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Abstract. Using the Gordon-Litherland pairing, one can define invariants (signa-
ture, nullity, determinant) for Z/2 null-homologous links in thickened surfaces. In
this paper, we study the concordance properties of these invariants. For example,
if K ⊂ Σ × I is Z/2 null-homologous and slice, we show that its signatures van-
ish and its determinants are perfect squares. These statements are derived from a
cobordism result for closed unoriented surfaces in certain 4-manifolds.

The Brown invariants are defined for Z/2 null-homologous links in thickened
surfaces. They take values in Z/8 ∪ {∞} and depend on a choice of spanning
surface. We present two equivalent methods to defining and computing them, and
we prove a chromatic duality result relating the two. We study their concordance
properties, and we show how to interpret them as Arf invariants for null-homologous
links. The Brown invariants and knot signatures are shown to be invariant under
concordance of spanning surfaces.

Introduction

In the previous paper [BCK21], we introduced invariants (signature, determinant,
nullity) for Z/2 null-homologous links in thickened surfaces. The invariants are de-
fined in terms of the Gordon-Litherland pairing, and they depend on a choice of
spanning surface up to S∗-equivalence.

In the present paper, we use the invariants to define slice obstructions for knots in
thickened surfaces. Specifically, given a Z/2 null-homologous knot K in a thickened
surface, we show that if K is slice, then its knot signatures vanish and its knot
determinants are perfect squares. (See Theorems 3.2 and 3.4.) We also show that the
knot signatures are invariant under a new notion of concordance, namely concordance
of spanning surfaces (see Definition 5.1).

These results are deduced from our main result, Theorem 2.1. Suppose W is a
compact, oriented 3-manifold with ∂W = Σ, and E ⊂ W × I is a closed unoriented
surface with [E] = 0 in H2(W × I;Z/2) and trivial Euler class. Then Theorem 2.1
asserts that there exists a 3-manifold V embedded in W × I with ∂V = E. It is used
to prove Theorems 3.2 and 3.4, and it is also used to prove a vanishing result for the
Brown invariants for slice knots (Theorem 4.12).

The Brown invariants are defined for Z/2 null-homologous links in thickened sur-
faces and take values in Z/8∪ {∞}. We provide two definitions, one in terms of Z/4
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quadratic enhancements of the Gordon-Litherland pairing, and another in terms of
Goeritz matrices associated to checkerboard colorings of link diagrams. We relate the
two approaches by proving a chromatic duality result (Theorem 4.10).

The first approach shows that the Brown invariants depend on a choice of spanning
surface up to S∗-equivalence. (A proof that they are invariant under S∗-equivalence
can be found in the recent paper of Klug [Klu20].) Every non-split, Z/2 null-
homologous link L ⊂ Σ × I has two distinct S∗-equivalence classes of spanning sur-
faces, thus each such link admits two distinct Brown invariants. In this way, the
Brown invariants are similar to the other invariants (signature, determinant, nullity)
defined in terms of the Gordon-Litherland pairing.

The second approach shows that the Brown invariants can always be computed in
terms of Goeritz matrices. This leads to a fast and efficient algorithm for computing
them. We also study the behavior of the invariants under horizontal and vertical
mirror symmetry, and we relate them to Arf invariants in the special case when
L ⊂ Σ× I is a null-homologous link.

The Goeritz matrices were first introduced in [Goe33], which gave the first ap-
plications of quadratic forms to knot theory, see [Prz11] and [Tra17a]. Goeritz ma-
trices continue to inspire new and important results, such as [Bon21] and [Tra17b].
In [Bon21], Boninger shows that the Jones polynomial of a link can be computed
from its Goeritz matrix. In [Tra17b], Traldi shows that a link is determined up to
mutation by the Goeritz matrices of its diagrams.

Our results touch upon another invariant with a long and distinguished history,
namely the Arf invariant [Arf41]. As a knot invariant, it was first studied by Robertello
[Rob65], who showed it to be invariant under concordance. It is also invariant un-
der the band pass move [Kau87], and it is equal to the mod 2 reduction of Casson’s
knot invariant [PV01]. It is also equal to the value VK(t)|t=i of the Jones polyno-
mial [Lic97]. In particular, the Arf invariant is an invariant of finite-type, in fact, it is
the only finite-type knot invariant which is also invariant under concordance [Ng98].

One motivation for studying concordance of knots in thickened surfaces comes
from applications to concordance of virtual knots. For example, the Brown invariants
extend to invariants of checkerboard colorable virtual knots and links. In fact, using
parity projection, they can be extended to invariants for all virtual knots. As well,
since parity projection preserves concordance (Theorem 5.9 [BCG20]), it follows that
the extended Brown invariants are slice obstructions for arbitrary virtual knots.

For a null-homologous knot, the Brown invariant specializes to its Arf invariant,
so it is natural to wonder whether the Brown invariants are finite-type invariants.
Specifically, can they be computed on subdiagrams? For classical knots, the Casson
invariant is an integral lift of the Arf invariant, and so it is natural to wonder whether
the Brown invariants also have integral lifts.

For a classical link, it is well-known that the Arf invariant is only defined when the
link is proper. (Recall that a classical link L = K1∪· · ·∪Kn is proper if `k(Ki, LrKi)
is even for all i = 1, . . . , n.) This is precisely the condition needed to ensure that the
quadratic form associated to a Seifert surface for L is proper, see [KM04, p.226]. It
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would be interesting to determine conditions on a link with spanning surface F ⊂ Σ×I
so that its Z/4 quadratic form ϕF is proper (see Section 4.1).

In Section 1, we review concordance for links L ⊂ Σ × I and discuss the Gordon-
Litherland pairing and the resulting link invariants. In Section 2, we state and prove
the main result, Theorem 2.1. We also provide a discussion focused on the hypotheses
of Theorem 2.1. In Section 3, we establish the slice criteria on the signature and
determinant derived from Theorem 2.1. In Section 4, we review Z/4 enhanced forms
and their Brown invariants. We then discuss the associated link invariants, showing
they provide slice obstructions and proving a chromatic duality result. In Section 5, we
introduce the notion of concordance of spanning surfaces, and we study the behavior
of the signature and Brown invariants under concordance of spanning surfaces.

Conventions. Throughout this paper, spanning surfaces are assumed to be compact
and connected, but they are not assumed to be oriented or even orientable.

1. Preliminaries

We begin this section by introducing some basic notions. We then review Turaev’s
definition of concordance for links in thickened surfaces, and recall the construction
of the Gordon-Litherland pairing and describe link invariants such as the signature,
nullity, determinant which are defined in terms of the Gordon-Litherland pairing.

1.1. Basic notions. Throughout this paper, Σ will denote a compact, connected,
oriented surface and I = [0, 1], the unit interval. A link in Σ × I is an embedding
of S1 t · · · t S1 into the interior of Σ × I, considered up to orientation-preserving
homeomorphisms of the pair (Σ × I,Σ × {0}). The link L ⊂ Σ × I is said to be R
null-homologous if [L] = 0 in H1(Σ × I;R). When R = Z is understood by context,
we use null-homologous to mean Z null-homologous without any confusion.

Given a link L ⊂ Σ×I, a spanning surface for L is a compact, connected, unoriented
surface F with boundary ∂F = L. If F is oriented, then it is called a Seifert surface
for L. In that case, L inherits an orientation as the oriented boundary of F .

Note that a link L ⊂ Σ × I is Z/2 null-homologous if and only if it admits a
spanning surface, and it is null-homologous if and only if it admits a Seifert surface.

Any spanning surface F ⊂ Σ × I for L determines a symmetric bilinear pairing
on H1(F ;Z) called the Gordon-Litherland pairing. Using this pairing, one can define
signature, determinant and nullity invariants for Z/2 null-homologous links L ⊂ Σ×I,
[BCK21]. When L is checkerboard colorable, the invariants of [BCK21] agree with
the invariants defined by Im, Lee, and Lee in terms of Goeritz matrices [ILL10].

The invariants (signature, determinant, nullity) derived from the Gordon-Lither-
land pairing depend on the choice of spanning surface, but they are invariant under
S∗-equivalence (see Definition 1.2 and [BCK21, §2.3]).

When Σ has genus g(Σ) ≥ 1, every non-split Z/2 null-homologous link L ⊂ Σ× I
has exactly two S∗-equivalence classes of spanning surfaces, see [BCK21, Proposition
1.6]. Thus, links in thickened surfaces typically have two signatures, two determinants,
and two nullities.
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1.2. Concordance and slice knots. We recall the notions of cobordism and con-
cordance for knots in thickened surfaces, originally introduced by Turaev [Tur08].

Definition 1.1 (Turaev). Two knots K0 ⊂ Σ0 × I and K1 ⊂ Σ1 × I are said to be
concordant if there exists a compact, oriented 3-manifold W with ∂W = −Σ0 ∪ Σ1

and an annulus A properly embedded in W × I such that ∂A = K0 tK1.
More generally, a cobordism is an oriented surface Z properly embedded in W × I

such that ∂Z = K0 tK1.

Note that there exists a cobordism between any two knots in thickened surfaces.
For a proof, see [Kau15]. The slice genus of a knot K ⊂ Σ× I is defined by setting

gs(K) = min{g(Z) | Z is a cobordism from K to the unknot},
where g(Z) denotes the genus of cobordism surface Z. A knot K ⊂ Σ× I is said to
be slice if it is concordant to the unknot. In particular, a knot K ⊂ Σ× I is slice if
and only if gs(K) = 0.

1.3. Gordon-Litherland pairing. Associated to a link L in Σ×I with spanning sur-
face F , there is a symmetric bilinear pairing onH1(F ;Z) called the Gordon-Litherland
pairing. In this section, we review the definition of the Gordon-Litherland pairing,
following [BCK21] and [BK21].

To begin, we recall the asymmetric linking for simple closed curves in Σ × I.
Given two disjoint oriented simple closed curves J,K in the interior of Σ × I, de-
fine `k(J,K) = J ·B, where B is a 2-chain in Σ× I such that ∂B = K − v for some
1-cycle v in Σ× {1} and · denotes the intersection number.

Let F ⊂ Σ × I be a compact, connected, unoriented surface. Its normal bundle
N(F ) has boundary a {±1}-bundle F̃ π−→ F , a double cover with F̃ oriented. Define
the transfer map τ : H1(F ;Z)→ H1(F̃ ;Z) by setting τ([a]) = [π−1(a)].

For a, b ∈ H1(F ;Z), define GF (a, b) = 1
2

(
`k(τa, b) + `k(τb, a)

)
. This pairing is well-

defined, takes values in the integers, and is symmetric (for proofs of these and other
statements, see [BCK21] and [BK21]). The map GF : H1(F ;Z) × H1(F ;Z) → Z is
called the Gordon-Litherland pairing.

Let L ⊂ Σ × I be a Z/2 null-homologous link and F ⊂ Σ × I a spanning surface
for L. Assuming that L has m components, we can write L = K1 ∪ · · · ∪ Km. Let
L′ = K ′1 ∪ · · · ∪K ′m be the push-off of L in Σ× I that misses F . Fix an orientation
on L, which gives an orientation for each component Ki, and choose the compatible
orientation on K ′i. Then define

e(F ) = −
m∑
i=1

`k(Ki, K
′
i) and e(F,L) = −

m∑
i,j=1

`k(Ki, K
′
j).

Here, e(F,L) will depend on the choice of orientation of L, but e(F ) is independent
of that choice. The two are related by the formula e(F,L) = e(F ) − λ(L), where
λ(L) =

∑
i 6=j `k(Ki, Kj) is the total linking number of L. In the case of knots,

e(F,K) = e(F ).
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In [BCK21], the Gordon-Litherland pairing is used to define signature, determinant,
and nullity invariants for links in thickened surfaces. Let L ⊂ Σ × I be a link and
F ⊂ Σ × I a spanning surface. Then the determinant is det(L, F ) = | det(GF )|, the
nullity is n(L, F ) = nullity(GF ), and the signature is σ(L, F ) = sig(GF ) + 1

2
e(F,L).

Each of det(L, F ), n(L, F ) and σ(L, F ) depend only on the S∗-equivalence of the
spanning surface F .

Definition 1.2. Two spanning surfaces are S∗-equivalent if one can be obtained
from the other by (i) ambient isotopy, (ii) attachment (or removal) of a tube, and
(iii) attachment (or removal) of a half-twisted band.

A link in Σ × I is said to be split if it can be represented by a disconnected
diagram on Σ. A link is said to be checkerboard colorable if it can be represented by
a checkerboard colorable diagram on Σ (see Definition 3.8).

As previously mentioned, for every link L ⊂ Σ× I that is non-split and Z/2 null-
homologous, there are two S∗-equivalence classes of spanning surfaces. In fact, a
link L ⊂ Σ × I is Z/2 null-homologous if and only if it is checkerboard colorable
(see [BCK21, Proposition 1.1]), and every spanning surface is S∗-equivalent to one of
checkerboard surfaces (see [BCK21, Proposition 1.6]). Thus, for such links, there are
two sets of invariants arising from the Gordon-Litherland pairing.

2. Main theorem

In this section, we state and prove the main theorem, which gives a cobordism
result for closed unoriented surfaces. The proof involves obstruction theory, and we
are grateful to Danny Ruberman, who sent us a sketch of a key step in the following
proof. Following the proof, we discuss applications with an eye toward ensuring that
the hypotheses of Theorem 2.1 are satisfied.

Applications of Theorem 2.1 to questions about concordance of knots will be given
in Section 3. This is where we show that the signature and determinant provide
obstructions to knots being slice.

For additional background information about nonorientable surfaces in 3- and 4-
manifolds, we refer readers to [BW69] and [LRS15].

Theorem 2.1. Let W be a compact oriented 3-manifold with ∂W = Σ. Assume that
E ⊂ W ×I is a closed nonorientable surface with [E] = 0 in H2(W ×I;Z/2) and with
normal Euler number e(E) = 0. Then there exists a compact 3-manifold V ⊂ W × I
with ∂V = E.

Proof. Every nonorientable surface E can be written as a connected sum of RP2, and
in this context, a surface with E = #g

i=1RP2 is said to have nonorientable genus g.
A routine calculation shows that

Hi(E;Z) =

{
Z if i = 0,

Z/2⊕ Zg−1 if i = 1,
and Hi(E;Z/2) =

{
Z/2 if i = 0, 2,

(Z/2)g if i = 1.

In this case, the assumption that e(E) = 0 implies that E has nonorientable genus
g = 2k. Thus E abstractly bounds a 3-manifold. This fact, together with the
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assumption that [E] = 0 in H2(W × I;Z/2), implies that E is trivial in N2(W × I),
the unoriented bordism group, by Theorem 17.1 of [CF64]. It remains to show that
E bounds a 3-manifold embedded in W × I.

Let NE be a tubular neighborhood of E inW ×I and let SE be its boundary. Then
NE is a D2 bundle over E isomorphic to the normal bundle ν(E) to the embedding
j : E → W ×I, and SE is the associated S1-bundle. Since ν(E)⊕TE ∼= j∗(T (W ×I))
and W × I is orientable, it follows that w1(ν(E)) = w1(E).

Although the normal bundle ν(E) is not orientable, it has an Euler class inH2(E;Zw),
cohomology with coefficients twisted by the representation w : π1(E) → {±1} asso-
ciated to the first Stiefel-Whitney class w1(E) [Mas69]. Poincaré duality for twisted
coefficients (cf. Theorem 5.7 in [DK01]) implies that H2(E;Zw) ∼= H0(E;Z). Thus
the Euler class is determined by an integer, namely the normal Euler number e(E).
Since e(E) = 0, the bundle ν(E) admits a nowhere zero section, which we use to split
ν(E) = L⊕ε1. Here ε1 is trivial and L is the line bundle over E with w1(L) = w1(E).

We use obstruction theory to describe the sections of SE up to homotopy. Indeed,
since the higher homotopy groups of S1 are all trivial, there is a single obstruction
to the existence of a section of SE lying in H2(E;Zw), and the obstruction to finding
a homotopy of sections lies in H1(E;Zw). Thus homotopy classes of sections of SE
are in one-to-one correspondence with elements in H1(E;Zw), which is isomorphic to
H1(E;Z) by Poincaré duality for twisted coefficients.

Let X = W × I r int(NE) and consider the Mayer-Vietoris sequence associated
with the decomposition W × I = X ∪NE:

(1) 0 // H2(SE;Z/2)
ϕ // H2(NE;Z/2)⊕H2(X;Z/2)

ψ // H2(W × I;Z/2).

Since [E] = 0 in H2(W × I;Z/2), we have ψ([E], 0) = 0. By exactness, there must
exist an element α ∈ H2(SE;Z/2) with ϕ(α) = ([E], 0). We will show that α can be
represented as the image of a section of SE.

The Gysin sequence for the bundle p : SE → E gives that

(2) 0 // H1(E;Z/2)
p∗ // H1(SE;Z/2)

f // H0(E;Z/2)
`w2 // H2(E;Z/2).

Here the second map f is given by evaluating a cohomology class on the circle fiber,
and the third map is trivial since w2 = w2(E) = 0. By the sequence (2) and our
previous calculations, we have that H1(SE;Z/2) ∼= (Z/2)2k+1, thus H2(SE;Z/2) ∼=
(Z/2)2k+1 by Poincaré duality.

Given a section of SE, its image determines an element ofH2(SE;Z/2), which we de-
note [E ′]. We can write ϕ = (ϕ1, ϕ2) for the first map of the Mayer-Vietoris sequence
(1), and note that ϕ1(α) = p∗(α) under the natural identification H2(NE;Z/2) ∼=
H2(E;Z/2). For any section, we have ϕ([E ′]) = ([E], β) for some β ∈ H2(X;Z/2).We
claim that the section can be chosen so that β = 0, namely so that ϕ([E ′]) = ([E], 0).

Let γ ∈ H1(SE;Z/2) be the Poincaré dual of [E ′] ∈ H2(SE;Z/2). According to the
Gysin sequence (2), f(γ) = 1 in H0(E;Z/2) ∼= Z/2. This holds since the intersection
number [E ′] · [F ] = 1 in SE, where [F ] ∈ H1(SE;Z/2) is the homology class of the
circle fiber.
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As previously observed, homotopy classes of sections of SE are in one-to-one corre-
spondence with elements in H1(E;Zw). Let r : H1(E;Zw)→ H1(E;Z/2) be the map
obtained by reducing coefficients mod 2, and note that this map is surjective. The
group H1(E;Zw) acts on H1(SE;Z/2) by ξ · γ = γ + p∗(r(ξ)), where ξ ∈ H1(E;Zw)
and γ ∈ H1(SE;Z/2). Note that the action is transitive on the fiber f−1(1) of (2).
Thus every element γ ∈ H1(SE;Z/2) with f(γ) = 1 is the Poincaré dual of the image
[E ′] of some section of SE. Correspondingly, every element in ϕ−11 ([E]) ⊂ H2(SE;Z/2)
is the image of some section. In particular, applied to the element α ∈ H2(SE;Z/2)
with ϕ(α) = ([E], 0), this shows that α can be represented by a section. This proves
the claim.

Let [E ′] be the image of a section of SE with ϕ([E ′]) = ([E], 0). Then E ′ is a
compact surface embedded in SE homeomorphic to E. Let ϕ : SE → BO be the
classifying map for the normal bundle of the embedding of E ′ in SE.

Since BO = RP∞ = K(Z/2, 1), the set of homotopy classes [SE,RP∞] is isomorphic
to H1(SE;Z/2). Since SE is compact, the image of ϕ must lie in RPN ⊂ RP∞ for
some N. By the claim, ϕ extends to a map ϕ : X → RPN , which we can choose
to be transverse to the codimension one submanifold RPN−1 ⊂ RPN . Taking V ′ =
ϕ−1(RPN−1), it follows that V ′ is a compact 3-manifold in X with ∂V ′ = E ′. The
manifold V is obtained from V ′ by attaching a cylinder in NE which connects E and
E ′. �

Let K ⊂ Σ×I be a knot with spanning surface F ⊂ Σ×I, and suppose thatW is a
compact oriented 3-manifold with boundary ∂W = Σ. Let S ⊂ W × I be an oriented
surface with boundary ∂S = K, and set E = F ∪S. It is a closed, unoriented surface
in W × I. The hypotheses of Theorem 2.1 require that [E] = 0 in H2(W × I;Z/2)
and that it has normal Euler number e(E) = 0.

The next proposition shows that if W is a handlebody, then up to S∗-equivalence,
E always bounds.

Theorem 2.2. Let K ⊂ Σ × I with spanning surface F ⊂ Σ × I. Let W be a
handlebody with ∂W = Σ and S ⊂ W × I an oriented surface with ∂S = K. Then
there exists a spanning surface F ′ which is S∗-equivalent to F such that E ′ = F ′ ∪ S
bounds a 3-manifold V ⊂ W × I.
Proof. By adding half-twisted bands, we can find a spanning surface F ′ such that
e(F ′) = 0. Since S is orientable, e(S) = 0, and it follows that e(E) = e(F ′)+e(S) = 0.

Since W is a handlebody, we see that H2(W × I;Z/2) = 0. Thus [E ′] = 0. The
result now follows from Theorem 2.1. �

We now show that if K is slice, then we can always find a slice disk D in W × I
for some 3-manifold W such that E = F ∪D satisfies [E] = 0 in H2(W × I;Z/2).

Theorem 2.3. Let K be slice, then there is a slice disk D ⊂ W × I for some 3-
manifold W such that E = F ∪D bounds a 3-manifold V ⊂ W × I.
Proof. As before, by adding half-twisted bands, we can arrange that e(E) = 0.
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Consider the long exact sequence in homology for the triple (W × I,Σ× I,K):

(3) H2(Σ× I,K;Z/2)
i∗ // H2(W × I,K;Z/2)

j∗ // H2(W × I,Σ× I;Z/2).

The spanning surface F gives an element [F ] ∈ H2(Σ × I,K;Z/2), which maps
to [K] ∈ H1(K;Z/2) under the long exact sequence of the pair (Σ × I,K). The
homology group H2(Σ× I,K;Z/2) is isomorphic to the Klein four-group Z/2×Z/2,
and there are exactly two elements in H2(Σ×I,K;Z/2) that map to [K]. Both occur
as the homology class of a spanning surface for K.

The slice disk D in W × I gives an element [D] ∈ H2(W × I,K;Z/2) which also
maps to [K] ∈ H1(K;Z/2) under the long exact sequence of the pair (W × I,K).
Thus, E = F ∪D has [E] = 0 in H2(W × I;Z/2) provided that [D] pulls back under
i∗ in (3) to a class in H2(Σ× I,K;Z/2).

By exactness of (3), we see that [D] pulls back if and only if it lies in the kernel of
j∗. Thus, the obstruction is the element j∗([D]) in

H2(W × I,Σ× I;Z/2) ∼= H2(W,Σ;Z/2) ∼= H1(W ;Z/2),

where the first isomorphism follows from (W × I,Σ × I) ' (W,Σ) and the second
from Poincaré duality. The corresponding element γ ∈ H1(W ;Z/2) determines a
homomorphism H1(W ;Z)→ Z/2.

Let W̃ be the associated two-fold cover of W. Then since π1(Σ) lies in the kernel
of γ, it restricts to the trivial cover on Σ. Therefore, it has two copies of Σ in its
boundary. Attach a handlebody to one of them to get a 3-manifold with boundary Σ.
Consider now the knot K and spanning surface F in the (thickening of the) boundary
of W̃ . The disk D lifts to a slice disk D̃ in W̃ × I. Notice [D̃] maps to zero under the
map H2(W̃ × I,K;Z/2)→ H2(W̃ × I,Σ× I;Z/2).

The result now follows from Theorem 2.1. �

If E = F ∪ S, with g(S) > 0, and π−1(S) is disconnected, the same argument
applies to show there is a 3-manifold W̃ such that Ẽ = F ∪ S̃ bounds a 3-manifold
in W̃ × I. The case which is problematic is when π−1(S) is connected.

3. Slice obstructions

Throughout this section, K ⊂ Σ × I will be a Z/2 null-homologous knot in a
thickened surface. Recall that a knot in a thickened surface is Z/2 null-homologous
if and only if it admits a spanning surface.

Our goal in this section is to show that, for a knot K ⊂ Σ × I with spanning
surface F , if K is slice and det(K,F ) 6= 0, then σ(K,F ) = 0 and det(K,F ) is a
perfect square.

If K is slice, then Theorem 2.3 implies that there is a 3-manifold W with slice disk
D ⊂ W × I such that the closed surface E = F ∪ D bounds a compact 3-manifold
V ⊂ W × I.
Lemma 3.1. There is a generating set {γ1, . . . , γ2g} for H1(F ;Z) such that γ1, . . . , γg
lie in the kernel of the map H1(F ;Z)→ H1(V ;Q).
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Proof. Let i : E → V be the inclusion map. First assume V is orientable. Then by
[Bre93, VI, Theorem 10.4] and/or [Hat07, Lemma 3.5], dim ( Ker i∗) = 1

2
dim (H1(E;Q)).

By a Mayer-Vietoris argument, H1(F ;Z) ∼= H1(E;Z), and by the Universal Coeffi-
cient Theorem, H1(E;Z)⊗Q ∼= H1(E;Q), and the conclusion follows in this case.

Now assume V is not orientable. If i∗ : H1(E;Z/2)→ H1(V ;Z/2), then dim ( Ker i∗) =
1
2

dim (H1(E;Z/2)). We can choose a generating set {γ1, . . . , γ2g} for H1(F ;Z), such
that the mod 2 reduction of {γ1, . . . , γg} generates Ker i∗, so they must all be mapped
to torsion elements in H1(V ;Z), and therefore, they all lie in the kernel of the map
H1(F ;Z)→ H1(V ;Q). �

Let Q be a symmetric bilinear form on a vector space V over R. A subspace U ⊂ V
is called totally isotropic if Q vanishes on U . If U is a totally isotropic subspace of
maximal dimension, then

(4) 2 dimU = r − |σ|+ n,

where r, σ and n are the rank, signature, and nullity of Q.

Theorem 3.2. Let K ⊂ Σ×I be a knot with spanning surface F such that e(F ) = 0.
Suppose further that K is slice. Then

|σ(K,F )| ≤ n(K,F ).

In particular, if n(K,F ) = 0, then σ(K,F ) = 0.

Proof. By Theorem 2.3 there is a slice disk D ⊂ W × I for some 3-manifold W such
that E = F ∪ D bounds a 3-manifold V ⊂ W × I. Now by Lemma 3.1, we have
a set {γ1, . . . , γ2g} of generators for H1(F ;Z) such that γ1, . . . , γg lie in the kernel
of the map H1(F ;Z) → H1(V ;Q). Let U be the subgroup of H1(F ;Z) generated by
γ1, . . . , γg. For any a ∈ U , there is a surface A with boundary a multiple of a. Now
suppose b ∈ U , and B is a surface with boundary a multiple of b. We have

GF (a, b) = 1
2
(`k(τa, b) + `k(τb, a)).

LetN(V ) be a tubular neighborhood of V inW×I. ThenN(V ) is a (possibly twisted)
I-bundle over V with boundary ∂N(V ) a {±1}-bundle over V . If p : N(V ) → V is
the projection map, then p−1(A)∩ ∂N(V ) gives a surface Ã in W × I with boundary
τa. (In fact, p|Ã : Ã → A is a two-fold covering.) Notice that Ã and B are disjoint,
hence the intersection Ã · B = 0. Thus, `k(τa, b) = Ã · B = 0. A similar argument
shows that `k(τb, a) = 0. Thus GF (a, b) = 0 for a, b ∈ U. Hence U is a totally isotropic
subspace for the Gordon-Litherland pairing. Equation (4) gives the inequality:

2 dimU ≤ dimH1(F ;Z)− | sig(GF )|+ n(K,F ),

but since dimU = 1
2

dimH1(F ;Z) in our case, it follows that | sig(GF )| ≤ n(K,F ).
Now the self-intersection number of E, which is the normal Euler number of E,

vanishes. To calculate the self-intersection number of E, we push a copy of E
off itself. Since the slice disk D is orientable, we can push it off so there are no
self-intersection points over the slice disk. Therefore, the intersection number is
− `k(K,K ′) = e(F,K) = 0. It follows that | sig GF | = |σ(K,F )| ≤ n(K,F ). �
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Remark 3.3. If L ⊂ Σ×I is a link with spanning surface F ⊂ Σ×I, we can construct
a new surface F ′ = F#τΣ by connecting F to a parallel copy of Σ near Σ×{0} by a
small thin tube τ . Notice that if F ′ = F#τΣ, then e(F ′) = e(F ) and [F ′∪D] = [F∪D]
in H2(W × I;Z/2). In particular, if F ∪ D satisfies the hypothesis of Theorem 3.2,
then F ′ ∪D does as well.

Theorem 3.4. Let K ⊂ Σ×I be a knot with spanning surface F such that e(F ) = 0.
Suppose further that K is slice. Then det(K,F ) is a perfect square.

Proof. Choose a slice diskD ⊂ W×I as in the proof of Theorem 3.2. Let {γ1, . . . , γ2g}
be a basis for H1(F ;Z), obtained by Lemma 3.1. Then by Theorem 3.2, the matrix of

GF with respect to this basis has the form
[

0 A
AT B

]
, where A,B are g × g matrices.

Then [
I 0
−AT xI

] [
xI A
AT B

]
=

[
xI A
0 −ATA+ xB

]
,

xg det

[
xI A
AT B

]
= xg det(−ATA+ xB).

We divide both sides by xg, and in the remaining equation put x = 0, it follows that

det

[
0 A
AT B

]
= (−1)g(detA)2,

therefore, det(K,F ) is a perfect square. �

Remark 3.5. For a null-homologous knot K ⊂ Σ× I with Seifert surface F ⊂ Σ× I,
one can show that det(K,F ) = ∇+

K,F (−1) = ∇−K,F (−1). Here ∇±K,F (t) refers to the
directed Alexander polynomial defined in §2.4 of [BCG20]. Thus, for these knots,
Theorem 3.4 can be deduced from Theorem 2.8 of [BCG20], giving the Fox-Milnor
condition that ∇±K,F (t) = f±(t)f±(t−1) for some f±(t) ∈ Z[t] when K is slice.

Theorem 3.6. Let K ⊂ Σ × I be a knot with spanning surface F such that e(F ) =
0. Suppose further that S ⊂ W × I is an orientable surface with genus g(S) and
boundary ∂S = K. Assume that the closed surface E = F ∪ S satisfies [E] = 0 in
H2(W × I;Z/2). Then

|σ(K,F )| ≤ 2g(S) + n(K,F ).

In particular, if n(K,F ) = 0, then σ(K,F ) ≤ 2g(S).

Proof. Let k = g(S). Since E = F ∪ S bounds a 3-manifold, it follows that H1(F ;Z)
has even rank, say 2h. Furthermore, since S is orientable, F has normal Euler number
e(F ) = e(E) = 0. In the case k ≥ h, then the conclusion follows trivially from the
fact that |σ(K,F )| = | sig GF | ≤ 2h. Therefore, we can assume that k < h.

We can repeat the proof of Lemma 3.1, to show that there is a generating set
{γ1, . . . , γ2h} forH1(F ;Z) such that γ1, . . . , γh−k lie in the kernel of the mapH1(F ;Z)→
H1(V ;Q).
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For a symmetric bilinear form with rank r, signature σ, and nullity n, by Equa-
tion (4), any totally isotropic subspace has rank at most (r − |σ|+ n)/2. Hence

h− k ≤ (2h− | sig GF |+ n(K,F ))/2,

and the conclusion follows. �

Remark 3.7. Theorem 3.6 is easiest to apply in case W is a handlebody.
Let K ⊂ Σ× I be a knot with spanning surface F , and S ⊂ W × I is an orientable

surface of genus g. If W is a handlebody, then by Theorem 2.2, there is a spanning
surface F ′ that is S∗-equivalent to F such that E ′ = F ′ ∪ S bounds a 3-manifold V .
In particular, since F and F ′ are S∗-equivalent, σ(K,F ) = σ(K,F ) and n(K,F ) =
n(K,F ′). Applying Theorem 3.6 to F ′, it follows that

|σ(K,F )| ≤ 2g(S) + n(K,F ).

In order to state the next result, we need to review some terminology.

Definition 3.8. Let D be a link diagram on Σ.
(i) D is alternating if its crossings alternate between over- and under-crossings

along every component of D,
(ii) D is cellularly embedded if Σ rD is a union of disks, and
(iii) D is checkerboard colorable if the regions of ΣrD can be colored by two colors

so that no two regions sharing an edge have the same color.

Properties (ii) and (iii) of Definition 3.8 are clearly unaffected by crossing changes
on D. Kamada showed that a cellularly embedded diagram is checkerboard colorable
if and only if it can be made alternating by crossing changes (see [Kam02, Lemma
7]).

Theorem 3.9. Let K ⊂ Σ × I be a knot in a thickened surface represented by a
cellularly embedded, alternating diagram. Let F and F ∗ be the two checkerboard sur-
faces associated to the coloring. Then det(K,F ) 6= 0 and det(K,F ∗) 6= 0. Further,
|σ(K,F ) − σ(K,F ∗)| = 2g, where g is the genus of Σ. In particular, if Σ has genus
g ≥ 1, then K is not slice.

Proof. Using Lemma 6 of [BK21], we see that K admits a positive definite and neg-
ative definite spanning surface. Since there are only two S∗-equivalence classes of
surfaces, it follows that one of the definite spanning surfaces is S∗-equivalent to F
and the other is S∗-equivalent to F ∗. In particular, since det(K,F ) depends only on
the S∗-equivalence class of F , it follows that det(K,F ) 6= 0 and det(K,F ∗) 6= 0.

Arguing as in the proof of Theorem 19 of [BK21], we see that |σ(K,F )−σ(K,F ∗)| =
2g. We then apply ?? to conclude that K is not slice. �

4. Brown Invariants

In this section, we recall the Brown invariant of a proper quadratic enhancement of
a finite dimensional Z/2 inner product space, following [Bro72,KV88]. Using it, one
can define invariants for Z/2 null-homologous links L ⊂ Σ× I together with a choice
of spanning surface F ⊂ Σ× I. The invariants are called Brown invariants; they are
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denoted βF (L) and take values in Z/8∪{∞}. They have been studied previously by
several different authors [Mat86,KT90,Gil93,KM04,Klu20].

We outline two methods for defining and computing the Brown invariants of links in
thickened surfaces. The first involves the Gordon-Litherland pairing and the second
Goeritz matrices. We prove a duality theorem that relates the two approaches. We
also prove a vanishing result for βF (K) for Z/2 null-homologous knots K ⊂ Σ × I
which are slice. The Brown invariants are seen to change sign under taking vertical
or horizontal mirror image, and they specialize to the Arf invariants when the link is
Z null-homologous.

4.1. Quadratic enhancements and the Brown invariant. Let V be a finite-
dimensional vector space over Z/2 and with a possibly singular symmetric bilinear
form •. Even though it may be singular, we refer to • as an inner product and call
(V, • ) an inner product space.

A Z/4-valued quadratic enhancement of (V, • ) is a map ϕ : V → Z/4 such that

(5) ϕ(u+ v) = ϕ(u) + ϕ(v) + j(u • v),

for all u, v ∈ V , where j : Z/2 → Z/4 is the monomorphism with j(1) ≡ 2 (mod 4).
We call (V, • , ϕ) a Z/4 enhanced space.

Equation (5) implies that ϕ(0) = 0 and that ϕ(v) ≡ v • v (mod 2) for all v ∈ V .
The inner product is said to be even if v • v = 0 for all v ∈ V. In that case, (5) implies
that ϕ(v) is even for all v ∈ V . When ϕ is even, we can define an ordinary Z/2-valued
quadratic enhancement q : V → Z/2 by setting q(v) = ϕ(v)/2 for all v ∈ V. By (5),
the ordinary quadratic form q satisfies q(u+ v) = q(u) + q(v) + u • v for all u, v ∈ V.

The radical of (V, • ) is the subspace

R = {u ∈ V | u • v = 0, for every v ∈ V }.
The form ϕ is said to be non-singular if R = 0, and proper if ϕ|R = 0.

Given a non-singular enhanced space (V, •, ϕ), consider the Monsky sum

(6) λ(ϕ) =
∑
v∈V

iϕ(v).

By [Bro72, Lemma 3.2], it follows that λ is multiplicative under orthogonal sum (i.e.,
λ(ϕ1 ⊕ ϕ2) = λ(ϕ1)λ(ϕ2)), and by [Bro72, Lemma 3.3], we see that λ(ϕ)8 is positive
and real provided that ϕ is non-singular. Therefore, it follows that

(7) λ(ϕ) = (
√

2)dimV eβ(ϕ)πi/4

for some integer β(ϕ) well-defined modulo 8. The element β(ϕ) ∈ Z/8 is called the
Brown invariant.

If ϕ is singular and proper, then it induces a non-singular quadratic enhancement
ϕ on V/R, and we define β(ϕ) = β(ϕ). If ϕ is not proper, then we set β(ϕ) =∞ and
say that the Brown invariant is undefined.

Observe that the Monsky sum (6) is well-defined even when ϕ is singular. In fact,
if ϕ is not proper, then λ(ϕ) = 0. If ϕ is singular and proper, then

(8) λ(ϕ) = (
√

2)(dimV+dimR)eβ(ϕ)πi/4.
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In particular, ϕ is proper if and only if λ(ϕ) 6= 0.
For a fixed inner product space (V, • ), the map

β : {enhanced spaces} −→ Z/8 ∪ {∞},
provides a complete isomorphism invariant of quadratic enhancements of (V, • ), (see
Section 3.1 in [KM04]).

If ϕ : V → Z/4 is even, then the Monsky sum lies on the real line. If ϕ is even
and proper, then λ(ϕ) = ±(

√
2)(dimV+dimR) and β(ϕ) ∈ {0, 4}. In particular, β(ϕ) =

4 Arf(q), the (usual) Arf invariant of the ordinary quadratic form q associated to ϕ.
Thus, the Brown invariant specializes to the Arf invariant when ϕ is even.

4.2. Graphical representation of quadratic enhancements. In [Gil93], Gilmer
uses a simple Z/4-weighted graph to represent (V, • , ϕ). Let {e1, . . . , en} be a basis
for V . The graph has a vertex for each basis element ei and an edge between two
vertices ei and ej (i 6= j) whenever ei • ej = 1. The vertex ei has weight ϕ(ei) ∈ Z/4.

By (5), ϕ is completely determined by the values ei • ej ∈ Z/2 and ϕ(ei) ∈ Z/4 for
i, j = 1, . . . , n. Thus, the simple weighted graph determines the form ϕ.

For example, the four indecomposable spaces denoted P±, T0, T4 in [Mat86, §4]
and [KM04, §3.2] are represented by the weighted graphs: P± = •±1, T0 = 0 0

and T4 = 2 2 . Using this and the Monsky sums, it is elementary to show that

(9) β(P±) = ±1, β(T0) = 0, and β(T4) = 4.

Given a basis {e1, . . . , en}, one can also represent (V, • , ϕ) using a special kind of
matrix. It is a symmetric n × n matrix with diagonal entries ϕ(e1), . . . , ϕ(en) and
off-diagonal entries ei • ej for i 6= j. Basically, it is just the adjacency matrix of the
simple graph with diagonal entries given by the weights. The matrix is special in
that its diagonal entries lie in Z/4 whereas its off-diagonal entries lie in Z/2. We call
a symmetric matrix obtained this way the special matrix representative for ϕ in the
basis {e1, . . . , en}.

For example, the indecomposable spaces have special matrix representatives

P± = [±1], T0 =

[
0 1
∗ 0

]
, and T4 =

[
2 1
∗ 2

]
.

The Brown invariants are additive under orthogonal sum. Orthogonal sum is rep-
resented by disjoint union of the graphs or by diagonal block sum of special matrices.
Every non-singular enhanced space is the orthogonal sum of these four indecompos-
able spaces. Thus, (9) can be used to effectively compute the Brown invariant on any
non-singular enhanced space.

In [Gil93], Gilmer describes a graphical calculus for performing such computations.
His method extends to singular forms and determines when the form is proper. For
instance, the 1-dimensional form represented by •2 has Monsky sum 1 + i2 = 0,
therefore, it is not proper. Likewise, the 2-dimensional form represented by the barbell
graph k ` has Monsky sum λ = 1 + ik + i` + ik+`+2. It is proper if and only if
λ 6= 0. In particular, −1 1 represents an improper form.
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4.3. Brown invariants of links via the Gordon-Litherland pairing. In this sec-
tion, we give the first definition of the Brown invariants for oriented links in thickened
surfaces.

We start with some basic results about quadratic enhancements in terms of their
special matrix representatives.

Let U be a free abelian group, and let B : U × U → Z be a symmetric bilinear
pairing. Let V be the mod 2 reduction of U . For [u], [v] ∈ V , define [u] • [v] ≡ B(u, v)
(mod 2), where the u, v ∈ U have mod 2 reductions [u], [v], respectively. Define
ϕ : V → Z/4 by setting ϕ([u]) ≡ B(u, u) (mod 4).

Lemma 4.1. The map ϕ is well-defined and (V, • , ϕ) is a Z/4 enhanced space.

Proof. If u′ ∈ U is another element with [u′] = [u], then u′ = u+ 2v for some v ∈ U .
It follows that

ϕ([u′]) ≡ B(u+ 2v, u+ 2v) (mod 4),
= B(u, u) +B(u, 2v) +B(2v, u) +B(2v, 2v),

= B(u, u) + 4B(u, v) + 4B(v, v),

≡ ϕ([u]) (mod 4).

This shows that ϕ is well-defined.
Next, we show that ϕ is a Z/4 quadratic form (V, • ). If [u], [v] ∈ V , let u, v ∈ U be

chosen so that they map to [u], [v] under reduction mod 2. Then

ϕ([u] + [v]) ≡ B(u+ v, u+ v) (mod 4),
= B(u, u) +B(v, v) + 2B(u, v),

≡ ϕ([u]) + ϕ([v]) + 2(u • v) (mod 4).

The claim now follows. �

Given a symmetric integral n × n matrix M , let M be the matrix obtained from
M by reducing the diagonal entries mod 4 and the off-diagonal entries mod 2.

If U is a free abelian group with basis {e1, . . . , en}, then the matrix M determines
a bilinear pairing B : U × U → Z by setting B(ei, ej) = Mij.

Let V be the mod 2 reduction of U , and let • be the inner product on V determined
by B. Let ϕM denote the Z/4 quadratic form on (V, • ) defined by B as above. Notice
that the special matrix representative of ϕM is given by M .

Lemma 4.2. If M,M ′ are two symmetric integral n×n matrices that are unimodular
congruent, then β(ϕM) = β(ϕM ′).

Proof. Fix a basis {e1, . . . , en} for U . For an element u ∈ U , by abuse of notation,
denote the coordinate of u with respect to the basis (an n× 1 column) also by u.

Let B,B′ be the symmetric bilinear forms on U determined byM,M ′, respectively.
Since they are unimodular congruent, we have M ′ = PTMP for some unimodular
matrix P . Then

B′(u, v) = uTM ′v = uTPTMPv = B(Pu, Pv).
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It follows that
ϕM ′([u]) = ϕM([Pu]) = ϕM(Φ[u]),

where Φ: V → V is given by Φ([u]) = [Pu]. Since P is unimodular, Φ is an isomor-
phism. Thus ϕM ′ = ϕM ◦Φ, and by [Bro72, Definition 1.19], we see that ϕM and ϕM ′
are isomorphic. The result now follows from [Bro72, Theorem 1.20, (i)]. �

Let L ⊂ Σ× I be an unoriented link and F ⊂ Σ× I a spanning surface for L. Take
VF = H1(F ;Z/2) with symmetric bilinear form given by the mod 2 Gordon-Litherland
pairing.

Define ϕF : VF → Z/4 by setting ϕF ([a]) = GF (a, a). Then by Lemma 4.1, it follows
that ϕF is well-defined and that (VF ,GF , ϕF ) is a Z/4 enhanced space.

We denote by β(ϕF ) the Brown invariant of (VF ,GF , ϕF ).

Definition 4.3. The Brown invariant of an oriented link L ⊂ Σ × I with spanning
surface F ⊂ Σ× I is denoted βF (L) and defined by the formula

βF (L) = β(ϕF ) + 1
2
e(F,L).

Note that βF (L) ∈ Z/8∪{∞}, and it depends on the choice of spanning surface F .
It depends on the orientation of L only through the Euler class e(F,L) = e(F )−λ(L).
The next result shows that βF (L) is invariant under S∗-equivalence of F .

Proposition 4.4. Let L ⊂ Σ × I be a link with spanning surface F . Then βF (L)
depends only on the S∗-equivalence class of F .

For a proof, see Section 6 of [Klu20].

x1

x2

x1

x2x3

Figure 1. A knot in the thickened torus, and two spanning surfaces for it.

Example 4.5. Figure 1 shows a knot in the thickened torus with two spanning surfaces
F (middle) and F ∗ (right).

For the first surface, using the basis {x1, x2} for H1(F ;Z), we compute that the
Gordon-Litherland pairing GF is given by the diagonal matrix [1] ⊕ [−2]. Thus, we
can represent ϕF by the special matrix [1] ⊕ [2]. As previously noted, the form
represented by [2] is not proper, nor is any form containing [2] as an orthogonal
summand. Therefore, β(ϕF ) =∞, and βF (K) =∞ is undefined.
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For the second surface, using the basis {x1, x2, x3} for H1(F
∗;Z), we compute the

Gordon-Litherland pairing GF ∗ and see that ϕF ∗ is represented by the special matrix1 0 1
∗ 0 1
∗ ∗ 0

 .
A straightforward calculation reveals that λ(ϕF ∗) = 2 + 2i = (

√
2)3eπi/4. Therefore,

β(ϕF ∗) = 1. Since e(F ∗, K) = 2, it follows that βF ∗(K) = 1 + 1
2
e(F ∗, K) = 2. ♦

4.4. Brown invariants of links via Goeritz matrices. In this section, we give a
second way to define Brown invariants for checkerboard colored link diagrams in a
thickened surface.

Let D ⊂ Σ be a diagram for a checkerboard colorable link L, and let ξ be a
checkerboard coloring for the regions Σ rD. We use Fξ to denote the checkerboard
surface obtained from the black regions, so Fξ is a union of disks and bands, with one
disk for each black region of ΣrD and one half-twisted band for each crossing of D.

The Tait graph is the associated graph in Σ; it has one vertex for each black region
and one edge for each crossing of D. If CD is the set of all crossings of D, we define
the incidence number ηc = ±1 for c ∈ CD according to Figure 2. We also label each
of the edges of the Tait graph with the sign of its incidence number.

c

η(c) = 1

c

η(c) = −1

Figure 2. Incidence number

c

type I

c

type II

Figure 3. Crossing type

Let X0, X1, . . . , Xn be a numbering of the white regions of Σ r D. Define an
(n+ 1)× (n+ 1) matrix G′ξ(D) = (gij)i,j=0,...,n by setting

gij =

{
−∑ ηc if i 6= j,
−∑k 6=i gik if i = j.

The first sum is taken over all crossings c ∈ CD incident to both Xi and Xj. Then
G′ξ(D) is a symmetric matrix with integer entries and with detG′ξ(D) = 0.

Definition 4.6. The Goeritz matrix Gξ(D) is the n×n matrix obtained by deleting
the first row and column from G′ξ(D). In other words, Gξ(D) = (gij)i,j=1,...,n.

The Goeritz matrix Gξ(D) depends on the choice of checkerboard coloring ξ and
on the order of the white regions, as well as on the diagram D used to represent the
given link L ⊂ Σ× I. In [ILL10], Im, Lee and Lee show how to derive link invariants
(signature, nullity, and determinant) from Gξ(D) for non-split checkerboard colorable
links in thickened surfaces. Their invariants depend on the choice of checkerboard
coloring, and they get two sets of invariants, one for each coloring.
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In a similar way, one can define Brown invariants associated to the Goeritz matrix.
Since Gξ(D) is a symmetric integral matrix, we can define ϕξ : V → Z/4 to be the
quadratic enhancement associated to it as in Lemma 4.2. Here, we take V = KF =
Ker(H1(F ;Z/2)→ H1(Σ;Z/2)), where F is the black checkerboard surface.

Let β(ϕξ) denote the Brown invariant associated to ϕξ. Define the correction term

µξ(D) =
∑

c type II

ηc.

(Note that µξ(D) = −1
2
e(F,L) by Lemma 2.4 [BCK21].)

Definition 4.7. The Brown invariant of the oriented checkerboard colorable link
diagram D with coloring ξ is given by

βξ(D) = β(ϕξ)− µξ(D).

The quantity βξ(D) is an element of Z/8 ∪ {∞}, and it depends on a choice
of checkerboard coloring ξ. It depends on the orientation of D only through the
correction term µξ(D).

At this point, one could show directly that βξ(D) is invariant under the Reidemeis-
ter moves by mimicking the arguments of [ILL10] showing invariance of the signature,
determinant, and nullity. We proceed with an indirect proof that relates the Brown
invariants of Definition 4.3 to those of Definition 4.7. By Proposition 4.4, the former
invariants are invariant under S∗-equivalence, therefore, it follows that βξ(D) gives a
well-defined link invariant depending only on the choice of checkerboard coloring.

−

+

−

+

−

+

Figure 4. A knot in the thickened torus and the two Tait graphs for its
checkerboard surfaces.

Example 4.8. Figure 4 shows the same knot as in the Example 4.5, along with the
Tait graphs for F (middle) and for F ∗ (right).

For the surface F , the associated Goeritz matrix is empty. Hence, β(ϕξ) = 0. We
have µξ = −2, and βξ(K) = 0− (−2) = 2.

For the surface F ∗, the associated Goeritz matrix is Gξ∗(D) = [2], which we have
seen represents an improper form. Thus, β(ϕξ∗) = ∞, and so βξ∗(K) = ∞ is unde-
fined. ♦
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4.5. Duality for Brown invariants. In this section, we prove the chromatic duality
theorems, which are the analogues for Brown invariants of Theorems 4.1 and 5.4
of [BCK21]. We apply them to relate the two families of Brown invariants.

In [BCK21], a similar approach is used to relate the invariants (signature, determi-
nant, and nullity) defined in terms of the Gordon-Litherland pairing to the invariants
defined by Im, Lee and Lee in terms of Goeritz matrices [ILL10]. The correspondence
requires switching the checkerboard coloring, which is an aspect which is unique to
this setting and still somewhat curious.

Recall from Remark 3.3 that for a link L ⊂ Σ× I with spanning surfac F ⊂ Σ× I,
we can construct a new surface F ′ = F#τΣ by attaching a parallel copy of Σ to F
using by a small tube τ . From Section 4 in [BCK21], we know F ′ and F are not S∗
equivalent. Furthermore, e(F ′, L) = e(F,L).
Theorem 4.9. Let F ⊂ Σ × I be a connected spanning surface such that the map
H1(F ;Z/2) → H1(Σ × I;Z/2) is surjective. Let F ′ = F#τΣ be as above, and set
KF = Ker(H1(F ;Z/2)→ H1(Σ× I;Z/2)). Then the Brown invariant of ϕF ′ is equal
to the Brown invariant of the restriction of ϕF to KF , i.e., β(ϕF ′) = β(ϕ|KF

).
Proof. Let g = g(Σ) be the genus of Σ. As in the proof of [BCK21, Theorem 4.1], we
can choose a basis for H1(F

′;Z) such that the Gordon-Litherland matrix has block
decomposition

(10) M =

A ∗ 0
∗ B Jg
0 JT

g 0

 ,
where A is the n×n matrix for the restriction of GF to Ker(H1(F ;Z)→ H1(Σ×I;Z)),
and

Jg =

[
0 Ig
−Ig 0

]
is the standard 2g × 2g symplectic matrix representing the intersection form on Σ.
(Here Ig denotes the g × g identity matrix.)

The matrix in (10) is unimodular congruent to one of the form:

M ′ =

A 0 0
0 B Jg
0 JT

g 0

 .
Therefore, by Lemma 4.2, it follows that β(ϕF ′) = β(ϕM) = β(ϕM ′).

A non-singular Z/4 quadratic form φ : V → Z/4 is said to be metabolic if there
exists a half-dimensional subspace H ⊂ V such that φ vanishes on H. (In [Mat86, §4],
this is defined as split.) By [Mat86, Lemma 4.1], if φ is metabolic, then β(φ) = 0.
Since the Brown invariant is additive under orthogonal sum, and since the quadratic
form associated to [

B Jg
JT
g 0

]
is clearly metabolic, it follows that β(ϕM ′) = β(ϕA). However, ϕA is equal to the
restricted Z/4 quadratic form ϕ|KF

, and the result now follows. �
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Now suppose D ⊂ Σ is a cellularly embedded, checkerboard colorable link diagram.
Then the inclusion map i : D → Σ induces a surjection i∗ : H1(D;Z) → H1(Σ;Z). If
F is a checkerboard surface, then the map H1(F ;Z)→ H1(Σ× I;Z) is surjective.

Theorem 4.10. Let D ⊂ Σ be a cellularly embedded, checkerboard colorable link
diagram with coloring ξ, and let F be its black checkerboard surface. Let ξ∗ be the
opposite coloring and F ∗ its black checkerboard surface. (Thus F ∗ is the white surface
for ξ.) The two sets of Brown invariants are related by chromatic duality: βF (D) =
βξ∗(D) and βF ∗(D) = βξ(D).

Proof. The proof follows from Theorem 4.9 and [BCK21, Lemma 5.3]. �

Remark 4.11. At first glance, it may seem that the switch of colorings in Theorem 4.10
is the result of an incompatibility in the choice of conventions. However, it is unavoid-
able, and in fact it is an intrinsic aspect, and a curious one at that. This aspect is not
readily apparent for classical links since the two sets of invariants are always equal in
that case.

Given a non-split checkerboard colorable link L ⊂ Σ×I with checkerboard surfaces
F and F ∗, then any spanning surface for L has Brown invariant equal to βF (L) or
βF ∗(L).

Theorem 4.12. Let K ⊂ Σ× I be a knot with spanning surface F ⊂ Σ× I. Assume
e(F,K) = 0 and det(GF ) 6≡ 0 (mod 2). If K is slice, then βF (K) = 0.

Proof. If K is slice, then Theorem 3.2 implies that the Gordon-Litherland pairing is
metabolic, namely that GF vanishes on a half-dimensional subspace U of H1(F ;Z). It
follows that ϕF must vanish on the image of U under the mod 2 projectionH1(F ;Z)→
H1(F ;Z/2). The image is again a half-dimensional subspace of H1(F ;Z/2).

Theorem 1.20 (ix) in [Bro72] implies that the Brown invariant vanishes on any
non-singular, metabolic quadratic space (see also [Mat86, Lemma 4.1]). Therefore,
β(ϕF ) = 0. Since e(F,K) = 0, it follows that βF (K) = 0. �

4.6. Mirror Images. In this section, we relate the Brown invariants of a checker-
board colorable link in a thickened surface to those of its vertical and horizontal
mirror images. We begin by considering orientation reversal on L.

If L ⊂ Σ× I is an oriented link with spanning surface F ⊂ Σ× I, then βF (−L) =
βF (L), where −L denotes the link with opposite orientation. Although βF (L) is
insensitive to orientation change, it is sensitive to a change of orientation on a single
component. In fact, writing βF (L) = β(ϕF ) + 1

2
e(F,L), this is evident from the

formulas e(F,L) = e(F )− λ(L) and λ(L) =
∑

i 6=j `k(Ki, Kj) for L = K1 ∪ · · · ∪Kn.
Let L ⊂ Σ×I be an oriented link. The image of L under the map φ : Σ×I → Σ×I

given by φ(x, t) = (x, 1− t) is called the vertical mirror image of L and is denoted L∗.
Let f : Σ→ Σ be an orientation reversing homeomorphism and set ψ : Σ× I → Σ× I
to be the map given by ψ(x, t) = (f(x), t). The image of L under ψ is called the
horizontal mirror image of L and is denoted L†.

If F ⊂ Σ× I is a spanning surface for L, then F ∗ = φ(F ) is a spanning surface for
L∗ and F † = ψ(F ) is a spanning surface for L†.
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Proposition 4.13. Let L ⊂ Σ× I be a link with spanning surface F ⊂ Σ× I. Then
the Brown invariant of the vertical and horizontal mirror images of L satisfy

βF ∗(L
∗) = −βF (L), and βF †(L

†) = −βF (L).

Proof. By [BCK21, Proposition 5.7], GL∗,F ∗ = −GL,F , and e(F ∗, L∗) = −e(F,L). The
result now follows from Definition 4.3 and [Bro72, Theorem 1.20, (iii)]. A similar
argument shows that GL†,F † = −GL,F , and e(F †, L†) = −e(F,L), and the formula for
βF †(L

†) follows. �

4.7. Arf invariants of links. Let L ⊂ Σ×I be an oriented, null-homologous link and
F ⊂ Σ× I a Seifert surface for L. Then the Gordon-Litherland pairing GF coincides
with the symmetrized Seifert pairing. In particular, GF (a, a) ∈ 2Z, and its associated
Z/4-valued form ϕF is even. Therefore, the Brown invariant of ϕF is related to the
Arf invariant of the ordinary quadratic form qF by the formula β(ϕF ) = 4 Arf(qF ).

Further, we have e(F ) = 0 and e(F,L) = −λ(L) = −∑i 6=j `k(Ki, Kj), the total
linking number. (Here we write L = K1 ∪ · · · ∪ Km as a union of its components.)
Therefore, the link invariants are related by the formula

βF (L) = 4 Arf(qF ) + λ(L).

In [CM21], Chrisman and Mukherjee define Arf invariants for null-homologous
knots in thickened surfaces. Indeed, for a knot K ⊂ Σ × I with Seifert surface F ,
they define qK,F (x) ≡ `k(x+, x) (mod 2) and show that it gives an ordinary quadratic
form on H1(F ;Z/2). Assuming that qK,F is non-singular, they use it to define the Arf
invariant of K. Note that qK,F is non-singular precisely when det(K,F ) 6≡ 0 (mod 2).

We remark that, like the Brown invariants, the Arf invariant can be defined for
singular, proper forms, i.e., the assumption that qK,F is non-singular is not necessary.
This is illustrated in Example 4.15 below. In general, the Brown invariant provides
a way to define the Arf invariant for any oriented null-homologous link L ⊂ Σ × I
and Seifert surface F ⊂ Σ× I. Thus, the Brown invariants in Section 4.3 recover and
extend the Arf invariants introduced in [CM21].

Proposition 4.14. If K ⊂ Σ × I is a null-homologous knot with Seifert surface F ,
and det(K,F ) 6≡ 0 (mod 2), then

βF (K) = 4 Arf(qK,F ).

Proof. By the definitions of qK,F and ϕF , we see that ϕF = 2qK,F . The result then
follows from [Bro72, Theorem 1.20, (vii)]. �

Example 4.15. Figure 5 shows a six crossing knot K in the thickened torus, along
with the Tait graphs for the checkerboard surfaces F (middle) and F ∗ (right).

For the surface F , the associated Goeritz matrix is

Gξ(D) =

1 −1 −1
∗ 1 −1
∗ ∗ 1

 .
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We have λ(ϕξ) = 4 + 4i. Notice that ϕξ is singular and proper with β(ϕξ) = 1. We
have µξ = −3, therefore βξ(K) = 1− (−3) = 4.

For the surface F ∗, the associated Goeritz matrix is Gξ∗(D) = [−3]. Then λ(ϕξ∗) =
1 + i and β(ϕξ∗) = 1. Further µξ∗ = −3, thus βξ∗(K) = 1− (−3) = 4.

Notice that K is null-homologous, in fact it is the knot 6.87310 in Figure 21 of
[BCG20]. Let F ′ be the Seifert surface whose Seifert matrices are listed in [BCG20,
Table 3]. Then F ′ is S∗-equivalent to F , and its quadratic form qK,F ′ is singular and
proper. Since βξ(K) = 4, it follows that Arf(qK,F ′) = 1. ♦

Suppose K ⊂ Σ× I is a null-homologous knot with Seifert surface F . Notice that
qK,F is non-singular if and only if det(K,F ) is odd. Set d = det(K,F ). By Levine’s
formula (see [Lev66]), we have

Arf(qK,F ) =

{
0, if d ≡ ±1 (mod 8),
1, if d ≡ ±3 (mod 8).

If, in addition, K is slice, then Theorem 3.4 implies that d is a perfect square.
However, since d is odd, it follows that

d = (2k + 1)2 = 4k2 + 4k + 1 = 4k(k + 1) + 1 ≡ 1 (mod 8).
Therefore, Levine’s formula implies that Arf(qK,F ) = 0. In particular, for null-
homologous knots K ⊂ Σ × I, the knot determinant provides a stronger slice ob-
struction.
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Figure 5. A null-homologous knot in the thickened torus and the two Tait
graphs for its checkerboard surfaces.

5. Concordance of spanning surfaces

In this section, we introduce a notion of concordance for spanning surfaces of knots
in thickened surfaces. This is based on [CM21, Definition 4.1.1], which is the corre-
sponding notion of concordance for Seifert surfaces. We show that the knot signature
and Brown invariant are invariant under concordance of spanning surfaces.

Definition 5.1. Let K0 and K1 be knots in Σ0 × I and Σ1 × I, respectively, with
spanning surfaces F0 ⊂ Σ0 × I and F1 ⊂ Σ1 × I. So F0, F1, are unoriented surfaces
with boundary ∂F0 = K0 and ∂F1 = K1.

The spanning surfaces F0 and F1 are said to be concordant if there exist:
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(i) a compact oriented 3-manifold W with boundary ∂W = −Σ0 ∪ Σ1,
(ii) a properly embedded annulus A ⊂ W × I with boundary ∂A = K0 ∪K1, and
(iii) a compact unoriented 3-manifold V ⊂ W×I with boundary ∂V = F0∪A∪F1.

If K0 ⊂ Σ0 × I and K1 ⊂ Σ1 × I are knots with concordant spanning surfaces
F0 ⊂ Σ0 × I and F1 ⊂ Σ1 × I, then the knots K0 and K1 are concordant. However,
the converse is not true. In general, for a checkerboard colorable knot in a thickened
surface Σ × I with genus g(Σ) ≥ 1, the spanning surfaces given by the black and
white regions will not be concordant in the above sense.

The proof of the following lemma is similar to that of Lemma 3.1, and we omit it.

Lemma 5.2. There are generating sets {γ1, . . . , γg0} for H1(F0;Z) and {γ′1, . . . , γ′g1}
for H1(F1;Z), such that γ1, . . . , γm0 , γ

′
1, . . . , γ

′
m1

lie in the kernel of the map H1(F0;Z)⊕
H1(F1;Z)→ H1(V ;Q), where m0 +m1 = 1

2
(g0 + g1).

We use Lemma 5.2 to prove the following result, which is an analogue of Theo-
rem 3.2 for two knots with concordant spanning surfaces.

Theorem 5.3. Let K0 ⊂ Σ0×I and K1 ⊂ Σ1×I be knots with spanning surfaces F0 ⊂
Σ0 × I and F1 ⊂ Σ1 × I, respectively. If F0 and F1 are concordant and n(K0, F0) =
n(K1, F1) = 0, then

σ(K0, F0) = σ(K1, F1).

Proof. Define Θ on H1(F0;Z)⊕H1(F1;Z) as follows

Θ((x0, x1), (y0, y1)) = −GF0(x0, y0) + GF1(x1, y1).

By Lemma 5.2, and similar to the proof of Theorem 3.2, γ1, . . . , γm0 , γ
′
1, . . . , γ

′
m1

gen-
erate a totally isotropic subspace for Θ. Since the nullity of Θ is zero, it follows
that

2(m0 +m1) = g0 + g1 ≤ g0 + g1 − | sig Θ|,
so 0 = sig Θ = − sig GF0 + sig GF1 , which implies sig GF0 = sig GF1 .

Again, the self-intersection number of E vanishes. The self-intersection number of
E equals

− `k(K0, K
′
0) + `k(K1, K

′
1) = −e(F0, K0) + e(F1, K1) = 0.

It follows that e(F0, K0) = e(F1, K1), and σ(K0, F0) = σ(K1, F1). �

Theorem 5.4. Let K0 ⊂ Σ0 × I and K1 ⊂ Σ1 × I be knots with spanning sur-
faces F0 ⊂ Σ0 × I and F1 ⊂ Σ1 × I, respectively. If F0 and F1 are concordant and
det(GF0), det(GF1) 6≡ 0 (mod 2), then

βF0(K0) = βF1(K1).

Proof. Consider the mod 2 reduction of the form Θ defined in the proof of Theo-
rem 5.3. Now define Φ : H1(F0;Z/2)⊕H1(F1;Z/2)→ Z/4, as Φ([a], [b]) ≡ −GF0(a, a)+
GF1(b, b) (mod 4). We can check that Φ is a quadratic enhancement, and we can define
β(Φ).

Similar to Theorem 4.12, we deduce that β(Φ) = 0. Notice that the Brown invariant
is additive, and that β(−ϕ) ≡ −β(ϕ) (mod 8). The result now follows. �
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The next result shows if two knots in thickened surfaces are concordant, then under
some mild hypotheses, their spanning surfaces are concordant. As a result, Theorems
5.3 and 5.4 hold more generally for some concordant knots.

Theorem 5.5. Let K0 ⊂ Σ0 × I and K1 ⊂ Σ1 × I be knots with spanning surfaces
F0 ⊂ Σ0 × I and F1 ⊂ Σ1 × I, respectively. If K0 and K1 are concordant, then
there exists an oriented 3-manifold W with ∂W = Σ1 t−Σ0 and a properly embedded
annulus A in W × I with ∂A = K0 t K1. Let E = F0 ∪ A ∪ F1. If [E] = 0 in
H2(W × I;Z/2), then F0 and F1 are concordant.

Proof. We can arrange that e(F0, K0) = e(F1, K1), so e(E) = 0. Since [E] = 0, then
Theorem 2.1 implies that there exists a compact 3-manifold V ⊂ W×I with ∂V = E.
The result now follows. �

In closing we mention a few open problems and questions for future research.
It would be interesting to develop a theory of algebraic concordance for checker-

board colorable knots in thickened surfaces. Here, we expect that the notion of
concordance of spanning surfaces could be useful, cf. [CM21]. What kind of torsion
does this new algebraic concordance group contain?

It would also be interesting to prove more general results about concordance in-
variants of the signature and Brown invariants for links in thickened surfaces. A
promising approach would be to develop an interpretation of the Brown invariants in
terms of Pin-structures and show they are invariants of Pin bordism, cf. [KT90].
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