagram of 3.1

For example, the flat knot 3.1 in Figure 4.6 has flat genus 2. Label the arrows
from 12 o’clock by e1, e2, e3. Then the minimal diagram represents an immersion in a
genus 2 surface Σ, so L contains 4 elements: the core element and the loops starting
and ending at each crossing. The mod 2 intersection matrix is

M =




0 0 1 1
0 0 0 1
1 0 0 0
1 1 0 0


 .

Then we label the arcs (1), . . . , (6) as shown in Figure 5.5. Make the parallel copy
as in Figure 5.3. Then the mod 2 intersection number between arcs and the generator
loops follows similarly the way to calculate the based matrix: the intersection number
is given by the number of arrows starting in the arc and ending in the loop minus
the number of arrows starting in the loop and ending in the arc. For example, in
Figure 5.6, applying the rule described in Figure 5.3 gives that there is only one
arrow starting from and no arrow ending in the arc (1) and the arrow starting from
(1) does not end in the loop [e+1 ]. Therefore, the mod 2 intersection number between
arc (1) and [e+1 ] is 0.

Then the mod 2 intersection numbers between these arcs and the generating loops
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Figure 5.6: The mod 2 intersection number between arc (1) and [e+1 ] is 0.

is given by

A =




1 0 1 1
1 0 0 0
0 0 1 0
1 1 1 0
1 1 0 0
0 0 0 0



.

Denote the oriented and non-oriented smoothing as “0” and “1”, respectively.
Recall that in Figure 5.4, we illustrated how to obtain the loops in S as sum of the
arcs. For example for the state 011, the arcs (1), (3), (5) and arcs (2), (4), (6) form
two loops. Then the sum of the 1, 3, 5-th rows gives the mod 2 intersection number
[0, 1, 0, 1] with s, [e+1 ], [e

+
2 ], [e

+
3 ]. Similarly, 2, 4, 6 rows give [0, 1, 1, 0].

Follow the same manner, we obtain that for state 000, 001, 010, 011, 100, 101,
110, 111, the loop are represented in terms of dual generators by

[
0 1 1 1
0 1 0 0

]
,
[
0 0 1 1

]
,
[
0 0 1 1

]
,

[
0 1 0 1
0 1 1 0

]
,

[
0 1 1 1
0 1 0 0

]
,
[
0 0 1 1

]
,
[
0 0 1 1

]
,
[
0 0 1 1

]
.

Therefore, we obtain r(S) = 2, k(S) = 0 for state 000. r(S) = 1, k(S) = 0 for
state 001. r(S) = 1, k(S) = 0 for state 010. r(S) = 2, k(S) = 0 for state 011.
r(S) = 2, k(S) = 0 for state 100. r(S) = 1, k(S) = 0 for state 101. r(S) = 1, k(S) = 0
for state 110. r(S) = 1, k(S) = 0 for state 111.

Then the flat Jones-Krushkal polynomial J3.1 = −3z2 − 5z.
We wrap up the process of calculation as below.

Algorithm 5.7 (Calculation of JD(z)). The input is a flat knot Gauss diagram D.
The output is a polynomial in Z[z].

1. Calculate L.

• Calculate the mod 2 based matrix TD of D.
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• Find the subset L ⊂ Ḡ generating H1(Σ;Z/2).
2. Calculate A.

• Name the arcs as in Figure 5.5.
• Calculate the intersection matrix A of the arcs and L.

3. Let J = 0 and for each state S:

• For each state apply the rule depicted in Figure 5.4.
• For each state S, produce a new matrix N whose rows (one per loop in
S) are obtained by summing the rows of A corresponding to the arcs in
each loop.

• Calculate r(S) = rankZ/2(N) and k(S) = |S| − r(S).
• Add (−2)k(S)zr(S) to J .

4. JD(z) = (−1)cr(D)J .

Proposition 5.8. Let D be a flat Gauss diagram obtained from another flat Gauss
diagram D′ by flipping some arrows (i.e., chords). If D,D′ have the same mod 2
based matrix, then JD(z) = JD′(z).

Proof. As shown above, the adjacency of the arcs does not change following the rule
in Figure 5.4. If the mod 2 based matrix stays the same, flipping arrows in the Gauss
diagram does not change the flat Jones-Krushkal polynomial.

5.3 Normalization and enhancement

In this section, we present normalized and enhanced versions of the flat Jones-
Krushkal polynomial. The enhancement is a stronger invariant, and it keeps track
of the number of homologically nontrivial loops in each state. We also discuss the
properties of these invariants.

Definition 5.9. The normalized flat Jones-Krushkal polynomial of flat knot α dia-
gram D on a closed surface Σ is defined by

J̄α(z) =
JD(z)

εD
,

where D is a minimal diagram of α, εD = −2 if [ωD(S
1)] = 0 ∈ H1(Σ;Z/2), and

εD = z otherwise.

Then the flat Jones-Krushkal polynomial J̄3.1(z) = −3z − 5.

Proposition 5.10. For any given flat knot α, the normalized flat Jones-Krushkal
polynomial satisfies J̄α(−2) = 1.
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Proof. As mentioned in Proposition 4.3, assigning a = 1 sends all Jones polynomials
to

∑
S(−2)|S|−1 = 1. Then we have

J̄α(−2) =
∑

S

(−2)|S|/(−2) =
∑

S

(−2)|S|−1 = 1.

Empirically, we noticed something curious about the roots of J̄α(z)− 1, which is
that every almost classical flat knot up to 10 crossings satisfies:

J̄α(−1) = 1.

Conjecture 5.11. For any almost classical flat knot α, the normalized flat Jones-
Krushkal polynomial satisfies J̄α(−1) = 1.

If true, the condition provides a useful criterion for a flat knot to be almost
classical. Among all the flat knots up to 7 crossings, only 6 satisfy the condition
J̄α(−1) = 1 but are not almost classical.

Definition 5.12. The enhanced flat Jones-Krushkal polynomial of a flat knot dia-
gram D realized as immersion on Carter surface of genus g is defined by

Jen
D (w, z) = (−1)cr(D)

∑

S∈S
⟨D |S⟩Σ wm(S),

where
m(S) = |S| −# of null-homologous curves in S.

Note that Algorithm 5.7 and Proposition 5.8 hold for the enhanced flat Jones-
Krushkal polynomial accordingly.

Proposition 5.13. If D,D′ are two flat knot diagrams on a surface Σ related by
FR3 moves, then Jen

D (w, z) = Jen
D′(w, z).

Proof. It is enough to verify the claim for two diagrams related by one FR3 move,
and the details are similar to the calculation in Proposition 5.3.

Definition 5.14. The enhanced flat Jones-Krushkal polynomial of a flat knot α is
defined to be Jen

D (w, z), where D is a minimal genus diagram of α.

Take 3.1 as example, m(S) = 2 for state 000. m(S) = 1 for state 001. m(S) = 1
for state 010. m(S) = 2 for state 011. m(S) = 2 for state 100. m(S) = 1 for
state 101. m(S) = 1 for state 110. m(S) = 1 for state 111. Then the enhanced
Jones-Krushkal polynomial

Jen
3.1(w, z) = −3w2z2 − 5wz.
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Proposition 5.15. Let α, β be two flat knots. If Jen
α (w, z) = Jen

β (w, z), then Jα(w, z) =
Jβ(w, z).

Proof. By definition, we have Jen
D (1, z) = JD(z). Thus if two knots have the same

enhanced flat Jones-Krushkal polynomials, so they must also have the same flat
Jones-Krushkal polynomials.

The converse of Proposition 5.15 is not true. For example, the flat knots 3.1
and 5.1 have J3.1(z) = J5.1(z) = −3z2 − 5z, but their enhanced flat Jones-Krushkal
polynomials are not equal:

Jen
3.1 = −3w2z2 − 5wz,

Jen
5.1 = (−4w4 + 6w3 − 5w2)z2 − 5wz.

Proposition 5.16. If α is checkerboard colorable, then 2|Jen
α . If α is not checker-

board colorable, then z|Jen
α and w|Jen

α .

Proof. Let ωα(S
1) be the flat knot diagram on Σ. Then the sum of loops in each

state S of ωα(S
1) is equal to [ωα(S

1)] ∈ H1(Σ;Z/2). Therefore, if α is checkerboard
colorable, then k(S) > 0 for each state. If α is not checkerboard colorable, then
m(S) ≥ r(S) > 0 for each state.

Definition 5.17. The normalized enhanced flat Jones-Krushkal polynomial of a flat
knot diagram D realized as immersion on a Carter surface Σ is defined by

J̄en
α (w, z) =

Jen
D (z)

εD
,

where D is a minimal diagram of α, εD = −2 if [ωD(S
1)] = 0 ∈ H1(Σ;Z/2), and

εD = z otherwise.

Proposition 5.15 also holds for the enhanced version, and the converse is not true:

J̄en
3.1 = −3w2z − 5w,

J̄en
5.1 = (−4w4 + 6w3 − 5w2)z − 5w.

The following example shows that the flat Jones-Krushkal polynomial of flat
knots is not multiplicative under connected sum. The flat knot 4.5 in Figure 4.2 is
a connected sum of two diagrams of the unknot. However, the flat Jones-Krushkal
polynomial of 4.5 is −4z + 9, which is nontrivial.

Problem 5.18. Is the flat Jones-Krushkal polynomial multiplicative under connected
sum at the level of diagrams? I.e. is JD(z) = JD′(z) · JD′′(z) for any D ∈ [D′#D′′]?
What about the enhanced flat Jones-Krushkal polynomial, is Jen

D (z) = Jen
D′(z) ·Jen

D′′(z)
for any D ∈ [D′#D′′]?
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5.4 The cabled flat Jones-Krushkal polynomial

In this section, we will define the cabled flat Jones-Krushkal polynomial and give
examples to show how it can help to distinguish flat knots.

Recall that the flat arrow polynomial of the 2-strand cable (see Definition 2.30)
can be used to distinguish flat knots. Here we use the (2, 1) cable for the flat Jones-
Krushkal polynomial because the formula to get the (2, 1)-cabled based matrix is
given in Remark 3.22. It is easy to code up the calculation combined with Algo-
rithm 5.7.

Note that the minimal flat genus of α is the same as α2,1; see [SW13] for a proof
for virtual knots. Making a parallel copy and adding a crossing between the two
copies is the same as replacing S1 in S1 ↬ Σ with a Mobius band. This gives us a
diagram of α2,1 on the minimal genus surface Σ. Following the steps we did for flat
knot 3.1, we can calculate α2,1.

However, similar to the flat arrow polynomial, the number of states of α2,1 is
24cr(α)+1, which increases exponentially when cr(α) increases.

Referring to [KAT1], a divide-and-conquer strategy can simplify the calculation
and reduce the workload for the computer. To boost efficiency, one can choose the
order in which the crossings are smoothed so that the arcs are more likely to form
loops; see the function “KB1” in [KAT1].

As was done for the flat arrow polynomial, to decrease the workload of calculation,
we can only calculate the constant term of the flat Jones-Krushkal polynomial. Ap-
plying divide-and-conquer, the calculation of the constant term is much less complex:
once we see a nontrivial loop, then the calculation in the branch can be ended. It is
worth pointing out that the constant term of the non-normalized flat Jones-Krushkal
polynomial of a non-checkerboard colorable flat knot is always zero. However, the
(2, 1)-cable of any flat knot is checkerboard-colorable. Therefore, we can also apply
this fast calculation for constant terms of normalized flat Jones-Krushkal polynomials
of (2, 1)-cables.

We give an example to show how cabling the flat Jones-Krushkal polynomial helps
to distinguish flat knots. The two flat knots below both have J̄4.1 = J̄4.3 = z+3. but
after cabling, we have

J̄4.1(2,1) = 36z2 + 109z + 73,

J̄4.3(2,1) = 114z2 + 343z + 229.

5.5 Distinguishing flat knots (reprise)

The flat Jones-Krushkal polynomial and its enhancement are powerful tools for dis-
tinguishing flat knots when the minimal flat genus is known. For example, the flat
knots in Figure 5.8 have J̄7.46142 = −7z2 − 21z− 13 and J̄7.46230 = −13z2 − 39z− 25,
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4.1 4.3

Figure 5.7: Flat knots 4.1 and 4.3 with identical flat Jones-Krushkal polynomial but
distinguished by cabled flat Jones-Krushkal polynomial

while other invariants such as u-polynomial, flat arrow polynomial, n-strand cabled
flat arrow polynomial and based matrix of the pair are all identical.

7.46142 7.46230

Figure 5.8: Two flat knots not distinguished by cabled arrow polynomials and based
matrices

Notice that the pair above are almost classical. We know that all the flat arrow
polynomials and cabled flat arrow polynomials of almost classical knots are trivial.
Additionally, there are almost classical knots with trivial primitive based matrix.
These flat knots are very difficult to separate from the unknot. For example, the
flat knot in Figure 4.12 has 8 crossings, and it is the first almost classical knot with
trivial primitive based matrix. It can be distinguished from the unknot only by using
the flat Jones-Krushkal polynomial, which is given by J̄ac8.19 = 24z2 + 72z + 49.

There are almost classical flat knots having trivial primitive based matrix with
higher crossing number. For instance, there are several examples with 10 crossings,
but none with 9 crossings. Each such 10-crossing almost classical flat knot can be
shown to be nontrivial by computing its flat Jones-Krushkal polynomial.

When combined with other flat knot invariants, the enhanced flat Jones-Krushkal
polynomial distinguishes flat knots up to 6 crossings, leaving only 5 pairs of 7 crossing
knots not separated, see Table 5.1. The five pairs of non-distinguished 7-crossing flat
knots are depicted in Figure 5.9.

Up to 8 crossings, most of the non-distinguished flat knots are permutant and
nearly all of them are composite. Indeed, restricting attention to prime flat knots,
up to 8 crossings, there is only one pair of flat knots with 7 crossings that are not
separated by the invariants, namely the two prime flat knots 7.21134 and 7.32153 in
Figure 5.9, and the only non-permutant pair.
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Crossings # Flat knots A(α2), C(α3), ϕ Jen
α , A(α2), C(α3), ϕ

3 1 0 0
4 11 0 0
5 120 0 0
6 2086 0 0
7 46233 12 10
8 1241291 513 511

Table 5.1: Distinguishing flat knots using Jen
α , A(α2), C(α3), and ϕ-invariants.

For checkerboard colorable knots, the invariants Jen
α , A(α2), ϕ enable us to distin-

guish all checkerboard colorable flat knots up to 7 crossings, see Table 5.2. There are
four checkerboard colorable flat knots with 8 crossings with the same Jen

α , A(α2), ϕ,
see Figure 5.10. Thus, there is a quadruple of 8-crossing checkerboard colorable flat
knots that are non distinguished.

Crossings # Flat knots A(α2), ϕ Jen
α , A(α2), ϕ

4 1 0 0
5 5 0 0
6 33 0 0
7 347 2 0
8 4451 5 4

Table 5.2: Distinguishing checkerboard colorable flat knots using Jen
α , A(α2), ϕ.

As mentioned in the last chapter, the flat arrow polynomial is trivial for every
almost classical flat knot. Thus, the only tools for distinguishing almost classical
flat knots are the ϕ-invariant and enhanced flat Jones-Krushkal polynomial. Using
Jen
α , ϕ, we are able to distinguish almost classical knots up to 8 crossings, see Table

5.3. The first almost classical flat knots that are not distinguished are the three pairs
of flat knots with 9 crossings shown in Figure 5.11.

Crossings # Flat knots ϕ Jen
α , ϕ

5 1 0 0
6 1 0 0
7 6 2 0
8 28 1 0
9 190 26 6
10 1682 175 39

Table 5.3: Distinguishing almost classical flat knots using Jen
α , ϕ
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7.25560 7.29741 7.13943 7.14233

7.35295 7.45235 7.35333 7.45212

7.21134 7.32153

Figure 5.9: Five pairs of flat knots not distinguished

8.58835 8.1028341 8.1028115 8.588779

Figure 5.10: Four checkerboard colorable flat knots not distinguished

5.6 Open questions

We conclude this chapter with a few open problems.

Problem 5.19. Are there bigraded or triply graded invariants that categorify the flat
Jones-Krushkal polynomial or its enhancement?

Problem 5.20. Can one use the flat Jones-Krushkal polynomial or its enhancement
to extract slice obstructions for flat knots?

Problem 5.21. Which polynomials can be realized as flat Jones-Krushkal polynomi-
als of flat knots? Which polynomials can be realized as enhanced flat Jones-Krushkal
polynomials of flat knots?

72



PhD Thesis - J. Chen; McMaster University - Mathematics

ac9.99

O1U2O3U4O2U5O4U1O5U6O7U8O6U9O8U3O9U7

ac9.100

O1U2O3U4O2U5O4U1O5U6O7U3O8U7O9U8O6U9

ac9.130

O1U2O3U4O2U5O4U6O7U1O8U3O9U7O5U8O6U9

ac9.183

O1U2O3U4O2U5O6U3O7U1O8U9O5U8O4U7O9U6

ac9.159

O1U2O3U4O2U5O6U1O4U7O8U3O9U6O7U9O5U8

ac9.171

O1U2O3U4O2U5O6U3O7U1O4U8O9U6O8U7O5U9

Figure 5.11: Three pairs of almost classical flat knots that are not distinguished.

Problem 5.22. Referring to [Mil23], does the homological arrow polynomial lead to
an invariant of flat knots? How powerful is it?
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Chapter 6

The concordance group of flat
knots

In this chapter, we introduce long flat knots and use them to construct the concor-
dance group FC of flat knots. We also introduce graded based matrices and use
them to construct the concordance group FG of based matrices. Given a long flat
knot, we can associate a graded based matrix, and this induces a homomorphism
FC → FG.

We prove two upper bounds of slice genus of flat knots. We construct a non-slice
flat link such that each component is an unknot, and pairwise intersection numbers
are all zero. At the end, we pose two questions regarding sliceness and discuss
possible examples.

6.1 Long flat knots

In this section, we present the definition of long virtual and flat knots and discuss
ways to represent them using linear Gauss diagrams and knots on surfaces.

Definition 6.1. An n-tangle planar diagram is a map R1 × {1, . . . , n} → R2 with
only transverse singular points, where outside the square with vertices (±n,±n), the
image of the i-th component coincides with the line y = i.

A long virtual knot diagram is an oriented 1-tangle planar diagram with only
classical crossings and virtual crossings. Two long virtual knot diagrams are said
to be equivalent if their diagrams are related by finitely many virtual Reidemeister
moves and planar isotopy. A long virtual knot is an equivalence class of virtual knot
diagrams.

Equivalently, we can use a linear Gauss diagram to represent a long virtual knot.

Definition 6.2. A linear Gauss diagram consists of an oriented line segment, the
linear skeleton, with 2n points connected by n arrows. Each arrow is decorated with
a sign (+/−).
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Definition 6.3. A long flat knot diagram is an oriented 1-tangle planar diagram with
only flat crossings and virtual crossings. Two long flat knot diagrams are said to be
equivalent if their diagrams are related by finitely many flat Reidemeister moves and
planar isotopy. A long flat knot is an equivalence class of flat knot diagrams.

Equivalently, we can use Gauss code or diagram to represent a long flat knot.

Definition 6.4. A flat linear Gauss diagram consists of an oriented line segment
with 2n points connected by n arrows. Along the Gauss diagram by the direction of
x-axis, assign number 1, 2, · · · to the arrows. At each arrow head (or tail), the point
is recorded as “U” (or “O”), followed by this arrow’s assigned number. The linear
flat Gauss code records every arrow head or tail along the skeleton; see Figure 6.1
for example.

O1 O2 O3 O4 O5         U1 U2  U4    U5 U3

Figure 6.1: A long flat knot diagram with its Gauss diagram and code

Definition 6.5. The closure of a long virtual knot is the virtual knot obtained by
replacing the curve outside the disk of radius 2 centered at origin in R2 by 2eiθ for
0 ≤ θ ≤ π. The closure of a long flat knot is defined similarly. Both operations can
be realized in terms of closing Gauss diagrams by taking the closure of the skeleton.

If α is a long flat knot, then we will use α to denote its closure. Any invariant
of flat knots induces a well-defined invariant of long flat knots by evaluating it on
the closure. For example, we can define the u-polynomial of a long flat knot α to be
uᾱ(t).

Definition 6.6. An embedding representation of a long virtual knot K is a proper
embedding eK : I → Σ× × I, where I = [0, 1], and Σ× is the deleted Carter surface
Σ× = Σ ∖ D, where D is a disk and eK(0), eK(1) ∈ ∂Σ× × I = ∂D × I. Two
embedding representations are stably equivalent if they are related by stabilization
and destabilization of Carter surfaces and ambient isotopy. The closure K̄ of K has
an embedding representation eK̄ : S1 → Σ × I, where eK̄ extends eK across D × I,
connecting eK(0) and eK(1) by a trivial arc in D × I.

Definition 6.7. An immersion representation of a long flat knot α is a proper
immersion ωα : I ↬ Σ×, where I = [0, 1], and the deleted Carter surface Σ× = Σ∖D
such that the endpoints ωα(0), ωα(1) ∈ ∂Σ× = ∂D. Two immersion representations
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are stably equivalent if they are related by stabilization and destabilization of Carter
surfaces and homotopy on Carter surfaces. The closure ᾱ of α has an immersion
representation ωᾱ : S1 ↬ Σ, where ωᾱ extends ωα across D, connecting ωα(0) and
ωα(1) by a trivial arc in D.

Based on the definition above, there are three involutions for long flat knots:

1. The reverse −α is given by changing the orientation of I;
2. The mirror image α∗ is given by changing the orientation of Σ×

g ;
3. The reversed mirror image −α∗.

Note that any involution above is a composition of the other two.

Example 6.8. For long flat knots, there are two types of crossings according to
whether the arrow points forward or backward. This leads to a partition arr(α) =
arr+(α) ⊔ arr−(α). (Note that the subsets arr+(α) and arr−(α) are not assumed to
be proper.)

Using this partition, Turaev introduced the following refinements of the u-polynomial
for long flat knots. For k ≥ 1, set

a±k (α) = #{e ∈ arr±(α) | n(e) = k} −#{e ∈ arr∓(α) | n(e) = −k} ∈ Z.

Define u±
α (t) =

∑
k≥1 a

±
k (α)t

k. Then u+
α (t) + u−

α (t) is equal to the u-polynomial of
the closure ᾱ. Turaev showed that u±

α (t) are homotopy invariants of long flat knots
(see [Tur04, Section 12.2]). The example below illustrates the effect of moving the
basepoint on u±

α (t). Each basepoint determines a long flat knot. Since u± are ho-
motopy invariants of long flat knots, it follows that there exist inequivalent long flat
knots with equivalent closures.

4.4
u+ = 2t2

u− = −2t2
u+ = t2

u− = −t2
u+ = 0
u− = 0

Figure 6.2: Long flat knots with closure 4.4

In addition, for long flat knots, any state will include one long component in
addition to several round components. This can be used to refine the flat arrow and
Jones-Krushkal polynomials.
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6.2 The concordance group of flat knots

In this section, we discuss the connected sum and concordance for long flat knots.
Using these notions, we introduce the concordance groupFC of flat knots, cf. Turaev
[Tur04].

We begin by defining the connected sum of two long virtual and flat knots. (Recall
that connected sum is not well-defined on round flat knots. )

Definition 6.9. The connected sum of two long virtual knots K1, K2, denoted
K1#K2, is the virtual knot obtained by connecting the end point of K1 to the
beginning of K2. The connected sum of two long flat knots α1, α2, denoted α1#α2,
is the flat obtained by connecting the end point of α1 to the beginning of α2.

A long flat knot α is said to be composite if it can be represented as the connected
sum D1#D2, where neither D1 nor D2 is equivalent to α. A long flat knot is prime
if it is not composite.

Definition 6.10. A flat knot Gauss diagram D is said to be a connected sum Gauss
diagram if D is the obtained by attaching two nontrivial flat linear Gauss diagram
at their ends.

Note that the prime decomposition theorem does not hold for virtual knots; it
does hold for Z/2 homologically knots in thickened surfaces, see Matveev [Mat12].
Since connected sum is better behaved on long virtual and flat knots, it is expected
that the prime decomposition theorem holds for them. As far as we know, the proof
of this result (if true) has not yet been written down.

Next, we define concordance of long flat knots, and here we remind the reader
that Definition 2.32 introduces the corresponding notion for round flat knots.

Definition 6.11. A long flat knot α is slice if its closure ᾱ is slice. Two long flat
knots α, β are concordant if −α∗#β is slice.

For any long flat knot α, Turaev showed in [Tur04] that −α∗#α is slice; see
Figure 6.3 for the gist of the argument. Thus, every long flat knot has an inverse up
to concordance.

saddle→
FR2→

Figure 6.3: Slice movie of −α∗#α
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Definition 6.12. The concordance group of long flat knots is denoted FC and
consists of concordance classes of long flat knots with group operation given by
connected sum.

Since the flat knot 4.4 is slice, all the long knots in Figure 6.2 are slice too. It
follows that u±

α (t) are not invariant under concordance of long flat knots, as claimed
in [Tur04, p.2521].

Example 6.13. There exist long flat knots with equivalent closures which are not
concordant.

Proof. Consider the permutant knots in Figure 6.4 in [3.1#−3.1∗]. In both diagrams,
the black arrows form a long flat knot with closure 3.1. The blue and the red arrows
form long flat knots with closure −3.1∗. However, the flat knot 6.1913 on the left is
slice by Figure 6.3, whereas the flat 6.1205 has algebraic genus 1, and hence it is not
slice. It follows that the two long flat knots formed by the red and blue arrows are
not concordant as long flat knots.

slice knot 6.1913 nonslice knot 6.1205

Figure 6.4: Two permutant diagrams in [3.1#− 3.1∗]

The u-polynomial of long flat knot is defined to be the u-polynomial of its closure.

Proposition 6.14. The concordance group of long flat knots FC is not finitely
generated.

Proof. Recall from [Tur04, Section 3.4,5.1,12.3] that the u-polynomial is additive
under connected sum and is invariant under concordance. Thus if α, β are long flat
knots, then uα#β(t) = uα(t) + uβ(t), and it induces a homomorphism FC → Z[t]. It
follows that deg uα#β(t) ≤ max {deg uα(t), deg uβ(t)}.

For the sake of contradiction, suppose that FC is generated by the finite set
{α1, . . . , αm} and set n = max {deg uα1(t), . . . , deg uαm(t)}. Then it follows that
deg uβ(t) ≤ n for any [β] ∈ FC. However, by [Tur04, Theorem 3.4.1], an integral
polynomial u(t) ∈ Z[t] occurs as the u-polynomial of some flat knot if and only if
u(0) = 0 = u′(1). In particular, there is a flat knot β with deg uβ(t) > n, which is a
contradiction.

The concordance group of virtual knots is denoted VC and defined in terms of
concordance classes of long virtual knots with group operation given by connected
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sum. The concordance group of classical knots embeds faithfully into VC [BN17],
and the shadow map induces a surjective homomorphism VC → FC. Interestingly,
VC is known to be non-commutative [Chr22], but commutativity of FC is an open
question.

Problem 6.15. Determine whether the concordance group FC of flat knots is com-
mutative.

6.3 Concordance of based matrices

In this section, we introduce graded based matrices and use them to construct the
concordance group FG of based matrices.

According to Definition 3.4, a based matrix over an abelian group H is a triple
(G, s, b), where G is a finite set, Ḡ = {s}⊔G, and b : Ḡ×Ḡ → H is a skew-symmetric
map. Next we recall the definitions of a graded based matrix over an abelian group
and the directed sum of graded based matrices, two notions originally introduced by
Turaev in [Tur04].

Definition 6.16. A graded based matrix is a based matrix T = (G, s, b) together
with a partition G = G+ ⊔ G− into two disjoint subsets. (Neither G+ nor G− is
assumed to be a proper subset of G.)

Definition 6.17. The annihilating elements, core elements, and complementary el-
ements of a graded based matrix T = (G±, s, b) are defined as in Definition 3.3. In
addition, we require annihilating elements belong to G+, core elements belong to G−,
and any pair of complementary elements has one in G+ and the other one in G−.
Thus, following Definition 3.3, we have the definition of homology of graded based
matrices.

Definition 6.18. Given two graded based matrices T1 = (G±
1 , s1, b1) and T2 =

(G±
2 , s2, b2) over H, the directed sum is the graded based matrix (G±, s, b) = T1⊞T2,

where G± = G±
1 ⊔ G±

2 and the skew-symmetric mapping b : G × G → H is defined
as follows. For g ∈ Gi with i = 1, 2, set b(s, g) = bi(si, g), b(g, s) = bi(g, si), For any
g ∈ Gi, h ∈ Gj for i, j ∈ {1, 2}, set

b(g, h) =

{
bi(g, h) if i = j,

ε(g)bj(sj, h)− ε(h)bi(si, g) if i ̸= j,
(6.1)

where ε(g) = 1 if g ∈ G− and ε(g) = 0 if g ∈ G+.

There is a canonical way to map a long flat knot diagram to a graded based
matrix: Let D be the associated linear Gauss diagram, then the generator [e+]
associated with arrow e ∈ arr(D) is assigned to G+ if the arrow points from left to
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e1 e2 f1 f2 f3

Figure 6.5: Gauss diagram for a long knot

right, and to G− otherwise. Then one can check that the graded based matrix of the
connected sum D1#D2 of two linear Gauss diagrams D1, D2 is given by the directed
sum T1 ⊞ T2, where T1, T2 are based matrices of D1, D2.

For example, the long flat knot in Figure 6.5 is a connected sum of two long
flat knots. Let D1 and D2 be the flat knot diagrams with the red and blue Gauss
diagrams. Then D1 has graded based matrix

T1 =




0 −1 1
1 0 1
−1 −1 0




with G+
1 = {[e1], [e2]}, G−

1 = ∅, while D2 has graded based matrix

T2 =




0 −2 0 2
2 0 1 2
0 −1 0 1
−2 −2 −1 0




with G+
2 = ∅, G−

2 = {[f1], [f2], [f3]}. Therefore, for any arrow ei of D1 and any arrow
fj of D2, we have ε([ei]) = 1 and ε([fj]) = 0, so b([ei], [fj]) = b2(s2, [fj]). We obtain
the graded based matrix for D1#D2:

T1 ⊞ T2 =




0 −1 1 −2 0 2
1 0 1 −2 0 2
−1 −1 0 −2 0 2
2 2 2 0 1 2
0 0 0 −1 0 1
−2 −2 −2 −2 −1 0



,

whereG+ = {[e1], [e2]} is associated to the arrows in color red andG− = {[f1], [f2], [f3]}
is associated to the arrows in color blue. One can check the based matrix of the round
flat knot D1#D2 in Figure 3.5 is also T1 ⊞ T2.

Definition 6.19 ([Tur04]). Two graded based matrices (G±
1 , s1, b1) and (G±

2 , s2, b2)
are said to be concordant if their directed sum is null-concordant.

Observe that for any graded based matrix (G±, s, b), we have (G±, s, b)⊞(G±, s,−b)
is null-concordant.

80



PhD Thesis - J. Chen; McMaster University - Mathematics

Definition 6.20. Let FG be the concordance group of graded based matrices over
Z with group operation given by directed sum ⊞. The concordance inverse of the
graded based matrix (G±, s, b) is given by (G±, s,−b).

The concordance group of based matricesFG is clearly commutative, cf. Problem
6.15. Given a long flat knot α, we can associate its graded based matrix. This
association induces a homomorphism

φ : FC → FG. (6.2)

Turaev proved that two concordant long flat knots have concordant graded based
matrices [Tur04]. Further, the graded based matrix of any slice long flat knot is
null-concordant. The concordance inverse of long flat knot α is given by −α∗, and
their based matrices are T,−T respectively. Further, the map f preserves the group
structure and hence is a group homomorphism.

Problem 6.21. Is the homomorphism φ in (6.2) surjective?

6.4 Sliceness of almost classical flat knots

In this section, we discuss sliceness and algebraic sliceness for almost classical flat
knots.

To begin, we define sliceness for flat links.

Definition 6.22. Let ℓ be a flat link with n-components represented by an immersion
ωℓ :

⊔n
i=1 S

1
i ↬ Σ. Then the flat link ℓ is said to be slice if there exists a compact

oriented 3-manifold M with ∂M = Σ and properly immersed disks
⊔n

i=1Di ↬ M
having boundary ∂Di = ωα(S

1
i ) for i = 1, . . . , n.

Every almost classical flat knot bounds an immersed Seifert surface, which one
can realize as a disk with bands attached as in Figure 6.6. Thus, any almost classical
flat knot admits a diagram where the crossings occur in either quadruples of flat
crossings or quadruples of virtual crossings as in Figure 6.7.

b1a1

· · ·

· · ·

· · ·b2a2 bgag

Figure 6.6: Disk-band model
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Figure 6.7: Flat Seifert surface (left) and Seifert surface in Carter surface (right)

One can always lift a flat knot diagram to a virtual knot diagram by replacing
the flat crossings with classical crossings. If the original flat knot diagram is almost
classical, then the virtual knot diagram obtained is also almost classical.

Proposition 6.23. For every almost classical flat knot α, there exists a virtual knot
K ∈ π−1(α), where

1. on its virtual knot diagram, double points occur in quadruples, either as band
over/under crossings or as band virtual crossings,

2. the pair of Seifert matrices corresponding to the disk-band surface for K has
all diagonal entries equal to zero.

Proof. Consider the disk and band model of an immersion. We can choose the Carter
surface Σ to have the same orientation as the disk. It suffices to show that each band
can be altered so that it has no twists. A full twist of a band is formed by two half
twists, corresponding to two flat crossings. A flat crossing can pass both the virtual
and flat band crossings by FR3 or FR4 moves, so any two adjacent half twists on a
band can be removed by a FR2 move. The zero diagonals can be achieved by adding
a full band twist so that the linking number of the generator and the lift of itself is
increased or decreased by 1. Repeat this step until the linking number eventually
reaches zero.

Proposition 6.24. Let α be an almost classical flat knot. If α has a Seifert surface
F such that {γi}i=1,...,2g(F ) generates H1(F ;Z) and {γi}i=1,...,g(F ) forms a slice link,
then {γi}i=1,...,g(F ) gives a set of surgery curves for a 3-manifold in which α bounds
a slice disk.

Proof. Let ωα(S
1) ↬ Σ be the immersion representation of an almost classical flat

knot α. Then ωα(S
1) bounds an immersed oriented Seifert surface F of genus g.

Now take the Carter surface Σ as Σ× {0} and push if off to Σ× I such that the
push-off of ωα(S

1) is an embedded loop bounding an embedded Seifert surface F ′

where by collapsing I to 0, we can regain ωα(S
1) and F .

82



PhD Thesis - J. Chen; McMaster University - Mathematics

Take an embedded loop ℓ ⊂ F ′ ⊂ Σ × I representing a generator of H1(F ;Z).
Let N(ℓ) be the tubular neighborhood of ℓ. The new 3-manifold Σ × I ∖ N(ℓ) has
boundary Σ × {0, 1} ⊔ ∂N(ℓ). Take a parallel copy of ℓ on ∂N(ℓ) and attach a 2
handle to its collar neighborhood. (On ∂N(ℓ), the result can be seen as cutting along
the longitude on ∂N(ℓ) and attaching two disks.) This surgery gives a 3-manifold
bounded by Σ× {0, 1} ⊔ S2. Attach a ball to S2 so that we obtain a 3-manifold M
bounded by Σ× {0, 1}. Inside M , F is an embedded surface of genus g − 1. Repeat
this step until the genus is reduced to zero which gives the slice disk of α. The slice
disk is in a 3-manifold bounded by two copies of Σ.

Example 6.25. All almost classical flat knots up to 10 crossings are algebraically
slice.

Proof. The fillings that give the algebraic sliceness are recorded in [FKI].

Problem 6.26. Is every almost classical flat knot slice? Is every almost classical
flat knot algebraically slice?

We have checked the almost classical knots up to 8 crossings and verified that
they are all slice. We do not know whether every almost classical flat knot is slice, or
even whether they are all algebraically slice. For example, the flat knot in Figure 6.8
is almost classical, but we do not know whether it is slice or even algebraically slice.

β1
β2

β1 = U1U2U3O1O3O2

β2 = U1U2U3O2O1O3

Figure 6.8: A Gauss diagram and disk-band representation of an almost classical
knot of 24 crossings

We conclude by presenting two approaches to addressing Problem 6.26 and some
examples that shed further light on it.

One approach to answering Problem 6.26 would be to consider the effect of the
band-virtualization move in Figure 6.9. If the concordance class were invariant under
this move, then that would enable one to show that all almost classical flat knots
are slice. Example 6.28 shows however that the concordance class is not preserved
under band-virtualization.
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Another approach to Problem 6.26 would be to consider Brunnian flat links,
which are defined to be flat links such that each individual component is unknotted
and whose pairwise intersection numbers are all zero. If one could show that all flat
Brunnian links were slice, then that would lead to an argument showing that all
almost classical flat knots are slice. Example 6.27 shows however that not all flat
Brunnian links are slice. Thus Problem 6.26 remains tantalizingly unsolved.

Figure 6.9: Virtualization move and band-virtualization move

Example 6.27. There exists a non-slice flat Brunnian link.

Proof. Consider the flat knot in Figure 6.10-(1), where the band takes the pattern
of α. Now on each flat band crossing, assign the virtual crossings as in Figure 6.10-
(2) so that we obtain a round flat knot diagram of the closure of −α#α. Apply
Reidemeister moves and splitting saddle moves as in Figure 6.10-(2,3,4).

Observe on (4), no flat crossing occurs between the same colored curves. When
green components are removed, the blue and red components can be unknotted by
Reidemeister moves. Let α be the long flat knot such that its closure is the flat knot
3.1 so that the flat diagram we obtain in Figure 6.10-(2) is the flat knot 6.139; see
Figure 6.12. Based on the Gauss diagram of 3.1, we can construct the diagram at the
state of (4) as shown in Figure 6.11 where the green curve represents a pair of parallel
loops. Note that there are two pairs of parallel loops not drawn in Figure 6.11, which
are obtained similarly from band crossings as depicted in Figure 6.10-(2,3,4). Then
the flat link diagram depicted in Figure 6.10-(4) has seven components where each
component alone is a trivial flat knot and the pairwise intersection number is equal
to zero.

However, we know that 6.139 is not slice by computing the algebraic genus of its
based matrix, hence the link diagram depicted in Figure 6.10-(4) cannot be slice.

Example 6.28. The concordance class of a flat knot is not preserved under band-
virtualization in Figure 6.9.

Proof. We use the same example taking α as a long flat knot whose closure is 3.1.
Then the diagram depicted in Figure 6.10-(3) is not slice. In Figure 6.10-(4), the
blue and red curves form a trivial knot diagram. However, the two diagrams can be
transformed to each other by one band-virtualization.
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α

(1) (2) (3) (4)

Figure 6.10: A flat concordance movie

Figure 6.11: Gauss diagram of α determines the diagram of flat link obtained after
saddle moves on α#(−α)

6.5 Slice genus and crossing number

In this section, we explore the relationship between the slice genus of a flat knot and
its minimal crossing number.

We know that the virtualization move in Figure 6.9 is an unknotting operation
of flat knots since a flat knot diagram with only virtual crossings is trivial. There
is a metric v(α) on flat knots (and long flat knots), which is defined to be the
minimal number of virtualization moves to unknot α. We immediately get that
v(α) < cr(α)−2 for flat knots and v(α) < cr(α)−1 for long flat knots, corresponding
to the fact that any flat knot with cr(α) < 3 is trivial, and any long flat knot with
cr(α) < 2 is trivial.

Proposition 6.29. Let α be a long flat knot. Then

(a) the slice genus gs(α) ≤ v(α), and
(b) the slice genus gs(α#(−α)) ≤ cr(α).

Proof. We can apply two saddle moves at each classical crossing, one splitting and
one joining. Then we obtain a link diagram with only virtual crossings, which is
trivial. Therefore, the slice genus gs(α) ≤ v(α). This proves part (a).

Applying combining saddle moves on the diagram in Figure 6.10-(4) on the green
loop pair makes the new green component bound a disk and hence can be removed by
a death move. There are cr(α) crossings in α so there are as many pairs of crossings in
the diagram for α#(−α) depicted as in Figure 6.10-(4). Since each combining saddle
move may increase the genus of the slicing surface by one and after removing all green
components we obtain a trivial knot, the slice genus of gs(α#(−α)) ≤ cr(α).
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Figure 6.12: Flat knot 6.139 as connected sum 3.1#(−3.1)

Let π be the flat projection from virtual knots to flat knots as described in
Figure 2.17. It is obvious that if a virtual knot K is slice then its flat projection
π(K) is also slice. One may ask whether the converse is true.

Problem 6.30. If α is a flat knot that is slice, then does there exist a virtual knot
K with π(K) = α that is also slice? What if in addition, we require cr(K) = cr(α)?

This is true for all known slice flat knots up to 6 crossings except for the flat knot
6.540. I have not found a way to unknot 6.540 by saddling the minimal diagram.
Though it is algebraically slice, all fillings associated to a minimal diagram fail in
giving a slice operation. There are 32 virtual knots of 6 crossings projecting to
6.540, and they are all non-slice. It is also worth mentioning that the secondary
obstruction (see [Tur04, Section 8.4]) cannot detect the sliceness of 6.540, leaving
us longing for more concordance invariants for flat knots. There are several recent
papers on concordance invariants of virtual knots, such as [DKK17,BCG20,BCK22,
BC21,BK21,BK23]. Those invariants are not yet adapted to flat knots. We do not

Figure 6.13: Flat knot 6.540

know if 6.540 is slice or not, which raises the following question. For classical knots,
any slice knot admits a sequence of births, deaths, and saddle moves such that the
number of saddle moves equals the sum of the numbers of births and deaths. Such
a sequence is called a slice movie. One can similarly give slice movies for flat knots,
and so it is natural to ask if there is a slice movie for 6.540?

Furthermore, there are only eight flat knots with 7 crossings whose slice status
remains unknown. They are displayed in Figure 6.14. This is the result of filtering
out all flat knots that are not algebraically slice, as well as any flat knot that maps
to a non-slice flat knot as in Figure 3.8. Then we search for saddle moves using the
fillings. This approach was successful in slicing many of the remaining flat knots,
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and Figure 6.14 shows the residual set of eight flat knots where this method was
inconclusive. Each of these 7 crossings is algebraically slice, but none of them is
known to be slice.

7.24571 7.32623 7.33715 7.34076

7.42075 7.42983 7.45974 7.46061

Figure 6.14: Eight flat knots of unknown slice status
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Chapter 7

Conclusion

One of the primary goals in this thesis was to develop a better understanding of flat
knots, their invariants, and their concordance properties. The list of open questions
in [Tur04, Section 13] was a major source of inspiration. In this section, we review
some of the questions from [Tur04], and we discuss the progress made on them.

1. Which matrices can be realized as primitive based matrices for a flat knot?

New criteria and a partial solution are given in Remark 3.32.

2. Can one detect non-slice strings using the secondary obstructions; see [Tur04,
Section 8.4]?

An example of a flat knot that is algebraically slice but not slice is given in
Example 3.19.

3. Classify all strings (flat knots) of small rank (say, ≤ 6) up to homotopy and/or
up to concordance.

We tabulated flat knots up to 8 crossings, checkerboard colorable flat knots up
to 10 crossings, and almost classical flat knots up to 12 crossings as shown in
Table 7.1. FlatKnotInfo [FKI] includes all flat knots up to 8 crossings and their
pre-computed invariants. The invariants completely distinguish all flat knots
up to 6 crossings and leave as unresolved only 5 pairs (see Figure 5.9) of flat
knots with 7 crossings.

Along the way, we obtained a number of other results, and here we provide a brief
summary. We showed that any minimal diagram of a composite flat knot is a con-
nected sum diagram. By the monotonicity of the algorithm for tabulating flat knots,
this enables us to detect composite flat knots. We gave formulas for based matrices
of cabled knots and permutant diagrams of almost classical knots. We also devel-
oped criteria for the realization of a based matrix, and we gave an example of a
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null-concordant based matrix that is not realized by a slice knot, and an example of
an almost classical type based matrix that is not null-concordant.

We defined several polynomial invariants of flat knots: the inner/out character-
istic polynomial, the flat arrow polynomial, and the flat Jones-Krushkal polynomial
and its enhanced version. For the constant term of the flat arrow polynomial, we
developed a skein formula and also proved a parity result for checkerboard colorable
flat knots. We constructed an example of a non-slice Brunnian flat link.

As a companion to this thesis, we tabulated flat knots up to 8 crossings, checker-
board colorable flat knots up to 10 crossings, and almost classical flat knots up to
12 crossings as shown in Table 7.1. Specifically, the data including the diagram and
pre-calculated invariants of flat knots up to 7 crossings are uploaded to [FKI]. The
information in the tabulation served to inform and guide the research conducted
here. The tabulation implements the algorithm for enumerating flat knots described
in Section 1.3, and it is based on a vast number of calculations of flat knot invariants
that completely distinguish all flat knots up to 6 crossings. The invariants distin-
guish flat knots with 7 crossings up to 10 undistinguished flat knots, consisting of 5
ambiguous pairs. For flat knots with 8 crossings, there are a total of 511 undistin-
guished flat knots. For prime flat knots up to 8 crossings, only two 7-crossing flat
knots remain undistinguished.

FlatKnotInfo [FKI] includes diagrammatic information, such as Reidemeister-3
orbit, the symmetry type, and parity projections, as well as flat knot invariants such
as the u-polynomial, the flat arrow polynomial, the ϕ-invariant, and the inner/outer
characteristic polynomials. It provides concordance information such as algebraic
genus and sliceness. It also gives diagrammatic illustrations of the fillings that indi-
cate the saddle moves needed for constructing an oriented surface of minimal genus.
In theory, this should allow one to compute the slice genus of any flat knot.

Crossings # Flat knots # Checkerboard colorable # Almost classical

3 1 0 0
4 11 1 0
5 120 5 1
6 2086 33 1
7 46233 347 6
8 1241291 4451 28
9 71404 190
10 1303643 1682
11 18002
12 220849

Table 7.1: The number of tabulated flat knots.

Included in FlatKnotInfo [FKI] is a flat knot calculator, which is a real-time
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Gauss code based search tool that determines the minimal diagram and symmetry
type of a given flat knot diagram. It also fetches the page for the knot and lists all
the diagrammatic information and flat knot invariants.

The flat knot table includes a cross-reference to Green’s table of virtual knots
[Gre04]. This allows one to easily compare information and invariants between flat
and virtual knots.

The backbone of FlatKnotInfo is a suite of programs that compute flat knot
invariants and compare them for the representative flat knots in the tabulation. The
appendix below contains two sample programs, both written in python. One of
them computes the based matrix of a flat knot and the other its flat Jones-Krushkal
polynomial.

This thesis contains many open problems, and we provide a brief summary of
them here. Problem 2.14 served as a starting point for our investigation of a number
of different flat knot invariants, including based matrices, ϕ-invariants, characteristic
polynomials, flat arrow polynomials, and flat Jones-Krushkal polynomials. For each
of them, we considered the question of realization, which is the problem of finding
necessary and sufficient conditions for the invariants to occur, see Problems 3.29, 3.14,
4.20, and 5.21. Answering the realization problem is an important step for poten-
tially converting questions about flat knots into purely algebraic questions. There is
also the possibility of finding even more powerful invariants through categorification,
and Problems 4.18 and 5.19 ask specifically about categorification for the flat ar-
row polynomial and the flat Jones-Krushkal polynomials, respectively. Problem 5.22
concerns a proposed invariant of flat knots derived from the homological arrow poly-
nomial of Miller [Mil23], which is a virtual knot invariant obtained as a powerful
refinement of the arrow polynomial that encodes homological information as is done
in the Jones-Krushkal polyomial. Problem 3.15 asks for a geometric interpretation of
the characteristic polynomials, analogous to the Alexander matrix in classical knot
theory.

This thesis also discusses sliceness and concordance of flat knots, and again there
are many interesting questions and open problems. One overriding problem is to
use the flat knot invariants studied here to discover new obstructions to sliceness
for flat knots. (See Problems 5.20 and 4.19.) Progress here could have important
applications to the concordance group FC of flat knots: Is it commutative? Does
it contain torsion? Are either of the flat knots in Figures 6.13 and 6.14 slice? Note
that, if the flat knot 6.540 in Figure 6.13 is slice, then that would give a negative
answer to Problem 6.30 relating sliceness of a flat knot to that of virtual knots lying
over it.

Another potential application is toward addressing Problem 6.26, which asks
whether every almost classical flat knot is slice. For instance, perhaps one can use
new invariants to find an example of almost classical flat knot that is not slice,
assuming such examples exist. On the other hand, if no such examples exist, then
that would indicate that the based matrix in Example 3.30 is not realizable, at least
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not from almost classical flat knots. This would suggest that FC → FG is not
surjective (cf. Problem 6.21). A positive answer to Problem 6.26 could also lead to
progress on Problem 6.15.

We conclude this thesis with a few more open problems.

1. Are all flat almost classical knots slice, or can one find an example of a flat
almost classical knot that is not slice?

2. Are all checkerboard colorable free knots slice, or can one find an example of a
checkerboard colorable free knot that is not slice?

3. Is the concordance group of flat knots commutative?
4. Tabulate flat knots up to concordance.
5. Tabulate free knots, up to equivalence and/or concordance of free knots.
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Appendix A

Dictionary

The objects of interest in this thesis are referred to in the literature either as flat
virtual knots [Kau99,MI13,Chu13,Dye16] or as virtual strings [Tur04,Tur06,Tur08a,
Gib08,Cah17,Fre22]. We will mainly use Kauffman’s terminology, but for the benefit
of the reader, we have provided dictionary to translate between the two terminologies.

Kauffman’s terminology Turaev’s terminology

flat knot diagram virtual string
Reidemeister moves and isotopy homotopy of virtual string

diagram on Σ immersion on Σ
long flat knot diagram open string
(signed) Gauss diagram arrow diagram

crossing number of flat knot diagram rank of string
crossing number of flat knot type homotopy rank
support genus of flat knot diagram genus of string

flat (virtual) genus homotopy genus
concordance cobordism

null-concordant based matrix hyperbolic based matrix
reverse −α opposite string α−

mirror image α∗ inverse string ᾱ
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Appendix B

Python code for computing based
matrices

import copy
import i t e r t o o l s as i t t
import numpy as np
import pandas as pd
import sympy as sym
t = sym . symbols ( ’ t ’ )

def gcode2theta ( gcode ) :
i f ’ 10 ’ in gcode :

gcode=gcode . r ep l a c e ( ’ 10 ’ , ’ x ’ )
rank num = int ( len ( gcode )/4)
a s s e r t rank num == len ( gcode )/4
# now we make a l i s t f o r t a i l s :
t a i l s = [ ]
for i in range (1 , rank num+1):

i f i < 10 :
t a i l s . append ( int ( gcode . r index ( ”O%i ” %i )/2+1))

e l i f i ==10:
t a i l s . append ( int ( gcode . r index ( ”O%s” %’x ’ )/2+1))

# now we make a l i s t f o r heads :
heads = [ ]
for i in range (1 , rank num+1):

i f i < 10 :
heads . append ( int ( gcode . r index ( ”U%i ” %i )/2+1))

e l i f i ==10:
heads . append ( int ( gcode . r index ( ”U%s” %’x ’ )/2+1))

# now c a l c u l a t e the ta , which rep re s en t the lower t r i a n g l e o f the matrix :
# f i r s t l y , we c a l c u l a t e the f i r s t column n( e i )=B( e i , s )
theta = [ ]
for i in range (0 , rank num ) :

# i i s 1 l e s s than the arrow number
i f t a i l s [ i ]<heads [ i ] :

subs t r = gcode [ ( t a i l s [ i ] ∗ 2 ) : ( heads [ i ]∗2 −2)]
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else :
subs t r = gcode [ ( t a i l s [ i ]∗ 2 ) : ]+ gcode [ : ( heads [ i ]∗2 −2)]

theta . append ( subs t r . count ( ”O”)− subs t r . count ( ”U” ) )
# n=#t a i l s−#heads

# now we c a l c u l a t e B( e i , e j ) , where i>j :
for j in range (0 , rank num ) :

for i in range ( j +1,rank num ) :
i f t a i l s [ i ]<heads [ i ] :

e i=gcode [ ( t a i l s [ i ] ∗ 2 ) : ( heads [ i ]∗2 −2)]
else :

e i=gcode [ ( t a i l s [ i ] ∗ 2 ) : ]+ gcode [ : ( heads [ i ]∗2 −2)]
i f t a i l s [ j ]<heads [ j ] :

e j=gcode [ ( t a i l s [ j ] ∗ 2 ) : ( heads [ j ]∗2 −2)]
else :

e j=gcode [ ( t a i l s [ j ]∗ 2 ) : ]+ gcode [ : ( heads [ j ]∗2 −2)]
dotprod=0
for m in range (0 , len ( e i ) , 2 ) :

i f e i [m] == ”O” and ( ”U%s” %e i [m+1] in e j ) :
dotprod += 1

i f e i [m] == ”U” and ( ”O%s” %e i [m+1] in e j ) :
dotprod += −1

i f t a i l s [ i ]<heads [ i ] :
e p s i l o n=int ( t a i l s [ i ]< t a i l s [ j ]<heads [ i ])− int ( t a i l s [ i ]<heads [ j ]<heads [ i ] )

else :
e p s i l o n=int ( t a i l s [ i ]< t a i l s [ j ])+ int ( t a i l s [ j ]<heads [ i ])−\
int ( t a i l s [ i ]<heads [ j ])− int ( heads [ j ]<heads [ i ] )

theta . append ( dotprod+ep s i l o n )
a s s e r t len ( theta )∗2 == rank num ∗( rank num+1)
return theta

def theta2matr ix ( theta ) :
”””
input a the ta , output i s a based matrix (no s o r t i n g not necessary p r im i t i v e
”””
theta new=copy . copy ( theta )
rank num=int (np . s q r t (2∗ len ( theta )))+1
k=0
i=rank num
theta new . i n s e r t (k , 0 )
while k<int ( rank num ∗( rank num+1)/2)−1:

k += i
i −= 1
theta new . i n s e r t (k , 0 )

a s s e r t len ( theta new)==int ( rank num ∗( rank num+1)/2)
t r i u = np . t r i u i n d i c e s ( rank num )
# Find upper r i g h t i n d i c e s o f a t r i a n g u l a r nxn matrix
t r i l = np . t r i l i n d i c e s ( rank num , −1)
# Find lower l e f t i n d i c e s o f a t r i a n g u l a r nxn matrix
ar r = np . z e r o s ( ( rank num , rank num ) )
ar r [ t r i u ] = theta new # Assign l i s t v a l u e s to upper r i g h t matrix
ar r [ t r i l ] = −ar r .T[ t r i l ] # Make the matrix symmetric
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return −ar r . astype ( int )

def inv ( i npu t a r r ) :
”””
s imply c a l c u l a t e the p r im i t i v e matrix f o r o r i e n t a t i on reve r sed diagram .
”””
rank num=inpu t a r r . shape [ 0 ]
a r r= np . z e r o s ( ( rank num , rank num ) )
for i in range (1 , rank num ) :

a r r [ i ] =inpu t a r r [ i ]− i npu t a r r [ 0 ]
for i in range (1 , rank num ) :

a r r [ : , i ]−=inpu t a r r [ : , 0 ]
a r r [0]=− i npu t a r r [ 0 ]
a r r [ : ,0 ]=− i npu t a r r [ : , 0 ]
return ar r . astype ( int )

def ca l mat r i x ( gcode ) :
”””
Gauss code to a l l matr ices and phi
”””
theta=gcode2theta ( gcode )
a r r=theta2matr ix ( theta )
phi = min phi ( p r im i t i v e ( a r r ) )
prim matrix = theta2matr ix ( phi )
i nv ph i = min phi ( inv ( prim matrix ) )
bar ph i = min phi(− inv ( prim matrix ) )
invbar ph i = min phi (−( prim matrix ) )
sym type =[0 ,0 , 0 ]
i f i nv ph i == phi :

i f i nvbar ph i != bar ph i :
print ( ’ something went wrong ! ’ , phi , inv phi , bar phi , i nvbar ph i )

a s s e r t invbar ph i==bar ph i
sym type [0 ]=1

i f bar ph i == phi :
i f i nvbar ph i != inv ph i :

print ( ’ something went wrong ! ’ , phi , inv phi , bar phi , i nvbar ph i )
a s s e r t invbar ph i==inv ph i
sym type [1 ]=1

i f i nvbar ph i == phi :
i f bar ph i != inv ph i :

print ( ’ something went wrong ! ’ , phi , inv phi , bar phi , i nvbar ph i )
a s s e r t bar ph i==inv ph i
sym type [2 ]=1

i f sym type ==[0 ,0 ,0 ] :
i f bar ph i==inv ph i or bar ph i==invbar ph i or i nv ph i==invbar ph i :

print ( ’ something went wrong ! ’ , phi , inv phi , bar phi , i nvbar ph i )
a s s e r t bar ph i != inv ph i and bar ph i != invbar ph i and i nv ph i != invbar ph i

i n po l y = sym . l a t ex (
sym . Matrix ( prim matrix [ 1 : , 1 : ] ) . charpoly ( t )
) . s p l i t ( ” l e f t ( ” ) [ 1 ] . s p l i t ( ” , ” ) [ 0 ]
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out po ly = sym . l a t e x (
sym . Matrix ( prim matrix ) . charpo ly ( t )
) . s p l i t ( ” l e f t ( ” ) [ 1 ] . s p l i t ( ” , ” ) [ 0 ]

i s p r im = ( ar r . s i z e==prim matrix . s i z e )
a s s e r t sum( a r r [0])==0
a s s e r t sum( prim matrix [0])==0

return pd . S e r i e s ({
”bsMtxNoSrt” : arr ,
”primMatrix” : prim matrix ,
” isPrim” : i s pr im ,
”phi ” : phi ,
”phi sym” : min ( [ phi , inv phi , bar ph i , i nvbar ph i ] ) ,
” inPoly ” : in po ly ,
# ”outPoly ” : ou t po l y ,
” inv ph i ” : i nv ph i ,
” bar ph i ” : bar ph i ,
” invbar ph i ” : invbar ph i ,
” sym type” : sym type
})

def so r t 2nd deep ( ar r ) :
i f ar r . shape [0]==1:

print ( ” caut ion o f s i z e ! ” )
return [ 0 ]

v a l s = ar r [ : , 0 ] [ 1 : ]
ind=range (1 , len ( va l s )+1)
pdata=pd . DataFrame ({ ’ v a l s ’ : va l s , ’ ind ’ : ind })
indnodup=l i s t ( set ( va l s ) )
indnodup . s o r t ( )
p o s s i b l e s ub = [ [ ] ]
# now dea l wi th P 1
perms1=l i s t ( i t t . permutat ions ( pdata [ pdata . va l s==indnodup [ 0 ] ] [ ’ ind ’ ] . t o l i s t ( ) ) )
min vector=arr [ perms1 [ 0 ] [ 1 : ] , perms1 [ 0 ] [ 0 ] ]
m i n l i s t =[perms1 [ 0 ] ]
i f len ( perms1 )>1:

for perm in perms1 [ 1 : ] :
i f ar r [ perm [ 1 : ] , perm [ 0 ] ] . t o l i s t ()< min vector . t o l i s t ( ) :

m i n l i s t =[perm ]
min vector=arr [ perm [ 1 : ] , perm [ 0 ] ]

e l i f ar r [ perm [ 1 : ] , perm [ 0 ] ] . t o l i s t ( ) == min vector . t o l i s t ( ) :
m i n l i s t . append (perm)

p 1 l i s t= l i s t ( set ( [ l i s t (perm) [ 0 ] for perm in min l i s t ] ) )
p o s s i b l e s ub =np . array ( m i n l i s t )
# now dea l wi th P i
for candidate in indnodup [ 1 : ] :

permsi=l i s t ( i t t . permutat ions ( pdata [ pdata . va l s==candidate ] [ ’ ind ’ ] . t o l i s t ( ) ) )
min vector=arr [ permsi [ 0 ] , p 1 l i s t [ 0 ] ]
m i n l i s t =[a+l i s t ( permsi [ 0 ] )

for a in po s s i b l e s ub [ p o s s i b l e s ub [ : ,0 ]== p 1 l i s t [ 0 ] ] . t o l i s t ( ) ]
i f len ( permsi )>1 or len ( p 1 l i s t )>1:
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for perm in permsi :
for p1 in p 1 l i s t :

i f ar r [ perm , p1 ] . t o l i s t ()< min vector . t o l i s t ( ) :
m i n l i s t= [ a+l i s t (perm)

for a in po s s i b l e s ub [ p o s s i b l e s ub [ : ,0 ]==p1 ] . t o l i s t ( ) ]
min vector=arr [ perm , p1 ]

e l i f ar r [ perm , p1 ] . t o l i s t ( ) == min vector . t o l i s t ( ) :
m i n l i s t += [ a+l i s t (perm)

for a in po s s i b l e s ub [ p o s s i b l e s ub [ : ,0 ]==p1 ] . t o l i s t ( ) ]
p 1 l i s t= l i s t ( set ( [ l i s t (perm ) [ 0 ] for perm in min l i s t ] ) )
p o s s i b l e s ub =np . array ( m i n l i s t )

return po s s i b l e s ub

def min phi ( a r r ) :
”””
input i s a matrix , some order ing s
”””
i f ar r . shape [0]==1:

return [ 0 ]
p o s s i b l e s ub=sor t 2nd deep ( ar r )
candidate =[ ]
for sort wanted in po s s i b l e s ub . t o l i s t ( ) :

new arr=ar r [ [ 0 ]+ sort wanted ] [ : , [ 0 ]+ sort wanted ]
phi = −new arr [ np . t r i u i n d i c e s ( new arr . shape [ 0 ] ,+1 ) ]
candidate . append ( phi . t o l i s t ( ) )

return min( candidate )

def pr im i t i v e ( base matr ix ) :
”””
input any based matrix
output a p r im i t i v e based matrix
”””
l en0=base matr ix . shape [ 0 ]
l en1=0
m1=base matr ix
while len1<l en0 :

l en0=m1. shape [ 0 ]
m1=pr im i t i v e1 (m1)
m1=pr im i t i v e2 (m1)
m1=pr im i t i v e1 (m1)
m1=pr im i t i v e2 (m1)
l en1=m1. shape [ 0 ]

return m1

def pr im i t i v e1 ( base matr ix ) :
”””
R1 type e lementary reduc t ion
”””
m2=base matr ix
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i f len (np . where (
˜ base matr ix [ : ] . any( ax i s=0)
) [0 ] ) >1 and 0 in np . where ( ˜ base matr ix [ : ] . any( ax i s =0 ) ) [ 0 ] :
m2 = np . d e l e t e (

np . d e l e t e (
base matr ix , np . where (˜ base matr ix [ : ] . any( ax i s = 0 ) ) [ 0 ] [ 1 : ] , a x i s =0) ,

np . where (˜ base matr ix [ : ] . any( ax i s = 1 ) ) [ 0 ] [ 1 : ] ,
a x i s=1)

e l i f len (np . where (
˜ base matr ix [ : ] . any( ax i s=0)
) [0 ] ) >0 and not 0 in np . where ( ˜ base matr ix [ : ] . any( ax i s =0 ) ) [ 0 ] :
m2 = np . d e l e t e (

np . d e l e t e (
base matr ix , np . where (˜ base matr ix [ : ] . any( ax i s = 0 ) ) [ 0 ] [ : ] , a x i s =0) ,

np . where (˜ base matr ix [ : ] . any( ax i s = 1 ) ) [ 0 ] [ : ] ,
a x i s=1)

m3 = np . d e l e t e (
np . d e l e t e (m2, np . where ( np . a l l (m2[: ]==m2[ 0 ] , ax i s = 1 ) ) [ 0 ] [ 1 : ] , a x i s =0) ,
np . where ( np . a l l (m2[: ]==m2[ 0 ] , ax i s = 1 ) ) [ 0 ] [ 1 : ] ,
a x i s=1)

return (m3)

def pr im i t i v e2 ( base matr ix ) :
”””
R2 type e lementary reduc t ion
”””
m3=base matr ix
for i in range (1 ,m3. shape [ 0 ] ) :

for j in range ( i +1,m3. shape [ 0 ] ) :
i f np . a l l (m3[ i ]+m3[ j ]==m3 [ 0 ] ) :

return (np . d e l e t e (np . d e l e t e (m3, [ i , j ] , a x i s =0) , [ i , j ] , a x i s =1))
return (m3)

def c a l f i l l i n g (ma) :
”””
ge t the genus and the f i l l i n g s
”””
a s s e r t type (ma)==np . ndarray
recordRank=ma. shape [ 0 ]
mFi l l ing =[ ]
for par in reversed ( sorted ( f a s t p a r t i t i o n s ( l i s t ( range (1 ,ma. shape [ 0 ] ) ) ) ) ) :

ma1=copy . copy (ma)
toBeDeleted =[ ]
for item in par :

i f len ( item )>1:
ma1=np . append (ma1 ,

np . expand dims ( (ma1 [ l i s t ( item ) [ 0 ] , : ] +ma1 [ l i s t ( item ) [ 1 ] , : ] ) , 0 ) ,
ax i s=0)

ma1=np . append (ma1 ,
np . expand dims ( (ma1 [ : , l i s t ( item ) [ 0 ] ] +ma1 [ : , l i s t ( item ) [ 1 ] ] ) , 1 ) ,
ax i s=1)
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toBeDeleted+=l i s t ( item )
ma1=np . d e l e t e (np . d e l e t e (ma1 , toBeDeleted , ax i s =0) , toBeDeleted , ax i s=1)
i f np . l i n a l g . matr ix rank (ma1)<recordRank :

mFi l l ing=[par ]
recordRank=np . l i n a l g . matr ix rank (ma1)

e l i f np . l i n a l g . matr ix rank (ma1)==recordRank :
mFi l l ing . append ( par )

a s s e r t recordRank %2 == 0
genus=int ( recordRank /2)
return (pd . S e r i e s ({

”mFi l l ing (w/Gcode ) ” : mFi l l ing ,
” genus” : genus
} ) )

def f a s t p a r t i t i o n s ( s e t ) :
i f not s e t :

y i e l d [ ]
return

for i in range ( int (2∗∗ len ( s e t ) / 2 ) ) :
i f ( ”{:0% ib }” % len ( s e t ) ) . format ( i ) . count ( ’ 0 ’ )<=2:

par t s = [ set ( ) , set ( ) ]
for item in s e t :

par t s [ i %2] . add ( item )
i //=2

for item in f a s t p a r t i t i o n s ( par t s [ 1 ] ) :
# Dele te those who have >2 sub s e t :
#a s s e r t l en (max ( [ pa r t s [ 0 ] ]+ b , key=len ))<=2
y i e l d [ par t s [ 0 ] ]+ item
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Python code for computing flat
Jones-Krushkal polynomials

import numpy as np
import pandas as pd
import sympy as sym
import networkx as nx
import copy

z=sym . Symbol ( ’ z ’ )
t=sym . Symbol ( ’w ’ )

def c a l j k e n p o l y ( s t rF la t , mstr ) :
i f type ( mstr)==np . ndarray :

i s a c =(˜mstr .any( ax i s =1) ) [ 0 ]
mod2bsdmtr=np . remainder (mstr , 2 )

i f type ( mstr)==str :
i s a c =(˜np . array ( eval (

mstr . r ep l a c e ( ’ ’ , ’ , ’ ) . r e p l a c e ( ’ − ’ , ’ , ’ ) . r e p l a c e ( ’ \n ’ , ’ , ’ )
) ) .any( ax i s =1) ) [ 0 ]

mod2bsdmtr=np . remainder ( eval (
mstr . r ep l a c e ( ’ ’ , ’ , ’ ) . r e p l a c e ( ’ − ’ , ’ , ’ ) . r e p l a c e ( ’ \n ’ , ’ , ’ ) ) , 2 )

i s c c = (˜mod2bsdmtr .any( ax i s =1)) [ 0 ]
i f ’ 10 ’ in s t rF l a t :

s t rF l a t=s t rF l a t . r ep l a c e ( ’ 10 ’ , ’ x ’ )
rank num = int ( len ( s t rF l a t )/4)
a s s e r t rank num == len ( s t rF l a t )/4
# now we make a l i s t f o r t a i l s :
t a i l s = [ ]
for i in range (1 , rank num+1):

i f i < 10 :
t a i l s . append ( int ( s t rF l a t . r index ( ”O%i ” %i )/2+1))

e l i f i ==10:
t a i l s . append ( int ( s t rF l a t . r index ( ”O%s” %’x ’ )/2+1))
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# now we make a l i s t f o r heads :
heads = [ ]
for i in range (1 , rank num+1):

i f i < 10 :
heads . append ( int ( s t rF l a t . r index ( ”U%i ” %i )/2+1))

e l i f i ==10:
heads . append ( int ( s t rF l a t . r index ( ”U%s” %’x ’ )/2+1))

arrneg=(np . array ( heads)<np . array ( t a i l s ) ) . astype ( int )
ht=np . array ( [ sorted ( x ) for x in l i s t (np . array ( [ heads , t a i l s ] ) . t ranspose ( ) ) ] )
a r c s =[ ]
for i in range ( rank num ∗2 ) :

i f s t rF l a t [ i ∗2]== ’O’ :
node=heads [ int ( ( s t rF l a t [ i ∗2+1] ) . r ep l a c e ( ’ x ’ , ’ 10 ’ ) )−1]
c on s i d e r b e f o r e 0= ( ht [ : , 0 ] <=node )∗ ( ht [ : , 1 ] > node ) . astype ( int)+arrneg
c on s i d e r b e f o r e=np . append (np . array ( [ 1 ] ) , c on s i d e r b e f o r e 0 , ax i s=0)

else : c o n s i d e r b e f o r e = np . z e ro s ( rank num+1 , dtype=int )
i f s t rF l a t [ ( i ∗2+2)%len ( s t rF l a t )]== ’U ’ :

node=t a i l s [ int ( ( s t rF l a t [ ( i ∗2+3)%len ( s t rF l a t ) ] ) . r ep l a c e ( ’ x ’ , ’ 10 ’ ) )−1]
c o n s i d e r a f t e r 0= ( ht [ : , 0 ] <node )∗ ( ht [ : , 1 ] >=node ) . astype ( int)+arrneg
c o n s i d e r a f t e r=np . append (np . array ( [ 1 ] ) , c o n s i d e r a f t e r 0 , ax i s=0)

else : c o n s i d e r a f t e r = np . z e ro s ( rank num+1 , dtype=int )
a r c s . append ( ( c on s i d e r b e f o r e+c o n s i d e r a f t e r ) %2 )

a r c i n t ma t r i x = np . array ( a r c s )
po l y co e f =[0 ]∗ ( rank num ∗2)
jkpoly normed=0
enpoly=0
for i in range (2∗∗ rank num ) :

stanum=(”{:0% ib }” %rank num ) . format ( i ) # 7 i s ’00111 ’ f o r 5 c ro s s i n g knot
hom rank , hom ker , hom t r i v i a l=c a l j k p o l y o n e s t a t e (

stanum , t a i l s , heads , rank num , a r c i n t mat r i x , mod2bsdmtr )
po l y co e f [ hom rank]+=(−2)∗∗hom ker
jkpoly normed +=(−2)∗∗(hom ker− i s c c )∗ z ∗∗( hom rank−1+i s c c )
enpoly +=(−2)∗∗hom ker∗z∗∗hom rank∗ t ∗∗( hom ker+hom rank−hom t r i v i a l )

return (pd . S e r i e s ({
” jk coe f unnorm” : po lycoe f ,
” jk poly normed ” : jkpoly normed ,
’ en poly unnorm ’ : enpoly ,
’ i s c c ’ : i s c c ,
’ i s a c ’ : i s a c

}) )

def c a l j k p o l y o n e s t a t e ( stanum , t a i l s , heads , rank num , a r c i n t mat r i x , mod2bsdmtr ) :
a s p l i t =[ j for j in range ( len ( stanum ) ) i f stanum . s t a r t sw i t h ( ’ 0 ’ , j ) ]
b s p l i t =[ j for j in range ( len ( stanum ) ) i f stanum . s t a r t sw i t h ( ’ 1 ’ , j ) ]
G=nx . Graph ( )
G. add nodes from ( range (0 , rank num ∗2))
for i in a s p l i t :

G. add edge ( ( ( heads [ i ]−2)%(rank num ∗2) ) , ( ( t a i l s [ i ]−1)%(rank num ∗2 ) ) )
G. add edge ( ( ( heads [ i ]−1)%(rank num ∗2) ) , ( ( t a i l s [ i ]−2)%(rank num ∗2 ) ) )

for i in b s p l i t :
G. add edge ( ( ( heads [ i ]−1)%(rank num ∗2) ) , ( ( t a i l s [ i ]−1)%(rank num ∗2 ) ) )
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G. add edge ( ( ( heads [ i ]−2)%(rank num ∗2) ) , ( ( t a i l s [ i ]−2)%(rank num ∗2 ) ) )
arcmatr ix =[ ]
components=nx . connected components (G)
for value in components :

a r c l s t =[0 ]∗ ( rank num ∗2)
for i in value :

a r c l s t [ i ]=1
arcmatr ix . append ( a r c l s t )

a r c i n g en=np . matmul (np . array ( arcmatr ix ) , a r c i n t ma t r i x ) %2
arc sum int=np . matmul ( a r c in gen , mod2bsdmtr)%2
hom rank=sym . Matrix ( ( a r c i n g en ) ) . rank ( i s z e r o f un c=lambda x : x % 2 == 0)
hom ker=len ( arcmatr ix)−hom rank
hom t r i v i a l=np .sum(˜ a r c i n g en .any ( 1 ) )
a s s e r t hom rank<10
return ( hom rank , hom ker , hom t r i v i a l )

def c a l j k f r om gcode ( gcode ) :
return c a l j k e n p o l y ( gcode , theta2matr ix ( gcode2theta ( gcode ) ) )
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