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Abstract. We show that every periodic virtual knot can be realized as the closure
of a periodic virtual braid and use this to study the Alexander invariants of periodic
virtual knots. If K is a q-periodic and almost classical knot, we show that its
quotient knot K∗ is also almost classical, and in the case q = pr is a prime power, we
establish an analogue of Murasugi’s congruence relating the Alexander polynomials
of K and K∗ over the integers modulo p. This result is applied to the problem of
determining the possible periods of a virtual knot K. One consequence is that if
K is an almost classical knot with a nontrivial Alexander polynomial, then it is
p-periodic for only finitely many primes p. Combined with parity and Manturov
projection, our methods provide conditions that a general virtual knot must satisfy
in order to be q-periodic.

1. Introduction

An oriented knot or link K in S3 is called periodic of period q > 1 if there is an
orientation preserving diffeomorphism ϕ : (S3,K) → (S3,K) of finite order q whose
fixed point set, C, is non-empty and disjoint from K. The solution of the Smith
Conjecture implies that C is an unknotted circle and furthermore that ϕ is conjugate
via a self-diffeomorphism of S3 to a rotation about an axis in S3. The quotient knot
or link, denoted K∗, is the image of K under the orbit map S3 → S3/〈ϕ〉 ∼= S3.

In [Fla85], Flapan proved that a nontrivial classical knot admits only finitely many
periods, and her result was extended to links by Hillman in [Hil84]. In [Edm84],
Edmonds used minimal surface theory to establish a strong upper bound on the
period of a given knot K in terms of its Seifert genus.

There are many known conditions on the invariants of classical knot K for it to
be periodic. These include Murasugi’s conditions on its Alexander polynomial ∆K(t)
[Mur71], conditions on its Jones polynomial VK(t) due to Murasugi [Mur88] and
Yokota [Yok91], as well as Traczyk’s conditions on its Kauffman bracket [Tra90].

We recall Murasugi’s theorem, [Mur71], for classical knots as it motivates our main
results. Given two Laurent polynomials f(t), g(t) ∈ Z[t±1], we write f(t)

.
= g(t) if

f(t) = ±tkg(t) for some k ∈ Z.
Theorem 1.1 (Murasugi, [Mur71]). Let p be a prime and q = pr a prime power. If
K is a q-periodic knot with quotient knot K∗ and linking number k with the rotation
axis then

(1) ∆K∗(t) divides ∆K(t) in Z[t±1], and
(2) ∆K(t)

.
= (∆K∗(t))

q(1 + t+ t2 + · · ·+ tk−1)q−1 mod p.
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Various extensions and alternative proofs of Murasugi’s theorem for classical knots
and links have been considered in [Hil81, Hil83, DL91a, DL91b, HLN06].

One way to construct examples of periodic knots is to realize them as the closure
of a proper power of a braid. Indeed, if the quotient knot K∗ can be written as the
closure of a braid β of index k, and if q is a positive integer relatively prime to k,
then we take K to be the closure of βq. It follows that K is a periodic knot with
period q and k is equal to the linking number of K with the rotation axis. Relaxing
the assumption that k and q are relatively prime, the closure of βq will be a link L
with n = gcd(k, q) components [Liv93, §8.2].

We say that the periodic knot or link L admits a periodic braid representative if L
is isotopic to the closure of βq for some braid β. In [LP97], Lee and Park establish
necessary conditions on a link L for it to admit a periodic braid representative and
show that not all periodic knots and links admit periodic braid representatives.

In this paper we study periodic virtual knots (virtual knots are discussed in Sec-
tion 2.2), defined as follows.

Definition 1.2. A virtual knot K is called periodic with period q if it admits a virtual
knot diagram which misses the origin and is invariant under a rotation in the plane
by an angle of 2π/q about the origin.

One useful result that we establish is the following.

Theorem 1.3. Any periodic virtual knot or link L admits a periodic virtual braid
representative.

Although a periodic classical knot or link cannot always be represented by a peri-
odic classical braid, Theorem 1.2 guarantees the existence of a periodic virtual braid
representative; see Examples 3.14 and 3.15. This provides an alternative approach
to establishing conditions that classical knot and link invariants must satisfy in the
periodic case and a means of applying virtual knot theory to classical knots.

In his study of periodic virtual knots, [Lee12] S. Y. Lee posed the following inter-
esting questions:

Question 1.4. Does a non-trivial virtual knot admit only finitely many periods?

Question 1.5. Given a classical knot K, can it admit a q-periodic virtual knot dia-
gram without admitting any q-periodic classical knot diagrams?

So far, these basic questions have not been resolved. There is an assortment of
known constraints on certain invariants of a virtual knot or link for it to be periodic,
including conditions on the arrow and index polynomials [IL12], the Miyazawa poly-
nomial [KLS09], the VA-polynomial [KLS13], the writhe and odd writhe polynomials
[BL15], and the virtual Alexander polynomial [KLS14].

For various reasons, Murasugi’s theorem has not been extended to the virtual
category. One obstacle is that the Alexander polynomial does not generalize in an
entirely straightforward manner to virtual knots and links, see [Saw99] for a discussion
of the difficulties involved.

The main goal of this paper is to establish a generalization of Murasugi’s theorem
for virtual knots. Although the Alexander polynomial does not give a well-behaved
invariant for all virtual knots and links, it does extend nicely to the subcategory of
“almost classical” knots, defined below.
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Definition 1.6 (Almost Classical Knots and Links).
(i) A virtual knot diagram is Alexander numberable if there exists an integer-

valued function λ on the set of short arcs satisfying the relations in Figure 7.
(ii) Given a virtual knot or link K, we say K is almost classical if it admits a

virtual knot diagram that is Alexander numberable.

While almost classical knots are defined in terms of Alexander numberings, it is
helpful to keep in mind that a virtual knot is almost classical if and only if it ad-
mits a representative knot in a thickened surface which is homologically trivial, see
[BGH+17] for a discussion. Another useful observation is that Alexander number-
ability and periodicity are compatible in the sense that if a knot K is almost classical
and periodic then it admits a periodic virtual knot diagram which is also Alexander
numberable (see Theorem 3.8).

Recall that if K is a q-periodic virtual knot, then by Theorem 1.3, we can write

K = β̂q for some k-strand virtual braid β.

Theorem 1.7. Let K = β̂q be a q-periodic almost classical knot diagram with q = pr

a prime power. Then K∗ = β̂ and

(1) ∆K∗(t) divides ∆K(t) in Z[t±1], and

(2) ∆K(t)
.
= (∆K∗(t))

q (f(t))q−1 mod p, where f(t) =
∑k

i=1t
λi and λi is the

Alexander number on the i-th strand of β.

The main difference between this result and Theorem 1.1 is that the polynomial
term 1 + t + t2 + · · · + tk−1 in the original statement of Murasugi’s theorem has

been replaced with the general polynomial f(t) =
∑k

i=1 t
λi . This factor f(t) can be

read from the Alexander numbering on the braid strands once one has realized the
periodic virtual knot K as the closure of a periodic virtual braid (Theorem 1.3). In
the classical case, if K is the closure of a classical braid β, then it follows easily that
f(t) = 1 + t+ t2 + · · ·+ tk−1.

This theorem allows us to eliminate certain periods for almost classical knots by
testing the Alexander polynomial to see if it can be factored in the desired form after
reduction modulo p. For example, in Theorem 6.4 we show that any almost classical
knot K with non-trivial ∆K(t) is p-periodic for at most finitely many primes p. In the
case ∆K(t) mod p is non-trivial for all primes p, Corollary 6.3 provides the stronger
conclusion that K can be q-periodic for at most finitely many q. This applies to
classical fibered knots, giving a positive answer to Question 1.4 for such knots.

It also allows us to show that many classical knots do not exhibit additional periods
in their virtual knot diagrams.

We extend the techniques described above to eliminate composite periods in many
cases. In Example 6.9, we show how to eliminate 6 = 2 · 3 as a possible virtual period
for the trefoil. More generally, we give criteria that can be used to eliminate periods
of the form 2p where p is an odd prime, see Propositions 6.10, 6.11.

Further applications of Theorem 1.3 are given in §3.4. Let p be a prime and
K a pr-periodic virtual knot with quotient knot K∗. Corollary 3.19 asserts that(
∆`
K∗

)pr
mod p divides ∆`

K mod p where ∆`
K is `-th elementary divisor of the Alexan-

der module of K (and likewise for ∆`
K∗

). We show in Proposition 3.21 that

ĤK(s, t, q) =
[
ĤK∗(s, t, q)

]pr
mod p, up to multiplication by a power of st,
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where ĤK(s, t, q) is the “normalized virtual Alexander polynomial” of K introduced

in [BDG+15]. Under suitable non-vanishing hypotheses on ĤK(s, t, q), we obtain
an upper bound on the possible periods of K in terms of v(K), the virtual crossing
number of K (see Proposition 3.22 and Corollary 3.23). This gives an answer to

Question 1.4 when ĤK(s, t, q) is nontrivial mod p. Note that if K is almost classical,

then ĤK(s, t, q) = 0, and so it does not provide any restrictions on the possible periods
of K.

Although our Theorem 1.7 applies only to almost classical knots, we now explain
how to apply parity projection to obtain constraints on any virtual knot. In the
following, let f denote the total Gaussian parity (see Equation (5) on page 9 for its
definition).

In general, the parity f(ci) of a chord in a virtual knot diagram is either even or odd,
and it must satisfy Manturov’s parity axioms. The projection Pf (D) of a diagram
is obtained by eliminating all the odd chords, and the parity axioms are defined to
ensure that if two diagrams D1 and D2 are equivalent through Reidemeister moves,
then so are the diagrams Pf (D1) and Pf (D2) obtained by projection. It follows that
the knot type of Pf (K) is well-defined and independent of the representative diagram
for K.

Since any virtual knot diagram can have only finitely many chords, for any D, there
is a positive integer n such that Pn+1

f (D) = Pnf (D) (and therefore, for any m > n,

the diagram will remain the same, so we have Pmf (D) = Pnf (D)). Stable Manturov

projection is defined as P∞f (K) = limn→∞ P
n
f , that is, if ` is the smallest n such that

Pn+1
f (D) = Pnf (D), then P∞f (K) = P `f (D). It is a general fact that the image P∞f (K)

is an almost classical diagram for any virtual knot diagram K, where f is the total
Gaussian parity.

Theorem 1.8. If K is a q-periodic virtual knot diagram, then K̄ = P∞f (K) is a
q-periodic almost classical diagram.

Hence we can apply Theorem 1.7 to K̄ to give conditions that must be satisfied
in order for K to be periodic. For instance, any virtual knot K whose projection
K̄ = P∞f (K) has nontrivial Alexander polynomial is p-periodic for only finitely many
primes p.

Table 3 lists the known periods and excluded periods for almost classical knots up
to 6 crossings. This table was obtained by applying Theorem 1.7 to their Alexander
polynomials, which were computed in [BGH+17] and are listed here in Table 1. A
table of Gauss diagrams of almost classical knots with up to six crossings can be
found in [BGH+17]. In Table 2 we list the known periodic almost classical knots as
closures of periodic virtual braids.

The main results in this paper are derived from the Ph.D. thesis of Lindsay White,
[Whi16], written under the supervision of Hans Boden and Andrew Nicas at McMaster
University.

Acknowledgements. H. Boden and A. Nicas were supported by grants from the Natural
Sciences and Engineering Research Council of Canada.
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2. Preliminaries

In this section, we recall some basic notions from knot theory and virtual knot
theory.

2.1. Classical knots and Gauss diagrams. A knot K is a smooth embedding
S1 → S3 of the circle into 3-space. Two knots are considered equivalent if there is
an ambient isotopy of S3 taking one to the other. More generally, a link is a smooth
embedding S1 ∪ · · · ∪ S1 → S3 of a disjoint union of circles, up to ambient isotopy of
S3 taking one to another.

− +

Figure 1. Left and
right handed cross-
ings.

We will usually work with oriented knots and
links, and when necessary we indicate the choice
of orientation using an arrow.

A knot diagram is the regular projection of
a knot K to R2 with only double-points, which
are drawn to indicate the overcrossing and un-
dercrossing strands. Two knot diagrams are
equivalent if one can be transformed into the
other through a series of Reidemeister moves
and planar isotopies.

The Gauss code of a knot diagram is a word that records the crossings and their
signs as one traverses the knot. To begin, number the crossings 1, 2, . . . , n arbitrarily
and pick a basepoint on the knot. Then traverse the knot and record each crossing as
it is encountered along with its sign, which is positive if the crossing is right-handed
and negative if it is left-handed (see Figure 1). Each crossing will be recorded twice,
once as an over-crossing (written Oi) and then as an under-crossing (written Ui). For
example, the trefoil in Figure 2 has Gauss code O1+U2+O3+U1+O2+U3+.

1 2

3

Figure 2. The tre-
foil knot 31.

The Gauss code is determined by the oriented
knot up to relabeling of the crossings and alter-
ing the choice of basepoint. A relabeling of the
crossings amounts to permuting the numbers
1, 2, . . . , n within the Gauss code, and altering
the choice of basepoint amounts to a cyclic per-
mutation of the Gauss code.

A Gauss diagram is a trivalent graph con-
sisting of a base circle, which represents the
underlying knot, along with directed chords
c1, . . . , cn, one for each crossing. The i-th chord ci points from the over-crossing
arc to the under-crossing arc, and its writhe, εi = ±1, is given by the sign of the i-th
crossing.

The Reidemeister moves can be translated into moves between Gauss diagrams, and
in this way one can regard a classical knot as an equivalence class of Gauss diagrams.
Every classical knot diagram is uniquely determined by its associated Gauss diagram,
but not all Gauss diagrams correspond to classical knots.

2.2. Virtual knots. Virtual knot theory was invented by Kauffman [Kau99], and
virtual knots represent the complete set of all Gauss diagrams modulo Reidemeister
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moves. As with classical knots, virtual knots can be represented in terms of virtual
knot diagrams, which are described next.

− −

Figure 3. The virtual trefoil and
its Gauss diagram.

A virtual knot diagram is an
immersion of a circle in the
plane with only double points,
such that each double point
is either classical (indicated by
over- and under-crossings) or
virtual (indicated by a circle).
Virtual link diagrams are de-
fined similarly. Such a diagram
is oriented if every component
has an orientation.

Two oriented virtual link diagrams are virtually isotopic (or equivalent) if they can
be related by planar isotopies and a series of Reidemeister moves and the detour move
in Figure 4.

Virtual isotopy defines an equivalence relation on virtual link diagrams, and a
virtual knot or link is defined to be an equivalence class of virtual knot or link diagrams
under virtual isotopy.

τ τ

Figure 4. Detour move.

In this paper, we refer to various
knots (up to virtual equivalence) by
labelling them with a decimal num-
ber (for example, 6.90099), which
comes from the enumeration by [Gre].
The number before the decimal refers
to the real crossing number of the
knot (that is, the minimum number
of real crossings in an equivalent dia-
gram of the knot).

Just as with classical knot dia-
grams, every virtual knot diagram determines a Gauss code and Gauss diagram,
either of which uniquely determines the virtual knot diagram. Indeed, an alternative
but equivalent way to define virtual knots is as equivalence classes of Gauss diagrams
by Reidemeister moves, as proved by Goussarov, Polyak, and Viro in [GPV00].

xk xi

xi+1 = x−1
k xixk

xi xk

xi+1 = xkxix
−1
k

Figure 5. The relations in GK from the i-th crossing of K.

2.3. The knot group and Alexander invariants.

Definition 2.1. Suppose K is an oriented virtual knot with n classical crossings, and
choose a basepoint on K. Starting at the basepoint, we label the arcs x1, x2, . . . , xn
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so that at each under-crossing, xi is the incoming arc and xi+1 is the outgoing arc. (If
i = n, then we set i+1 := 1; that is, we take i modulo n.) We use a consistent labeling
of the crossings so that the i-th crossing is as shown in Figure 5. For i = 1, . . . , , n
let εi = ±1 be according to the sign of the i-th crossing. Then the knot group of K
is the finitely presented group given by

(1) GK = 〈x1, . . . , xn | xi+1 = x−εik xix
εi
k , i = 1, . . . , n〉.

Note that virtual crossings are ignored in this construction.

εi

xk

xi

xi+1

Figure 6. The chord ci
has Wirtinger relation ri =
x−εik xix

εi
k x
−1
i+1.

As explained by S.G. Kim [Kim00],
the Wirtinger presentation of the knot
group GK can also be easily read from
a Gauss diagram D for K as follows.
Pick a basepoint on D and number the
chords c1, . . . , cn sequentially in the or-
der in which one encounters their ar-
rowheads when going around D counter-
clockwise. The long arcs of D are the
subarcs of D from one arrowhead to the
next, and we label them x1, . . . , xn se-
quentially so that xi and xi+1 are sepa-
rated by the arrowhead of ci (here i is taken modulo n). Then the knot group admits
the presentation

(2) GK = 〈x1, . . . , xn | r1, . . . , rn〉,
where the relation ri arises from the chord ci as follows. If the arrowtail of ci lies on
the arc labeled by xk, then ri is the relation x−εik xix

εi
k x
−1
i+1, where εi is the writhe of

ci and i is taken modulo n (cf. Figure 6).
The knot group GK is an invariant of virtual isotopy. (In fact, it is an invariant

of the underlying welded knot type of K). In case K is classical, we have GK ∼=
π1(S

3 −N(K)), the fundamental group of the complement of K.
We recall the construction of the Alexander module associated to the knot group

GK of a virtual knot K. Let G′K = [GK , GK ] and G′′K = [G′K , G
′
K ] be the first and

second commutator subgroups. The Alexander module is then the quotient G′K/G
′′
K .

It is a finitely generated module over Z[t±1], the ring of Laurent polynomials, and it is
determined by the n×n Jacobian matrix obtained by Fox differentiating the relations
ri (appearing in the presentation (2) of GK) with respect to the generators xj and
applying the abelianization map x` 7→ t for ` = 1, . . . , n. While the matrix A will
depend on the choice of presentation for GK , the associated sequence of elementary
ideals

(3) (0) = E0 ⊂ E1 ⊂ · · · ⊂ En = Z[t±1]

does not. Here, the k-th elementary ideal Ek is defined as the ideal of Z[t±1] generated
by all (n − k) × (n − k) minors of A. The ideals in the chain (3), also known as the
Alexander ideals of K, are knot invariants.

We now describe the standard method for deriving a presentation matrix for the
Alexander module from the Wirtinger presentation (1) of the virtual knot. As before,
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we assume that K is a virtual knot with n real crossings c1, . . . , cn and long arcs
x1, . . . , xn such that xi starts at the under-crossing of ci−1 and ends at the under-
crossing of ci.

The Fox derivatives of the relations ri are given by

∂ri
∂xj

=


x−εik if j = i,

−x−εik xix
εi
k x
−1
i+1 if j = i+ 1,

1− xkxix−1k if j = k and εi = −1,
−x−1k + x−1k xi if j = k and εi = 1,
0 otherwise.

Definition 2.2. The Jacobian matrix A = A(D) is the n× n matrix with

Ai,j =
∂ri
∂xj

∣∣∣∣
x1,...,xn=t

given by Fox differentiation and applying the abelianization map GK → Z sending
x` 7→ t for ` = 1, . . . , n. More concretely, if the i-th crossing is as in Figure 6, then

(4) Ai,j =


t−εi if j = i,

−1 if j = i+ 1,

1− t−εi if j = k,

0 otherwise.

For both classical and virtual knots, the zeroth elementary ideal E0 is always trivial.
This follows from the observation that E0 = (det(A)) = 0, since the sum of the
columns of A is zero by the fundamental identity of Fox derivatives.

For a classical knot K, the first elementary ideal E1 is always principal and gen-
erated by the Alexander polynomial ∆K , which is well-defined up to multiplication
by ±tk and satisfies E1 = (∆K(t)). It is obtained by taking the determinant of the
Alexander matrix, which is the (n− 1)× (n− 1) matrix obtained by removing a row
and column from A.

The first elementary ideal E1 of a virtual knot K is not always principal. Never-
theless, one can define the Alexander polynomial ∆K(t) to be the generator of the
smallest principal ideal containing E1, obtained by taking the greatest common divisor
of all the (n− 1)× (n− 1) minors of A.

2.4. Almost classical knots and parity.

Definition 2.3 (Almost Classical Knots and Links).

(i) A virtual knot diagram is almost classical if there exists an integer-valued
function λ on the set of short arcs satisfying the relations in Figure 7 at each
crossing. (This definition extends naturally to virtual links.) Such diagrams
are also called Alexander numberable.

(ii) Given a virtual knot or link K, we say K is almost classical if it is represented
by an almost classical diagram.

Definition 2.4. If D is a Gauss diagram with chords c1, . . . , cn, we define the index
of ci by counting the chords cj that intersect ci with sign and keeping track of their
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λ λ+ 1

λ λ+ 1

λ λ+ 1

λ λ+ 1

λ′ λ

λ λ′

Figure 7. The Alexander numbering conditions.

direction. Specifically, position the diagram so that ci points vertically, and set

I(ci) = r+ − r− + `− − `+,
where

r± = #{cj | cj intersects ci with εj = ±1 and arrowhead to the right},
`± = #{cj | cj intersects ci with εj = ±1 and arrowhead to the left}.

For example, the Gauss diagram in Figure 3 has one chord with index 1 and another
with index −1.

One can verify that a Gauss diagram D represents an almost classical virtual knot
diagram if and only if every chord ci of D has index I(ci) = 0.

Almost classicality in virtual knot theory is closely related to Gaussian parity, and
here we give a brief account. Parity is an important topic in virtual knot theory, and
here we will only scratch the surface. For more information, we refer the reader to
Manturov’s original article [Man13], his book [MI13], and the monograph [IMN11].

Given a virtual knot diagram, a parity is a function that assigns to each classical
crossing a value in {0, 1} (or “even” and “odd”) such that the following axioms hold:

1. In a Reidemeister one move, the parity of the crossing is even.
2. In a Reidemeister two move, the parities of the two crossings are either both

even or both odd.
3. In a Reidemeister three move, the parities of the three crossings are un-

changed. Further, the three crossings can be all even, all odd, or one even
and two odd. (In other words, we exclude the case that one crossing is odd
and two are even.)

Note that this is the definition of “parity in the weak sense,” cf. Manturov [Man13]
and Nikonov [Nik16].

For example, taking

(5) f(ci) =

{
0 if I(ci) = 0

1 if I(ci) 6= 0

gives a parity that we call the total Gaussian parity.
One can easily verify that Gaussian parity satisfies the parity axioms, and we leave

the details to the reader.
Notice that a diagram D has only even chords if and only if I(ci) = 0 for all chords

(by definition of f). This is equivalent to the condition that D admit an Alexander
numbering.
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There is a map

Pf : {Gauss diagrams} −→ {Gauss diagrams}
called Manturov projection which is defined by removing the odd chords of D. Thus,
if all chords of D are even then Pf (D) = D. Otherwise, if Pf (D) 6= D then D contains
one or more odd chords and does not admit an Alexander numbering. Its projection
Pf (D) will then be a diagram with fewer chords, but because removal of chords may
alter the parity of the surviving chords, the new diagram Pf (D) may contain odd
chords.

Repeated application of Pf will eventually give a diagram without odd chords. In

fact, for some some n ≥ 0 the projection Pnf stabilizes in that Pn+1
f (D) = Pnf (D). The

resulting diagram D̄ = Pnf (D) is has only even chords and hence is almost classical.
We define P∞f = lim

n→∞
Pnf and call it the stable Manturov projection.

In summary, we have shown that for any virtual knot diagram D, its image P∞f (D)
under stable Manturov projection admits an Alexander numbering and therefore is
an almost classical virtual knot.

Although Manturov projection Pf is defined at the level of diagrams, the next
proposition implies that it is well-defined on virtual knots. The proof is an immediate
consequence of the parity axioms, and for details we refer to either [Man13] or [Nik16].

Proposition 2.5. If two virtual knot diagrams K and K ′ are virtually isotopic, then
so are their images Pf (K) and Pf (K ′) under Manturov projection.

Next, we recall that ifK is an almost classical knot, then its first elementary ideal E1
is principal. This result was proved by Nakamura, Nakanishi, Satoh, and Tomiyama
in [NNST12, Theorem 1.2] by using an Alexander numbering to determine a linear
combination of the rows of the Jacobian matrix that sum to zero. Because it is central
to our later results, we will go through the argument carefully.

Proposition 2.6. If K is an almost classical knot or link, then its first elementary
ideal E1 is principal.

Proof. Let A =

(
∂ri
∂xj

∣∣∣
x1,...,xn=t

)
be the Jacobian matrix of Definition 2.2 and E1 the

ideal generated by (n− 1)× (n− 1) submatrices of A. Then equation (4) implies that

(6) Ai,j =
∂ri
∂xj

∣∣∣∣
x1,...,xn=t

=


t−εi if j = i,
−1 if j = i+ 1,
1− t−εi if j = k,
0 otherwise.

Let Ai,∗ denote the i-th row of A, and set

ϑi =

{
tλi if εi = −1,

tλi+1 if εi = +1.

where λi and λi+1 are the two Alexander numbers showing up at the crossing ci (see
Figure 8). Notice that ϑi is a unit in Z[t±1] for i = 1, . . . , n.

Claim 2.7. We have
n∑
i=1

ϑiAi,∗ = 0.
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To prove the claim, we compute

ϑiAi,∗ =

{
(0, . . . , 0, tλi ,−tλi+1, 0, . . . , 0, tλi+1 − tλi , 0, . . . , 0) if εi = +1,

(0, . . . , 0, tλi+1,−tλi , 0, . . . , 0, tλi − tλi+1, 0, . . . , 0) if εi = −1.

Recall that the row Ai,∗ corresponds to the crossing ci of K with incoming underarc

xi, outgoing underarc xi+1, and overar xk. In the case εi = +1, the tλi term in row i
corresponds to the incoming underarc xi; −tλi+1 corresponds to the outgoing underarc
xi+1, and tλi+1 − tλi corresponds to the overarc xk. Similar considerations apply in
the case εi = −1 case.

−tλi −tλi+1

tλi tλi+1

−tλi −tλi+1

tλi tλi+1

Figure 8. Arc labels at the i-th crossing in terms of Alexander numbers.

Notice that the incoming arcs have labels with positive signs, and the outgoing arcs
have labels with negative signs. In the linear combination

∑n
i=1 ϑiAi,∗, the j-th entry

is given as the sum of all terms in the j-th column (each multiplied by a ϑi), namely
all the terms as above contributed by the arc xj . This includes terms for which xj is
the outgoing underarc, incoming underarc, or overarc, and those terms are given by
multiplying one of −1, t−εi , 1− t−εi as in (4) with the coefficient ϑi as above. This is
the same as summing up all the labels as in Figure 8 as you move across the arc xj .
Of course, the λi term corresponds to the Alexander numbering of the arcs.

tλ+1 −tλ+1

Figure 9. Two consecutive Alexander numbers.

Now, on a given arc xj , it turns out that consecutive labels cancel and this shows
why the sum

∑n
i=1 ϑiAi,∗ = 0 is zero. Recall that xj goes from the (j − 1)-st under-

crossing to the j-th under-crossing, so it is an incoming underarc and outgoing un-
derarc exactly once. However, it can be an overarc for multiple crossings. Since the
ϑi’s correspond to the Alexander numbers, if we have a short arc contributing two
terms to the sum, each term must have the same power of t (see Figure 9).

The reason is that Alexander numberings are assigned to the short arcs but the
labels (as in Figure 8) are assigned to half of a short arc. They are still related to
the Alexander numbering on the arc, and any two terms on the same short arc must
have the same Alexander number. On the other hand, the two terms are of opposite
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sign (since one will be ingoing and one outgoing), and that is why the sum is zero.
This completes the proof of the claim.

The claim provides a linear dependence among the rows of A, and the fundamental
identity of Fox derivatives shows that the sum of the columns of A is zero. This
fact, together with the observation that each ϑi is a unit in Z[t±1], shows that any
(n − 1) × (n − 1) minor is a generator of E1. In particular, E1 is principal, and this
completes the proof. �

As a consequence of the proof, it follows that for an almost classical knot K with
Jacobian matrix A constructed as in Definition 2.2, its Alexander polynomial ∆K(t)
is given by taking the determinant of the (n−1)×(n−1) matrix obtained by removing
any row and any column from A.

2.5. Virtual braids. In this section, we introduce virtual braids and recall the vir-
tual analogue of Alexander’s theorem (stated later in this section), which shows that
every virtual knot or link can be realized as the closure of a virtual braid.

The virtual braid group on k strands, denoted VBk, is the group generated by
σ1, . . . , σk−1, τ1, . . . , τk−1 subject to the relations in equations (7), (8), (9). Here, σi
represents a classical crossing and τi represents a virtual crossing involving the i-th
and (i+ 1)-st strands as in Figure 10. Virtual braids are drawn from top to bottom,
the group operation is given by stacking the diagrams, and the closure of a virtual
braid represents a virtual link.

· · · · · ·
i+ 1i

σi

· · · · · ·
i+ 1i

σ−1
i

· · · · · ·
i+ 1i

τi

Figure 10. Generators of VBk.

Note that the virtual generators τ1, . . . , τk−1 generate a finite subgroup of VBk

isomorphic to the symmetric group Sk on k letters; the element τi swaps the i-th and
(i+ 1)-st strands and corresponds to the transposition (i, i+ 1) ∈ Sn.

(7)
σiσj = σjσi if |i− j| > 1,

σiσi+1σi = σi+1σiσi+1,

(8)
τiτj = τjτi if |i− j| > 1,

τiτi+1τi = τi+1τiτi+1,
τ2i = 1,

(9)
σiτj = τjσi if |i− j| > 1,

τiσi+1τi = τi+1σiτi+1.

The next result is Alexander’s theorem for virtual knots and links, and it was first
proved by Kamada in [Kam07] via a braiding process. Interestingly, the statement
of Alexander’s theorem is stronger in the virtual setting because, as we shall see,
the virtual braid faithfully reproduces the Gauss code of the virtual knot diagram, cf.



ALEXANDER INVARIANTS OF PERIODIC VIRTUAL KNOTS 13

O1 U1

O1 U1

U2 O2

U2 O2

O3 U3

O3 U3

O1 U1

O1 U1

U2 O2

U2 O2

O3 U3

O3 U3

Figure 11. The braiding algorithm for CK = O1-U2+O3-U1-O2+U3-.

[Bir74, Theorem 2.1]. We provide a proof, and later in Theorem 3.12 we will establish
an equivariant version of Alexander’s theorem for periodic virtual knots.

Theorem 2.8. Every virtual knot diagram can be realized as the closure of a virtual
braid.

Proof. Let K be a virtual knot diagram with n real crossings and Gauss code CK . We
will show how to construct a virtual braid β on 2n strands whose closure is a virtual

knot with Gauss code identical with CK , and it follows that β̂ and K are equivalent
(as virtual knot diagrams) up to a sequence of detour moves and planar isotopies.

First, we draw the n real crossings side by side pointing downwards according to
their sign (see Figure 1). For example, for the Gauss code CK = O1-U2+O3-U1-O2+U3-,
we draw three crossings as in Figure 11.

We label the 2n arcs across the top with O1, U1, U2, O2, ... appropriately (that
is, Oi,Ui for a negative crossing, and Ui,Oi for a positive crossing), and we draw 2n
points directly underneath, which we label O1, U1, U2, O2, ... in exactly the
same order as on top. (This is illustrated on the left of Figure 11.)

The Gauss word CK tells us how to connect the outgoing arcs from each of the n
crossings to the corresponding points at the bottom. For instance, the first part of
the Gauss word O1-U2+O3-U1-O2+U3- tells us to connect the outgoing overarc of the
first crossing (O1) to the point labelled U2 below, and next it tells us to connect the
outgoing underarc of the second crossing (U2) to the point labelled O3. Continuing in
this way, we connect all the arcs to points, with the last crossing in the Gauss word
connected back to the first entry. In the example, it tells us to connect the outgoing
underarc of the third crossing (U3) to the point labelled O1. The outcome is a virtual
braid as depicted on the right of Figure 11.

The connecting arcs are drawn monotonically decreasing, and every new crossing
that is created is drawn as a virtual crossing. Basically, the connecting lines, which
appear as dashed lines in Figure 11, determine an element in S2n, the symmetric
group. Because the virtual generators of VB2n generate a subgroup isomorphic to
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S2n, we can always write this element of S2n as a word in the τ1, . . . , τ2n−1. In the
example above, we get the word τ1τ4τ3τ5τ4τ5τ2τ1τ3τ2.

The resulting diagram will be a virtual braid β on 2n strands whose closure is

equivalent to the given knot K. In fact, as one can easily verify, the Gauss code of β̂
is equal to CK . �

We conclude this section by defining almost classical braids and introducing an
invariant for them.

Definition 2.9. A braid is called almost classical if it admits an Alexander numbering
(that is, if one can number the arcs of β such that, at each crossing the conditions of
Figure 7 are satisfied) and so that the numbers along the bottom of β coincide with
the numbers at the top.

Note that a braid is almost classical if and only if its closure β̂ is an almost classical
diagram. For example, if β ∈ Bk is a classical braid, then taking λi = i on the i-th
strand at the top extends to an Alexander numbering of β such that the i-th strand
on the bottom also has the number i, thus any classical braid β is almost classical.
Note that taking λi = i gives a valid Alexander numbering since, for a classical braid,
there are no virtual crossings, and each strand’s Alexander number must increase by
one as we move from left to right across the strands, because of the conditions of
Figure 7. So, if we start on the left with λ1 = 1, then the second strand will need to
have λ2 = 2, and so on.

If β ∈ VBk is an almost classical braid, then consider the polynomial f(t) =∑k
i=1 t

λi , where λi refers to the Alexander number on the i-th strand at a horizontal
cross-section of β. Notice that this polynomial is independent of where along the braid
the cross-section is taken. When passing a classical crossing, the Alexander numbers
on the two strands swap positions, but f(t) remains unchanged. When passing a
virtual crossing, the Alexander numbers do not change. Taken up to multiples of t`,
f(t) gives a well-defined invariant of almost classical braids, which is also independent
of the choice of Alexander numbering provided β is not a split braid.

2.6. Alexander invariants (reprise). Let K be a virtual knot diagram, which

has been realized as the closure β̂ for a virtual braid β ∈ VBk. We use the braid
realization to give an alternative presentation matrix for the Alexander invariants.
The main difference from Definition 2.2 is that we have generators x1, . . . , xk for the
strands on the top of β and generators z1, . . . , zk for the strands on the bottom. This
approach is especially convenient in deriving formulas for the Alexander invariants
of periodic virtual knots K which are represented as the closures of periodic virtual
braids.

Definition 2.10. Suppose K is a virtual knot diagram with n crossings, and apply

Theorem 2.8 to write K = β̂, where β is a virtual braid on k strands. We label the
arcs on top of β by x1, . . . , xk and the arcs on the bottom of β by z1, . . . , zk, and we
use y1, . . . , yr to label the internal arcs β, which are the arcs that do not start or end
at the top or bottom of β. (Note that we will typically have r = n− k, unless n < k
or some strands of β pass over all the other strands.)

This gives a presentation for the knot group

GK = 〈x1, . . . , xk, y1, . . . , yr, z1, . . . , zk | R1, . . . , Rn, S1, . . . , Sk〉,



ALEXANDER INVARIANTS OF PERIODIC VIRTUAL KNOTS 15

x1 x2 x3

y1

z1 z2 z3

Figure 12. The classical braid β = (σ1σ2)
2.

where the Ri are the usual Wirtinger relations coming from the crossings of β and

the Si are the relations which correspond to setting xi = zi for the closure β̂.
The Jacobian matrix B associated to this presentation of GK is the (n+k)×(n+k)

matrix with rows ordered by the relations R1, . . . , Rn, S1, . . . Sk and columns ordered
by the generators x1, . . . , xk, y1, . . . , yr, z1, . . . , zk and (i, j) entry given by the Fox
differentiating the i-th relation with respect to the j-th generator and applying the
abelianization map GK → Z sending each of the generators to t.

For example, consider the classical braid β = (σ1σ2)
2 in Figure 12. The knot group

GK of K = β̂ has a presentation with generators x1, x2, x3, y1, z1, z2, z3 and relations

R1 = x1x2x
−1
1 y−11 , R2 = x−13 x1x3z

−1
2 , R3 = y1x3y

−1
1 z−11 , R4 = z−12 y1z2z

−1
3 ,

S1 = z1x
−1
1 , S2 = z2x

−1
2 , S3 = z3x

−1
3 .

We write the Jacobian matrix ofGK with rows ordered by the relationsR1, . . . , R4, S1, . . . , S3
and columns ordered by the generators x1, x2, x3, y1, z1, z2, z3; it is the square matrix

B =



1− t t 0 −1 0 0 0
t−1 0 1− t−1 0 0 −1 0
0 0 t 1− t −1 0 0
0 0 0 t−1 0 1− t−1 −1
−1 0 0 0 1 0 0
0 −1 0 0 0 1 0
0 0 −1 0 0 0 1


.

Note that the Wirtinger presentation for the virtual knot is

GK = 〈x1, x2, x3, y1 | R̃1, R̃2, R̃3, R̃4〉,
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λR
i λR

i + 1

λR
i λR

i + 1

λR
i λR

i + 1

λR
i λR

i + 1

Figure 13. The Alexander numbers at the i-th crossing for εi = 1 on
the left and εi = −1 on the right.

where R̃i is obtained from Ri above by substituting xj for zj . Applying Definition 2.2
to this presentation of GK gives the Jacobian

A =


1− t t 0 −1
t−1 −1 1− t−1 0
−1 0 t 1− t
0 1− t−1 −1 t−1

 .
Notice that this matrix can also be obtained from the upper left 4× 4 block of B by
combining (that is, adding) the xj and zj columns.

In general, the matrix derived from Definition 2.10 will be given by

B =

[
∂Ri/∂xj ∂Ri/∂yj ∂Ri/∂zj
∂Si/∂xj ∂Si/∂yj ∂Si/∂zj

]
=

[
x∗ y∗ z∗
−Ik 0 Ik

]
,

and it is related to the matrix derived from Definition 2.2, which is

A =

[
x∗ + z∗ y∗

0 0

]
∼=
[
x∗ + z∗ y∗

]
.

We now state and prove a result analogous to Proposition 2.6 for the Jacobian
matrix B from Definition 2.10 for an almost classical knot K. We will assume that
K has been realized as the closure of an almost classical braid β ∈ VBk.

Lemma 2.11. Suppose K is an almost classical knot diagram with K = β̂ for
β ∈ VBk an almost classical braid with n crossings. Let B be the Jacobian ma-
trix (constructed as in Definition 2.10) with relations R1, . . . , Rn from the crossings
and S1, . . . , Sk from the identities zix

−1
i as above. Note that B is an (n+k)× (n+k)

matrix. For i = 1, . . . , n, let λRi be the Alexander number of the i-th crossing of β, as
in Figure 13, and for i = 1, . . . , k, let λSi be the Alexander number of the i-th strand
at the top of β.

Then

n+k∑
i=1

ωiBi,∗ = 0, where

ωi =


tλ

R
i for 1 ≤ i ≤ n and εi = −1,

tλ
R
i +1 for 1 ≤ i ≤ n and εi = +1,

tλ
S
i−n for n+ 1 ≤ i ≤ n+ k.
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Proof. From Claim 2.7, if we have a matrix A constructed from Definition 2.2, then∑n
i=1 ϑiAi,∗ = 0, where

ϑi =

{
tλ

R
i if εi = −1 for 1 ≤ i ≤ n,

tλ
R
i +1 if εi = +1 for 1 ≤ i ≤ n.

Recall from the proof of Claim 2.7, that
∑n

i=1 ωiAi,j corresponds to the sum of all

the ±tk labels on the arc corresponding to the j-th column (so if column j was
corresponding to an xk label at the top, then it would be the sum of the labels on the
arc that is labeled xk), where the labels were assigned as in Figure 8. When we label
the arcs as in Definition 2.10 for a virtual braid, the yi arcs are not affected, and the
only difference is that the arcs that were previously labelled xi are now cut in half
(on the unknotted part of the braid), and we have both an xi and zi arc. Previously,
all the labels on xi cancelled in pairs, so we had a sum of 0. But now that we have
split xi into two pieces, there is a pair that gets separated. The label at the top of

the braid will be a tλ
S
i (positive since it is an ingoing arc), which will sit on the xi

arc. At the bottom of the braid, there will be a −tλSi for the outgoing arc, which will

sit on the zi arc. Thus, before considering the Si relations, we will have a sum of tλ
S
i

on the xi arc (all other labels within the braid on xi will cancel as before), and a sum

of −tλSi on the zi arc (all other labels within the braid on zi will cancel as before). It
remains to look at the Si relations that contribute to the linear combination. Recall
that these correspond to xi = zi, which will give a −1 in the xi column and a +1 in

the zi column, and zeros everywhere else. Hence, if we multiply this row by tλ
S
i , we

will get a sum of zero for the xi and zi columns. As stated above, the yi columns
remain unchanged from the previous method, and since the Si relations do not involve
yi’s, the sum in their columns remains zero as well. Now the row corresponding to Si
is actually the (n+ i)-th row of B, so for n+ 1 ≤ i ≤ n+ k, we take ωi = tλ

S
i−n . �

3. Periodic Virtual Knots

3.1. Basic Definitions. In this section, we recall the definition of periodicity for
virtual knot diagrams, Gauss codes and Gauss diagrams. We write out Wirtinger
presentations for the knot groups GK and GK∗ of a periodic virtual knot and its
quotient, and we show how the Jacobian matrix of K is related to that of K∗ in terms
of circulant block matrices.

Definition 3.1. A virtual knot diagram K is called periodic with period q if it misses
the origin and is invariant under a rotation in the plane by an angle of 2π/q about
the origin.

Given a periodic virtual knot diagram K, its quotient knot K∗ is the knot obtained
by closing up one fundamental domain of K. To be specific, take one fundamental
domain of K, which is a pie-shaped region centered at the origin with angle 2π/q,
and connect the arcs along the upper and lower edges with concentric circular arcs.

Figure 14 illustrates a periodic virtual knot on the left and its quotient on the right.
In that picture, τ is a virtual tangle diagram.

Definition 3.2. The linking number k of a periodic virtual knot diagram K is the
absolute value of the intersection number of a ray R emanating from the origin with
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τ

τ

τ

Figure 14. A periodic virtual knot and its quotient knot.

Figure 15. A 3-periodic knot diagram for the pretzel knot 935.

the virtual knot diagram. As usual, we sum up intersection points, and they count
positively if they come from an arc of K that winds counter-clockwise around the
origin, otherwise they count negatively.

For example, the periodic virtual knot in Figure 14 has linking number 3. A well
known example is the (3, 3, 3)-pretzel knot 935, and Figure 15 depicts a 3-periodic
diagram for 935 with linking number k = 2 and quotient K∗ a diagram of the unknot.

Periodicity of a virtual knot diagram is reflected in its Gauss code. For instance,
the diagram for the pretzel knot 935 has underlying Gauss code

C = U1-O2-U3-O6-U5-O4-U7-O8-U9-O3-U2-O1-U4-O5-U6-O9-U8-O7-.

In general, we say a Gauss code is q-periodic if the O/U and +/- patterns repeat
with period q, and whenever Oi goes to Oj in the next period, then Ui goes to Uj.
(In other words, the periodic transformation is a well-defined map on the crossings of
K.)
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εi
ci,j

ak,`

ai,j

ai+1,j
ci,j

ci−1,j

ai,j

Figure 16. On left, ci,j separates ai,j and ai+1,j and has arrowfoot
on ak,`. On right, ai,j is the dotted arc between the arrowheads
of ci−1,j and ci,j .

For instance, the Gauss code for 935 is a signed word of length 18, and we will write
it in the following way to emphasize its 3-periodicity.

C = U1-O2-U3-O6-U5-O4-

U7-O8-U9-O3-U2-O1-

U4-O5-U6-O9-U8-O7-.

Thus, the periodic transformation of C is the map (of ordered sets)

{1, 2, 3} 7→ {7, 8, 9} 7→ {4, 5, 6} 7→ {1, 2, 3}.
(Note, a more succinct description of this map is i 7→ i + 6 mod 9.) Applying this
transformation to C, the new Gauss code is easily seen to be equivalent to the original
one under a cyclic permutation of C.

A Gauss diagram is said to be q-periodic if it is invariant under a rotation of an
angle of 2π/q. This is equivalent to the condition of q-periodicity for the associated
Gauss code, but it is easier to visualize.

Clearly, if K is a q-periodic virtual knot diagram, then its Gauss code and Gauss
diagram are also both q-periodic. In that case, the Wirtinger presentation associated
to the periodic diagram as in Equation (2) is symmetric, as we explain.

Suppose K has qn crossings. Pick a basepoint and label the chords

c1,0, . . . , cn,0, c1,1, . . . , cn,1, . . . , c1,q−1, . . . , cn,q−1

of the Gauss diagram DK in the order in which their arrowheads are encountered as
one travels around the knot. Because K is q-periodic, we can assemble them

c1,0 · · · cn,0
...

...
c1,q−1 · · · cn,q−1

so that the periodic action is the vertical shift sending ci,j to ci,j+1 for j = 0, . . . , q−1,
with j + 1 taken mod q, which is to say that if j = q − 1, then j + 1 equals 0.

We can label the arcs
a1,0 · · · ak,0
...

...
a1,q−1 · · · an,q−1

accordingly, so that, for i = 2, . . . , n, the arc ai,j starts at the arrowhead of ci−1,j and
ends at ci,j ; see Figure 16. When i = 1, the arc a1,j starts at cn,j−1 and ends at c1,j .
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If εi,j = ±1 is the sign of the chord ci,j , then periodicity implies that εi,j = εi,j+1,
so we will simply write εi. If ak,` denotes the arc on which the arrowfoot of ci,j lies,
then by periodicity ak,`+1 is the arc on which the arrowfoot of ci,j+1 lies. (Here, `+ 1
and k + 1 are taken mod q.)

With these assumptions, the Wirtinger relation of the crossing ci,j is given by

ri,j = a−εik,` ai,j a
εi
k,` a

−1
i+1,j

for i = 1, . . . , n − 1 and j = 0, . . . , q − 1. When i = n, we get the relation rn,j =

a−εnk,` an,j a
εn
k,`a
−1
1,j .

The resulting Wirtinger presentation of the q-periodic virtual knot K is then

(10) GK = 〈ai,j | ri,j〉,
where 1 ≤ i ≤ n, 0 ≤ j ≤ q − 1 in (10). This presentation admits a Z/q symmetry,
and the Wirtinger presentation for K∗ by obtained as the quotient by adding the
relations ai,0 = ai,1 = · · · = ai,q−1 for 1 ≤ i ≤ n, which gives the presentation

(11) GK∗ = 〈a1, . . . , an | r1, . . . , rn〉,
where ai refers to the equivalence class {ai,0, . . . , ai,q−1} of generators and ri is the

relation a−1i+1a
−εi
k ai a

εi
k with i+ 1 taken mod n.

Theorem 3.3. Let K be a virtual knot diagram with period q, and let K∗ be its
quotient knot. If A and B are the Jacobian matrices of the Wirtinger presentations
(11) and (10) of GK∗ and GK , respectively, then

(12) B =


A0 A1 · · · Aq−1
Aq−1 A0 · · · Aq−2
...

. . .
. . .

...
A1 · · · Aq−1 A0


is a block circulant matrix, where A0, A1, . . . , Aq−1 are square matrices satisfying A0+
A1 + · · ·+Aq−1 = A.

Proof. Suppose K is q-periodic and label the chords ci,j and arcs ai,j as above. In con-
structing the Jacobian matrix B associated to (10), we order the rows to correspond
with the chords

c1,0, . . . , cn,0, c1,1, . . . , cn,1 . . . , c1,q−1, . . . , cn,q−1

and the columns to correspond with the arcs

a1,0, . . . , an,0, a1,1, . . . , an,1, . . . , a1,q−1, . . . , an,q−1.

Then the entry of B in the (i, j)-th row and (i′, j′)-th column, which is the entry in
the row corresponding to ci,j and column corresponding to ai′,j′ , is given by

B
(
(i, j), (i′, j′)

)
=


t−εi if (i′, j′) = (i, j),

−1 if (i′, j′) = (i+ 1, j), or if i′ = 1, i = n, and j′ = j + 1,

1− t−εi if (i′, j′) = (k, `),

0 otherwise.

(Recall that ak,` is the arc on which the arrowfoot of ci,j lies.)
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Notice that for ci,j , the t−εi entry will always be in the j-th column block of the
i-th block row; the −1 term will always be in the j-th column block of the i-th block
row, unless i = n, and then the −1 will sit in the (j + 1)-st column block of the i-th
block row. The 1− t−εi entry, on the other hand, can be in any column block of the
i-th block row. Also notice that if the foot of ci,j lies on ak,`, then periodicity implies
that the foot of ci,j+1 lies on ak,`+1 (with j + 1, ` + 1 taken mod q). For example,
in the i-th block row of B, we will have

ai,0 ai+1,0 ak,0 ai,1 ai+1,1 ak,1 ai,2 ai+1,2 ak,2 · · ·



ci,1 t−εi −1 1− t−εi

ci,2 t−εi −1 1− t−εi

... · · · · · · · · · · · ·

Notice that the matrix B satisfies Bi,j = Bi+n,j+n, and therefore it is block circulant
with n× n blocks of the desired form:

B =


A0 A1 · · · Aq−1
Aq−1 A0 · · · Aq−2
...

. . .
. . .

...
A1 · · · Aq−1 A0

 .
Next we will show that

∑q−1
k=0Ak = A, where A is the Jacobian matrix for the

quotient knotK∗. Notice that in the Wirtinger presentation (11) forGK∗ , the relations
ri are obtained from the relations ri,j of (10) under setting ai,0 = ai,1 = · · · = ai,q−1
for 1 ≤ i ≤ n. The Jacobian matrix for GK∗ has i, j entry

A(i, j) =


t−εi if j = i,

−1 if j = i+ 1 mod n,

1− t−εi if j = k,

0 otherwise.

Notice that the i-th row of A is equal to the sum of the i-th rows of block matrices
appearing in B, which is equivalent to the statement that

∑q−1
k=0Ak = A. This

completes the proof. �

3.2. Periodicity and almost classical knots. Both periodicity and almost classi-
cality are defined for virtual knots in terms of their representative diagrams, and it
remains to show that we can find virtual knot diagrams that exhibit both properties
at the same time. In this section, we use Manturov projection to show that if K is
a q-periodic virtual knot diagram representing an almost classical knot, then one can
find a q-periodic almost classical diagram equivalent to K.

We begin with a few useful lemmas.
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Lemma 3.4. Suppose K is a virtual knot diagram representing an almost classical
knot. Then its image Pf (K) under Manturov projection is virtually isotopic to K.

Proof. Since K represents an almost classical knot (but may not be Alexander num-
berable itself), by the definition of almost classical, we have a virtual knot diagram
K ′ which is Alexander numberable and virtually isotopic to K. Equivalently, the
Gauss diagram D′ corresponding to K ′ has all of its chords of index 0. Applying
Proposition 2.5, it follows that Pf (K) is virtually isotopic to Pf (K ′) = K ′, which is
virtually isotopic to K. �

Note that in the above lemma, Pf (K) need not be an almost classical diagram.
In fact, even if K represents an almost classical knot, K and Pf (K) may fail to be
almost classical diagrams. On the other hand, for any virtual knot diagram K, its
image P∞f (K) under stable projection is an almost classical diagram.

Lemma 3.5. Let K be a q-periodic virtual knot diagram with quotient K∗. For
j = 0, . . . , q−1, let c1,j , . . . , cn,j be the chords in the j-th period of the Gauss diagram
DK for K, and let c1, . . . , cn be the corresponding chords in the Gauss diagram DK∗

for K∗. Then the index satisfies I(ci,j) = I(ci) for i = 1, . . . , n and j = 0, . . . , q − 1.
In particular, the index I(ci,j) of a chord is independent of its period j = 0, . . . , q− 1.

Proof. Let π : DK → DK∗ be the mapping of Gauss diagrams. It is a covering map
of oriented trivalent graphs preserving the signs.

According to Definition 2.4, the index of ci is given by counting the arrowheads
and arrowtails with sign along the arc αi of DK∗ from the arrowtail of ci to its
arrowhead. One can perform this computation upstairs in DK after lifting αi under
π. If α̃i denotes the lift starting at the arrowtail of ci,j , then it will end at the
arrowhead of ci,k for some k = 0, . . . , q − 1. The index along α̃i differs from the
index of ci,j by a similar count along an arc β of DK from the arrowhead of ci,k to
the arrowhead of ci,j . Taking its image π(β) under π, we obtain an arc that winds
around DK∗ |j − k| times (because of the periodicity), and consequently the index
along β is necessarily zero. (The index around an entire diagram will always be zero
because the all arrowheads will cancel with their arrowtails in the sum). It follows
that I(ci) = I(ci,j) for j = 0, . . . , q − 1, and this completes the proof. �

Corollary 3.6. If K is a q-periodic almost classical diagram with quotient K∗, then
K∗ is also almost classical.

Lemma 3.7. Suppose K is a q-periodic virtual knot diagram. Then its image Pf (K)
under Manturov projection is also q-periodic.

Proof. At the level of the virtual knot diagram, Manturov projection is the process
of replacing all of the odd (real) crossings with virtual crossings. By the previous
lemma, if K is q-periodic and has an odd crossing, then so is every other crossing in
its Z/q-orbit. This fact ensures that if K is q-periodic, then so is Pf (K). �

Theorem 3.8. If K is a q-periodic virtual knot diagram which represents an almost
classical knot, then K̄ = P∞f (K) is a q-periodic almost classical diagram representing
the same virtual knot.
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Proof. Since K represents an almost classical knot, repeated application of Lemma 3.4
implies that P∞f (K) is virtually isotopic to K. On the other hand, since K is q-

periodic, repeated application of Lemma 3.7 ensures that P∞f (K) is also q-periodic.
That completes the proof of the theorem. �

The next proposition is a slightly more general result along the same lines.

Proposition 3.9. Suppose K is a q-periodic virtual knot diagram. Then its im-
age P∞f (K) under stable Manturov projection is an almost classical q-periodic knot
diagram.

Proof. This follows by repeated application of Lemma 3.7, together with the fact that
P∞f (K ′) is an almost classical diagram for any virtual knot diagram K ′. �

Even though Manturov projection Pf is defined at the level of virtual knot dia-
grams, Proposition 2.5 ensures that it is a well-defined operation on the level of virtual
knots. The next corollary will allow us to eliminate periods for a general virtual knot
K by applying the Murasugi conditions to the almost classical knot K̄ = P∞f (K)
obtained by stable projection.

Corollary 3.10. Let K be a virtual knot, and K̄ = P∞f (K) be the associated almost

classical knot obtained by stable Manturov projection. If K̄ does not admit a q-periodic
diagram, then neither does K.

We derive a formula for the writhe polynomial for periodic virtual knots. Let K be
a virtual knot with Gauss diagram D, and let wn(D) =

∑
I(c)=n ε(c) be the n-writhe

of D, which is an invariant of the virtual knot K for n 6= 0 (see [ST14]). The writhe
polynomial is defined by setting

WK(t) =
∑
n∈Z

wn(D) tn −Wr(D),

where Wr(D) is the total writhe of D. In [CG13], Cheng and Gao show that the
writhe polynomial WK(t) is an invariant of the virtual knot K, and in [BL15], Bae
and Lee give a formula for WK(t) for periodic virtual knots. The next result recovers
their formula as an immediate consequence of Lemma 3.5.

Proposition 3.11. If K is a q-periodic virtual knot with quotient K∗, then its writhe
polynomial satisfies WK(t) = q ·WK∗(t).

3.3. Periodic virtual braids. In this section, we will show that every periodic
virtual knot diagram K can be realized as the closure of a periodic braid; in other

words, K = β̂q for some virtual braid β. It can be viewed as an equivariant version of
Alexander’s theorem, and it is proved via an equivariant braiding process. Whenever

we have K = β̂q, it is clear that the linking number equals the braid index and that

the quotient knot is given by K∗ = β̂.

Theorem 3.12. (i) A virtual knot diagram K is q-periodic if and only if there exists
a q-periodic Gauss code representing it.
(ii) A virtual knot diagram K is q-periodic if and only if it can be realized as the

closure of the q-periodic braid, that is, K = β̂q for some β ∈ VBk.
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Proof. For both (i) and (ii), one direction is clear. For instance, if K is a q-periodic
virtual knot diagram, then its corresponding Gauss code is obviously q-periodic. Like-

wise, if K = β̂q is the closure of a periodic braid, then obviously K is itself a q-periodic
virtual knot diagram.

To show the other directions, we will construct a periodic virtual knot diagram K
from a q-periodic Gauss code C. In the construction, we will further arrange that the
arcs wind monotonically around the origin, thus it will follow that the virtual knot
diagram we construct is in fact the closure of a periodic virtual braid.

Assume then that C is a q-periodic Gauss code, so its Gauss diagram will then
have qn chords, which we list

c1,0, . . . , cn,0, c1,1, . . . , cn,1, . . . , c1,q−1, . . . , cn,q−1

in the order in which their overcrossings are encountered in C. Because C is q-periodic,
we can assemble them

c1,0 · · · cn,0
...

...
c1,q−1 · · · cn,q−1

so that the periodic action is the vertical shift sending ci,j to ci,j+1 for j = 0, . . . , q−1,
with j + 1 taken mod q (so if j = q − 1, then j + 1 equals 0).

To draw the periodic virtual knot diagram, we draw the crossings ci,j in the plane
according to the sign εi (which recall by periodicity is independent of j) and such
that ci,j goes to ci,j+1 under a 2π/q rotation of the plane.

To achieve that, draw the crossings c1,0, c1,1, . . . , c1,q−1 equally spaced around a
circle, making sure the crossings are all right-handed if ε1 = 1 and left-handed if
ε1 = −1. Drawing them equally spaced will ensure that each c1,j is sent to c1,j+1

under the rotation of 2π/q.
We then do the same for c2,0, . . . , c2,q−1, making sure they are equally spaced,

then for c3,0, . . . , c3,q−1, and so on. To ensure that the virtual knot we construct is
the closure of a virtual braid, we draw each crossing so that its arcs are oriented
clockwise with respect to the origin. This is easy to arrange, for instance by drawing
all of c1,0, . . . , cn,q oriented downwards to the right of the origin, and rotating by an
angle of 2πj/q before drawing the other crossings ci,j , see Figure 3.3.

The result is that we have drawn all qn crossings

c1,0, . . . , cn,0, c1,1, . . . , cn,1, . . . , c1,q−1, . . . , cn,q−1

symmetrically, and we complete the diagram using an equivariant braiding process.
For instance, reading the first segment of the Gauss code tells us to connect either
the over or under-crossing arc from the first crossing c1,0 to one of the arcs of an-
other crossing, say ci,j . By periodicity, the same arc of c1,` will be connected to the
corresponding arc of ci,j+`, with j + ` taken mod q. Thus, in total there will be q
connecting arcs, and we draw them equivariantly with respect to the Z/q action. This
guarantees the resulting virtual knot diagram will be q-periodic.

To ensure we end up with the closure of a virtual braid, we draw the connecting arcs
so they wind monotonically around the origin. This process will typically produce
a large number of additional crossings, all of which are taken to be virtual crossings
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c1,0

c2,0

c3,0

c1,1

c2,1

c3,1

c1,2

c2,2

c3,2

of the resulting periodic virtual knot diagram. See Example 3.14 to see this process
carried out for the pretzel knot 935. �

The next result is a consequence of Theorems 3.8 and 3.12.

Corollary 3.13. If the virtual knot K is q-periodic and almost classical, then it can

be represented as K = β̂q, the closure of a q-periodic braid β ∈ VBk that admits an
Alexander numbering.

Example 3.14. Consider the classical pretzel knot 935, which admits a 3-periodic
classical diagram. It is a consequence of the theorem of Edmonds [Edm84] that 935
does not admit a classical q-periodic diagram for any q > 3. Since 935 is a genus one
knot, this follows from the general bound q ≤ 2g(K) + 1 on the possible periods of a
classical knot diagram K, where g(K) denotes the Seifert genus of K.

On the other hand, the knot K = 935 has Alexander polynomial ∆K(t) = 7t2 −
13t + 7, which satisfies Murasugi’s conditions (Theorem 1.1) for q = 3 and k = 2,
see Figure 15. However, it is impossible to realize K as the closure of a 3-periodic
classical braid β3, since β would necessarily be a braid on two strands, and for any

braid in β ∈ B2, the closure β̂3 is necessarily a (2, n) torus knot or link. (Any braid
on two strands would only have σi

±1 terms, so it would reduce to either σ1
n, which

is the (2, n) torus knot; or σ1s
−n, which is the (2,−n) torus knot).

However, Theorem 3.12 tells us that K can be realized as the closure of a 3-
periodic virtual braid. On the left of Figure 17 is a 3-periodic tangle diagram for K
as a classical knot that attempts to wind monotonically around the origin. It is not
a braid because monotonicity fails along the six dashed arcs in that figure.

On the right of Figure 17 is the result of replacing these six arcs with arcs that
wind monotonically around the origin. This creates many new crossings, and all of
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Figure 17. Converting a periodic tangle into a periodic virtual braid
for 935.

them are virtual. As in the proof of Theorem 3.12, these arcs are added so as to
preserve the periodicity of the diagram, and the result is a 3-periodic virtual braid
diagram for 935. One can check that the resulting braid β ∈ VB8 is given by the braid
word

β = τ2τ5σ4τ1τ3σ4τ5τ7σ4τ3τ6.

Table 2 lists the known periods of almost classical knots up to six crossing, along
with periodic virtual braids closing up to the given knot. The numbering of the virtual
knots comes from Green’s virtual knot table [Gre].

Example 3.15. The almost classical knot 6.90227 coincides with the classical 2-bridge
knot 61 = K(9, 7) (Schubert normal form). Every 2-bridge knot is known to be
2-periodic, but this particular one is not fibered since its Alexander polynomial is
∆K(t)

.
= 2t2 − 5t + 2, which is not monic. Hence [LP97, Corollary 3.4] implies

that 61 cannot be written as the closure of a 2-periodic classical braid. Never-
theless, Table 2 shows that it is the closure of the 2-periodic virtual braid β2 for
β = τ3τ2τ1σ2τ2τ3σ

−1
2 σ4.

In Theorem 3.3, we applied the construction of Definition 2.2 to determine the
Jacobian of any periodic virtual knot K. We now show how to apply Definition 2.10
to give a formula for the Jacobian matrix for a periodic virtual knot K that has been
realized as the closure of a periodic virtual braid. As before, the matrix we obtain
will be a circulant block matrix, and so completely determined by its first block row.
The advantage of using Definition 2.10 here is that, as we shall see, the block matrices
Ai vanish for i ≥ 2.

We label the arcs of K using labels xji , y
j
i , z

j
i as before, with the j = 0, . . . , q − 1

indicating the period. In particular, in the j-th period, the strands at the top of the

braid are labelled xj1, . . . , x
j
k, and the strands at the bottom are labelled zj1, . . . , z

j
k.

The internal arcs are labelled yj1, . . . , y
j
r . We assume that there are n crossings in each
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period, and so we obtain the relations Rj1, . . . , R
j
n for the internal crossings in the j-th

period, and the relations Sj1, . . . , S
j
k corresponding to setting zji = xj+1

i . Notice that
n = k + r (since we have an (n+ k)× (n+ k) matrix).

The Jacobian B is determined by the first block row, which is obtained by dif-
ferentiating the relations R0

1, . . . , R
0
n and S0

1 , . . . , S
0
k from the 0-th period. It follows

that this determines the rest of the matrix since the relations Rji and Sji are obtained
from R0

i and S0
i by adding j to the superscripts of all the occurrences of x0i , y

0
i , z

0
i ,

and x1i (j+ 1 is taken mod q here). Recall that the relations R0
1, . . . , R

0
n are written

in terms of x0i , y
0
i , z

0
i , (for i ∈ {1, · · ·n}), and the relation S0

i is written in terms of z0i
and x1i .

zp−1
1 zp−1

2 zp−1
3

x0
1 x0

2 x0
3

y01

z01 z02 z03

x1
1 x1

2 x1
3

Consider for example the q-periodic braid with first period given as below (here we
assume q is relatively prime to 3). It has relations:

R0
1 = x01 x

0
2 (x01)

−1 (y01)−1,

R0
2 = (x03)

−1 x01 x
0
3 (z02)−1,

R0
3 = y01 x

0
3 (y01)−1 (z01)−1,

R0
4 = (z02)−1 y01 z

0
2 (z03)−1,

S0
1 = z01 (x11)

−1,

S0
2 = z02 (x12)

−1,

S0
3 = z03 (x13)

−1.
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The first block row of the Jacobian B therefore has the form:

x01 x02 x03 y01 z01 z02 z03 x11 x12 x13 y11 z11 z12 z13 x21 . . .



R0
1 1− t t 0 −1 0 0 0 0 0 0 0 0 0 0 0 . . .

R0
2 t−1 0 1− t−1 0 0 −1 0 0 0 0 0 0 0 0 0 . . .

R0
3 0 0 t 1− t −1 0 0 0 0 0 0 0 0 0 0 . . .

R0
4 0 0 0 t−1 0 1− t−1 −1 0 0 0 0 0 0 0 0 . . .

S0
1 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 . . .
S0
2 0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 . . .
S0
3 0 0 0 0 0 0 1 0 0 −1 0 0 0 0 0 . . .

In general, we will have A2 = A3 = · · · = Aq−1 = [0], and

(13) A0 =

[
∗ ∗

0k×n Ik

]
and A1 =

[
0n×k 0n×n
−Ik 0k×n

]
.

The Jacobian matrix of the quotient knot K∗ is the matrix

A = A0 +A1 =

[
∗ ∗

0k×n Ik

]
+

[
0k×k 0k×n
−Ik 0k×n

]
=

[
x∗ y∗ z∗
−Ik 0k×r Ik

]
,

where x∗, y∗ and z∗ represent the matrix entries in the columns corresponding to the
differentiating the relations R1, . . . , Rn with respect to the xi, yi and zi generators,
respectively.

3.4. Periodicity, elementary ideals, and the virtual Alexander polynomial.
In this subsection we discuss some consequences of Theorem 1.3 as applied to the
Alexander module of a periodic virtual knot (see Corollaries 3.17 and 3.19) and also
to the “virtual Alexander module” of a periodic virtual knot (see Propositions 3.21
and 3.22, and Corollary 3.23).

Let A be an m×n matrix over a commutative ring with unit R. For a non-negative
integer `, the `-th elementary ideal of A, denoted E`(A), is: the ideal generated by all
(n − `) × (n − `) minors of A if 0 < n − ` ≤ m, the zero ideal if n − ` > m, and R
if n − ` ≤ 0. If M is a finitely presented R-module and A is a presentation matrix
for M then the ideal E`(A) is independent of the choice of the presentation matrix A
and so the ideal E`(M) is well defined by E`(A). Observe that Ej(M) ⊂ Ej+1(M) for
j ≥ 0.

Recall that a greatest common divisor domain, abbreviated GCD domain, is an
integral domain R such that any two non-zero elements have a greatest common
divisor. Any unique factorization domain, for example the Laurent polynomial ring
in any number of variables over the integers or a field, is a GCD domain. A finitely
generated ideal I = (a1, . . . , am) in a GCD domain is contained in a unique smallest
principal ideal, namely the ideal generated by gcd(a1, . . . , am). We write gcd(I) for
gcd(a1, . . . , am) and note that gcd(I) is well defined up to multiplication by a unit in
R. The i-th elementary divisor of a finitely presented module M over R is ∆i(M) =
gcd(Ei(M)). Observe that ∆i+1(M) divides ∆i(M) for i ≥ 0.

The divisibility properties of elementary divisors in the following two propositions
and their corollaries are useful.
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Proposition 3.16. Let R be a commutative ring with unit. Let n be a positive
integer and let M be an R-module M that has a presentation matrix of the form
An − I where A is a square matrix and I is the identity matrix of the same size. Let
N be the R-module with presentation matrix A− I. Then for ` ≥ 0, E`(M) ⊂ E`(N).
Consequently, if R is a GCD domain then for ` ≥ 0, ∆`(N) divides ∆`(M).

Proof. Note that An − I = (A − I)
(∑n−1

i=0 A
i
)

. By [Nor76, Theorem 1, Chapter 1]

we have that E` (An − I) ⊂ E` (A− I) E`
(∑n−1

i=0 A
i
)

. Hence

E`(M) = E`(An − I) ⊂ E` (A− I) E`
(
n−1∑
i=0

Ai

)
⊂ E` (A− I) = E`(N). �

For a virtual knot K, let AK denote its Alexander module (see section 2.3). Let
` ≥ 0. The `-th Alexander ideal of K is E`(AK) and the `-th Alexander polynomial of
K is ∆`

K = ∆`(AK).

Corollary 3.17. Let n be a positive integer and let K be a n-periodic virtual knot
diagram with quotient knot K∗. Then for ` ≥ 0, E`(AK) ⊂ E`(AK∗). Consequently,
for ` ≥ 0, ∆`

K∗
divides ∆`

K .

Proof. By Theorem 3.12(ii), K can be realized as the closure of a periodic virtual

braid, K = β̂n. Hence the Alexander module of K has a presentation matrix of the
form An − I, where A is a square matrix and I is the identity matrix of the same
size; furthermore, A− I is a presentation matrix for the Alexander module of K∗, see
Remark 3.20. The conclusion of the Corollary follows from Proposition 3.16. �

Proposition 3.18. Let R be a commutative ring with unit. Assume that R has prime
characteristic p > 0. Let M be an R-module M that has a presentation matrix of the
form Ap

r − I where A is a square matrix, I is the identity matrix of the same size
and r ≥ 1. Let N be the R-module with presentation matrix A − I. Then for ` ≥ 0,
E`(M) ⊂ E`(N) p

r
. Consequently, if R is a GCD domain then for ` ≥ 0, ∆`(N) p

r

divides ∆`(M).

Proof. Note that (A − I)p
r

=
∑pr

i=0 (−1)i
(
pr

i

)
Ap

r−i = Ap
r − I since p divides the

binomial coefficient
(
pr

i

)
for 0 < i < pr. By [Nor76, Theorem 1, Chapter 1] we have

that E`
(
(A− I)p

r) ⊂ (E` (A− I))p
r

. Hence

E`(M) = E`(Ap
r − I) = E`

(
(A− I)p

r) ⊂ (E` (A− I))p
r

= E`(N) p
r
. �

Note that Fp⊗AK is a module over Fp[t±1] where Fp is the field of integers modulo
a prime p.

Corollary 3.19. Let p be a prime and let K be a pr-periodic virtual knot diagram
with quotient knot K∗. Then for ` ≥ 0, E`(Fp⊗AK) ⊂ E`(Fp⊗AK∗) p

r
. Consequently,

for ` ≥ 0,
(
∆`
K∗

)pr
mod p divides ∆`

K mod p.

Proof. By Theorem 3.12(ii), K can be realized as the closure of a periodic virtual

braid, K = β̂pr . Hence the Alexander module of K has a presentation matrix of the
form Ap

r − I where A is a square matrix and I is the identity matrix of the same
size; furthermore, A− I is a presentation matrix for the Alexander module of K∗, see
Remark 3.20. The conclusion of the Corollary follows from Proposition 3.18. �
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The virtual Alexander polynomial of a virtual knot K ([BDG+15, Definition 3.1]),
denoted HK(s, t, q), is the 0-th elementary divisor of the virtual Alexander module of
K associated to the virtual knot group VGK of K as in [BDG+15, §3]. (Note that
the knot group GK (Definition 2.1) is a quotient of VGK , and the precise relationship
between GK and VGK as well as various other groups associated to K is explained
in [BGH+17].) The integral Laurent polynomial HK(s, t, q) in the variables s, t, q
is related to Sawollek’s generalized Alexander polynomial of K ([Saw99]), denoted
GK(s, t), via the formula HK(s, t, q) = GK(sq−1, tq) (up to multiplication by ±satbqc)
as shown in [BDG+15, Corollary 4.8]. By [BDG+15, Theorem 3.4], we have

(14) q- span(HK(s, t, q)) ≤ 2v(K),

where q- span(HK(s, t, q)) is the span, also known as the width, of HK(s, t, q) as a
Laurent polynomial in the variable q. Moreover, by [BDG+15, Proposition 4.10],
if HK(s, t, q) is nontrivial, then q- span(HK(s, t, q)) ≥ 2. Note that if K is almost
classical then HK(s, t, q) = 0 by [BGH+17, Corollary 5.4] and so does not yield
information on such knots.

The virtual Burau representation ([BDG+15, Definition 4.2]) is a homomorphism
Ψ: VBk → GLk(Z[s±1, t±1, q±1]). If K is the closure of the virtual braid β ∈ VBk

then, by [BDG+15, Theorem 4.4], the matrix Ψ(β)− Ik, where Ik is the k × k iden-
tity matrix, is a presentation matrix for the virtual Alexander module of K. Hence
HK(s, t, q) = det (Ψ(β)− Ik).

Remark 3.20. Let Ψ̄ : VBk → GLk(Z[t±1]) be the homomorphism obtained from Ψ
by evaluation at s = 1 and q = 1. If the virtual knot K is the closure of the virtual
braid β ∈ VBk then Ψ̄(β)− Ik is a presentation matrix for its Alexander module AK .

A normalization of HK(s, t, q), denoted ĤK(s, t, q), for a virtual knot or link K
was defined in [BDG+15, Definition 5.4] as follows. Let β ∈ VBk be a virtual braid

whose closure is K. Then ĤK(s, t, q) = (−1)writhe(β)+v(β) det (Ψ(β)− Ik) where v(β)

is the virtual crossing number of the closure of β. The invariant ĤK(s, t, q) is defined
up to powers of st and in particular, the lowest and highest exponents of q occurring

in ĤK(s, t, q) are well defined. This can be used to give a stronger version of (14),
see [BDG+15, Theorem 5.6].

Our approach yields a small enhancement of [KLS14, Theorem 3.1], as follows.

Proposition 3.21. Let p be a prime and let K be a pr-periodic virtual knot diagram

with quotient K∗. Then ĤK(s, t, q) =
[
ĤK∗(s, t, q)

]pr
mod p, up to multiplication by

a power of st.

Proof. By Theorem 3.12(ii), K can be realized as the closure of a periodic virtual

braid, K = β̂pr . Note that K∗ = β̂. For a virtual braid η, let µ(η) = writhe(η)+v(η).

Note that (−1)µ(β
pr) = (−1)p

rµ(β). Also,

ĤK(s, t, q) = (−1)µ(β
pr) det

(
Ψ
(
βp

r)− I) = (−1)µ(β
pr) det

(
Ψ(β) p

r − I
)
.
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As in the proof of Proposition 3.18, (Ψ(β)− I)p
r

= Ψ(β) p
r − I mod p and so

ĤK(s, t, q) = (−1)µ(β
pr) det

(
(Ψ(β)− I)p

r
)

mod p

= (−1)p
rµ(β) det (Ψ(β)− I) p

r

mod p

=
[
ĤK∗(s, t, q)

]pr
mod p. �

We use Proposition 3.21 to give a bound on the prime power periods of K in terms
of its virtual crossing number v(K). This applies provided HK(s, t, q) is non-zero
mod p in which case HK∗(s, t, q) is also non-zero mod p. By [BDG+15, Proposition
4.10] we have that (1− tq)(q− s) divides HK∗(s, t, q). This holds over Fp as well, and

since HK∗(s, t, q) is non-zero modulo p, we conclude that ((1− tq)(q − s))pr divides
HK(s, t, q). Hence

(15) q- span(HK(s, t, q)) ≥ q- spanp(HK(s, t, q)) ≥ pr
(
q- spanp(HK∗(s, t, q))

)
≥ 2pr.

Here, q- spanp(HK(s, t, q)) is the span in the variable q of HK(s, t, q) reduced modulo
p, see section 6 for a discussion of span and spanp.

Combining (15) with (14) yields the following result.

Proposition 3.22. If K is a pr-periodic virtual knot such that HK(s, t, q) is non-zero
modulo p then pr ≤ v(K), where v(K) is the virtual crossing number of K. �

We obtain the following upper bound for the periods of K.

Corollary 3.23. Assume K is a virtual knot with HK(s, t, q) non-zero modulo p for

all primes p. Then ev(K)1.3841 is an upper bounded for a period of K.

Proof. For an integer n, let ω(n) be the number distinct primes dividing n. Assume n

is a period of K and write n =
∏ω(n)
j=1 p

rj
j where the pj ’s are distinct primes. By Propo-

sition 3.22, prj ≤ v(K) for each j. Hence n ≤ v(K)ω(n) and so ln(n) ≤ ω(n) ln(v(K)).
Robin showed that ω(n) ≤ 1.3841 ln(n)/ ln(ln(n)) for n ≥ 3, [Rob83, Theorem 11].
Hence ln(ln(n)) ≤ 1.3841 ln(v(K)) from which the conclusion follows. �

For example, the hypothesis of Corollary 3.23 is satisfied whenever ±1 appears
a coefficient of HK(s, t, q). However, this hypothesis obviously fails when HK(s, t, q)
vanishes as in the case when K is an almost classical knot. In addition, there are
virtual knots with HK(s, t, q) 6= 0 where the hypothesis of Corollary 3.23 fail, for
instance the knot K = 4.43 (from the table of virtual knots in[Gre]) has

HK(s, t, q) = 2s3t3 − 2st+ 2qst2 + 2s2tq−1 − 2qs2t3 − 2s3t2q−1,

which reduces to zero modulo 2.

4. Circulant matrices in positive characteristic

In this section we study circulant matrices since they arise naturally in our approach
to the computation of the Alexander invariants of periodic knots. While circulant
matrices over field of characteristic 0 have been extensively examined in the literature,
we are mainly interested in circulant matrices over a field of characteristic p > 0. Our
two key results are Theorems 4.4 and 4.5, which may be also of independent interest
to algebraists.
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Let R be a commutative ring with unit and let M be a left R-module. Since R is
assumed to be commutative, M is also a R-R-bimodule where the right R-action is
given by xr = rx for r ∈ R and x ∈M . For a positive integer n, let Mat(n,R) denote
the R-algebra of n × n matrices over R and Mat(n,M) the R-R-bimodule of n × n
matrices over M . The R-R-bimodule structure on M induces a Mat(n,R)-Mat(n,R)-
bimodule structure on Mat(n,M) via left and right matrix multiplication.

We will be primarily interested in the case R = Fp, the field of integers modulo
a prime p, and M = Mat(`, S) over an Fp-algebra S. In that case, n × n circulant
matrices over M (see Definition 4.1 below) are also called block circulant matrices, as
the elements of M are themselves matrices. Forgetting the block structure yields an
`n× `n matrix over S.

Definition 4.1. Let R be a commutative ring with unit and let M be an R-module.
For elements A0, . . . , An−1 ∈M the corresponding circulant matrix is the n×n matrix
over M given by

C(A0, . . . , An−1) =


A0 A1 A2 · · · An−1
An−1 A0 A1 · · · An−2
An−2 An−1 A0 · · · An−3
...

...
...

. . .
...

A1 A2 A3 · · · A0

 .
Let P be the n× n matrix over R given by

P = C(0, 1, 0, . . . , 0) =


0 1 · · · 0
...

. . .
. . .

...
0 · · · 1
1 0 · · · 0

 ,
where 1 ∈ R is the unit element for R.

Observe that for 0 ≤ j ≤ n − 1, we have P j = C(0, . . . , 0, 1, 0, . . . , 0), where 1
appears in the (j + 1)-st slot. Hence the circulant matrix C(A0, . . . , An−1) over M
can be written as

(16) C(A0, . . . , An−1) =
n−1∑
i=0

AiP
i.

(Note that P 0 = I, the n× n identity matrix.)

Conventions for binomial coefficients. Let a, b be non-negative integers. We define(
a

b

)
=

{
a!

b! (a−b)! if a ≥ b,
0 if a < b.

It is also convenient to define (−1

b

)
= (−1)b.

The following identities involving binomial coefficients modulo a prime p will be
useful.

Lemma 4.2. Let p be a prime and r a positive integer.
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(1) If 0 ≤ ` ≤ pr − 1, then(
pr − 1

`

)
= (−1)` mod p.

(2) If 1 ≤ ` ≤ pr − 1, then(
pr + `− 1

pr − 1

)
= 0 mod p.

Proof. Proof of (1). The standard binomial coefficient identity
(
pr−1
`

)
+
(
pr−1
`−1
)

=
(
pr

`

)
gives

(
pr−1
`

)
= −

(
pr−1
`−1
)

mod p, valid for 0 < ` ≤ pr − 1, because
(
pr

`

)
is divisible by p

for 0 < ` < pr − 1 and
( pr−1
(pr−1)−1

)
= pr − 1 = −1 mod p. The formula

(
pr−1
`

)
= (−1)`

mod p now easily follows by induction on `.
Proof of (2). We apply Lucas’s Theorem [Fin47, Theorem 1] which asserts that if

M an N are non-negative integers written in base p as M =
∑k

i=0Mip
i and N =∑k

i=0Nip
i, with 0 ≤Mi, Ni < p, then

(
M
N

)
=
∏k
i=0

(
Mi
Ni

)
mod p. Since 1 ≤ ` ≤ pr−1,

we have pr + `−1 =
∑r

i=0Mip
i where Mr = 1 and at least one of the numbers Mi for

0 ≤ i ≤ r− 1 is strictly less than p− 1. Also, pr − 1 =
∑r−1

i=0 (p− 1)pi. Hence at least

one the numbers
(
Mi
p−1
)

is 0 and so by Lucas’s Theorem,
(
pr+`−1
pr−1

)
= 0 mod p. �

We will show that the matrix P = C(0, 1, 0, . . . , 0) over Fp of size pr × pr is conju-
gate, via an explicitly given matrix over Fp, to an elementary Jordan matrix. Before
proving that, we establish a useful lemma.

Lemma 4.3. Let X be the matrix of size pr × pr over Fp with

Xi,j =

(
i− 2

j − 1

)
, 1 ≤ i, j ≤ pr.

Then X is invertible and

(X−1)i,j =

(
pr − j + 1

pr − i

)
, 1 ≤ i, j ≤ pr.

Proof. Let Y be the matrix over Fp given by Yi,j =
(
pr−j+1
pr−i

)
, 1 ≤ i, j ≤ pr. We will

show that XY = I, from which the lemma will follow.

(XY )i,j =

pr∑
k=1

Xi,kYk,j =

pr∑
k=1

(
i− 2

k − 1

)(
pr − j + 1

pr − k

)
=

pr−1∑
`=0

(
i− 2

`

)(
pr − j + 1

pr − 1− `

)
.

The well-known Vandermonde Convolution formula asserts that for non-negative
integers m,n, q,

q∑
`=0

(
m

`

)(
n

q − `

)
=

(
m+ n

q

)
.

This formula is also valid for m = −1 with our convention
(−1
`

)
= (−1)`. Applying

Vandermonde Convolution to the above expression for (XY )i,j (with m = i − 2,
q = pr − 1, and n = pr − j + 1) yields

(XY )i,j =

(
pr + i− j − 1

pr − 1

)
.



34 H. BODEN, A. NICAS, AND L. WHITE

We need that XY = I, so we need to show that (XY )i,i = 1 and (XY )i,j = 0 for

i 6= j. If i < j then pr + i − j − 1 < pr − 1 and so (XY )i,j =
(
pr+i−j−1
pr−1

)
= 0 in

this case. We have (XY )i,i =
(
pr−1
pr−1

)
= 1. If i > j then Lemma 4.2(2) applies (as

1 ≤ i − j ≤ pr), and we have (XY )i,j =
(
pr+i−j−1
pr−1

)
= 0 mod p in this case. Hence

XY = I. �

Theorem 4.4. Let P = C(0, 1, 0, . . . , 0) be the circulant matrix of size pr × pr over
Fp and let X be the matrix of size pr × pr over Fp with

Xi,j =

(
i− 2

j − 1

)
, 1 ≤ i, j ≤ pr

and

(X−1)i,j =

(
pr − j + 1

pr − i

)
, 1 ≤ i, j ≤ pr.

Then

X−1PX =


1 1 · · · 0

0
. . .

. . .
...

...
. . .

. . . 1
0 · · · 0 1

 = J.

Proof. By Lemma 4.3, we know that X and X−1 are indeed inverses, and the theorem
follows once we verify that PX = XJ .

Since Pk,k+1 = 1 for k = 1, . . . pr − 1 and Ppr,1 = 1 and Pi,j = 0 otherwise,

(PX)i,j =

pr∑
k=1

Pi,kXk,j =

{
Xi+1,j =

(
i−1
j−1
)

if i 6= pr,

X1,j =
(−1
j−1
)

= (−1)j−1 if i = pr.

Note that this is because if i = pr, Ppr,1 = 1 and Pi,j = 0 otherwise, so our sum
becomes 1 ·X1,j = X1,j . If i 6= pr, then Pi,i+1 = 1 and Pi,j = 0 otherwise, so our sum
becomes Xi+1,j . Since Jk,k+1 = 1 for k = 1, . . . pr − 1 and Jk,k = 1 for k = 1, . . . pr

and Ji,j = 0 otherwise,

(XJ)i,j =

pr∑
k=1

Xi,kJk,j =

{
Xi,j−1 +Xi,j =

(
i−2
j−2
)

+
(
i−2
j−1
)

=
(
i−1
j−1
)

if j 6= 1,

Xi,1 =
(
i−2
0

)
= 1 if j = 1.

If j = 1, Jk,1 = 1 for k = 1 and Jk,1 = 0 otherwise, so we have the sum equalling
Xi,1J1,1 = Xi,1. If j 6= 1, Jk,j = 1 for k ∈ {j − 1, j} and Jk,j = 0 otherwise, so we
have the sum equalling Xi,j +Xi,j−1.

It follows immediately that (PX)i,j = (XJ)i,j for i 6= pr, j 6= 1. For the j = 1

case, (PX)i,1 =
(
i−1
0

)
= 1. For the i = pr case, we have

(XJ)pr, j =

(
pr − 1

j − 1

)
= (−1)j−1 mod p.

with the last equality coming from Lemma 4.2(1). Since (PX)pr, j = (−1)j−1, we
obtain (PX)pr, j = (XJ)pr, j mod p, completing the proof that PX = XJ . �
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We remark that numbers of the form
(
pr+m−1
pr−1

)
, 1 ≤ m ≤ pr − 1, while divisible

by p, need not be divisible by higher powers of p. For example, if p = 3, r = 2 and
m = 6 then (

pr +m− 1

pr − 1

)
=

(
14

8

)
= 3 · 7 · 11 · 13

which is divisible by 3 but not by 32. This observation obstructs a version of The-
orem 4.4 where Fp would conceivably be replaced by the ring of integers modulo
pr.

Theorem 4.5. Let M be vector space over Fp and let B = C(A0, . . . , Apr−1) be a

pr×pr circulant matrix over M . Then X−1BX =
∑pr−1

i=0 AiJ
i, where X is the matrix

of size pr × pr over Fp with

Xi,j =

(
i− 2

j − 1

)
, 1 ≤ i, j ≤ pr,

(X−1)i,j =

(
pr − j + 1

pr − i

)
, 1 ≤ i, j ≤ pr,

and

J = X−1PX =


1 1 · · · 0

0
. . .

. . .
...

...
. . .

. . . 1
0 · · · 0 1

 .
In particular, X−1BX is upper triangular as a matrix over M .

Proof. By (16), B =
∑pr−1

i=0 AiP
i where P = C(0, 1, 0, . . . , 0). Hence

X−1BX = X−1

(
pr−1∑
i=0

AiP
i

)
X

=

pr−1∑
i=0

X−1AiP
iX =

pr−1∑
i=0

Ai(X
−1PX)i

=

pr−1∑
i=0

AiJ
i by Theorem 4.4.

Since each AiJ
i is upper triangular, so is

∑pr−1
i=0 AiJ

i. �

Corollary 4.6. Let B and X be as Theorem 4.5. Then

(X−1BX)j, j+` =

pr−1∑
i=`

(
i

`

)
Ai.

Proof. Let Q be the pr × pr matrix over Fp given by

Q =


0 1 · · · 0

. . .
. . .

...
...

. . . 1
0 · · · 0

 .
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Then J = I +Q and so J i = (I +Q)i =
∑i

`=0

(
i
`

)
Q`. By Theorem 4.5,

X−1BX =

pr−1∑
i=0

AiJ
i =

pr−1∑
i=0

Ai

(
i∑

`=0

(
i

`

)
Q`

)
=

pr−1∑
`=0

(
pr−1∑
i=`

(
i

`

)
Ai

)
Q`

Then (X−1BX)j,j+` =
∑pr−1

`=0

(∑pr−1
i=`

(
i
`

)
Ai

)
Q`. Note that Qj,j+1 = 1 and in gen-

eral, Q`j,j+` = 1 and Qkj,j+` = 0, for k 6= `. So we then get (X−1BX)j,j+` =∑pr−1
i=`

(
i
`

)
Ai. �

The next result is obtained by evaluating the formula in Corollary 4.6 for ` = 0, 1.

Corollary 4.7. For B and X as Theorem 4.5, we have

X−1BX =


A D · · · ∗

. . .
. . .

...
...

. . . D
0 · · · A

 ,
where A =

∑pr−1
k=0 Ak and D =

∑pr−1
k=1 kAk.

5. Murasugi’s Theorem for Almost Classical Knots

In this section, we prove Theorem 1.7 from the Introduction, which is the analogue
of Murasugi’s Theorem 1.1 for periodic almost classical knots. We begin by restating
the result. First, recall that for a q-periodic almost classical knot K, Corollary 3.13

allows us to write K = β̂q for some k-strand virtual braid β that admits an Alexander
numbering.

Theorem 5.1. Let K = β̂q be a q-periodic almost classical knot diagram, where β
a k-strand virtual braid that admits an Alexander numbering, and q = pr a prime

power. Then K∗ = β̂, and

(1) ∆K∗(t) divides ∆K(t) in Z[t±1], and

(2) ∆K(t)
.
= (∆K∗(t))

q (f(t))q−1 mod p, where f(t) =
∑k

i=1t
λi and λi is the

Alexander number on the i-th strand of β.

Proof. Part 1 follows from Corollary 3.17. We divide the proof of part 2 into several
claims.

Claim 5.2. ∆K(t)
.
= (∆K∗(t))

q(f(t))q−1 mod p for some f(t) ∈ Fp[t±1].
The proof of this claim requires extensive matrix manipulation which we now

present. Let B be the block circulant Jacobian matrix for K constructed in Defi-
nition 2.2 and written out as in Equation (12). We will assume it has n×n blocks, or
equivalently that there are n crossings in each period of K. Then Theorem 3.3 and
Corollary 4.7 show that

B ∼= X−1BX =


A D · · · ∗

. . .
. . .

...
...

. . . D
0 · · · A

 mod p,
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where A =
∑q−1

k=0Ak is the Jacobian of K∗ and D =
∑q−1

k=1 kAk.
Set

C =


A D · · · ∗

. . .
. . .

...
...

. . . D
0 · · · A

 ,

which is an nq × nq matrix written in block form with n× n blocks.
Let Ā and C̄ denote the matrices A and C with their last row and first column

removed. So Ā is an (n− 1)× (n− 1) matrix and C̄ is an (nq− 1)× (nq− 1) matrix.
Then modulo p, the Alexander polynomials of K and K∗ are given by

∆K(t)
.
= det(C̄) mod p and ∆K∗(t)

.
= det(Ā) mod p.

Let A′ be the (n − 1) × n matrix obtained by removing the last row from A, and
let A′′ be the n × (n − 1) matrix obtained by removing the first column of A. Also
let 0n be the n× n matrix of zeroes, 0′n the (n− 1)× n matrix of zeroes, and 0′′n the
n× (n− 1) matrix of zeroes. Note that 0̄n = 0n−1.

Using these to rewrite C̄, we get

C̄ =



A′′ D ∗ . . . . . . ∗
0′′n A D

.. .
...

... 0n
. . .

. . .
. . .

...
...

. . .
. . .

. . . ∗
... 0n A D

0̄n . . . . . . 0′n 0′n A′


.

Notice that Ā is a submatrix of each of the q block terms A, A′, and A′′ appearing
on the block diagonal of C̄, and our goal is to extract those terms using row and
column operations on C̄ to reduce it to an upper block triangular matrix with Ā
blocks on the diagonal.

For that, we require some additional notation. Let rA = [An,2, . . . , An,n] be the
last row of A minus the first entry, let cA = [A1,1, . . . , An−1,1]

t be the first column of
A minus the last entry, and let uA = A1,n be the bottom left corner entry for A. We
can now rewrite A,A′, A′′ in terms of cA, rA, and uA as

A =


cA Ā

uA rA

 , A′ =

 cA Ā

 , and A′′ =


Ā

rA

 .
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Further, let rD, cD, and uD be the corresponding row, column, and bottom left
corner entry of D, which we use to write

D =

 cD D̄

uD rD

 ,
where D̄ is the (n−1)× (n−1) matrix D with its last row and first column removed.

Using these matrices, we can rewrite C̄ as:

C̄ =



Ā cD D̄ ∗ ∗ . . . . . . ∗
rA uD rD ∗ ∗ . . . . . . ∗

0n−1 cA Ā cD D̄
. . .

...

01×(n−1) uA rA uD rD
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . . cA Ā cD D̄
...

. . . uA rA uD rD
0n−1 . . . . . . . . . 0(n−1)×1 0n−1 cA Ā


.

Since A is the Jacobian of the quotient knot K∗, we know that the sum of its
columns equals zero, in other words,

∑n
j=1A∗,j = 0. (Here, A∗,j denotes the j-

th column of A.) Further, since K∗ is almost classical, Proposition 2.6 shows that
there is a linearly dependence among the rows. More specifically, we have units
ϑ1, . . . , ϑn ∈ Z[t±1] such that

∑n
i=1 ϑiAi,∗ = 0. (Here, Ai,∗ denotes the i-th row of A.)

Thus, replacing the first column in A by the sum of all its columns, and replacing the
last row by the linear combination

∑n
i=1 ϑiAi,∗, we obtain the matrix

Ã =


0′′ Ā

0 0′

 ,
where 0′ = 01×(n−1) is a row of zeros and 0′′ = 0(n−1)×1 is a column of zeros.

Performing the same row and column operations to D gives the matrix

D̃ =


c̃D D̄

ũD r̃D

 ,
where c̃D is the sum of the columns in D minus the last entry, r̃D =

∑n
i=1 ϑiDi,∗ is

the linear combination of the rows in D minus the first entry, and

ũD =

n∑
i,j=1

ϑiDi,j .
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(This is proved in Claim 5.3 below.) The result of performing these operations on
each of the blocks of C̄ gives the matrix

C̃ =



Ā c̃D D̄

0′ ũD r̃D *
0′′ Ā c̃D D̄

0 0′ ũD r̃D
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0′′ Ā c̃D D̄

0 0 0′ ũD r̃D
0′′ Ā



,

where 0′ = 01×(n−1) and 0′′ = 0(n−1)×1.

Expanding along the block diagonal of C̃, we compute that:

det(C̃) = det(Ā)

(
det

[
Ā c̃D
0 ũD

])q−1
mod p

.
= det(Ā)(ũD det(Ā))q−1 mod p
.
= (det(Ā))q(ũD)q−1 mod p.

Since ∆K(t)
.
= det(C̄) mod p and ∆K∗(t) = det(Ā), the equations above imply that

∆K(t)
.
= (∆K∗(t))

q(f(t))q−1 mod p,

provided we take f(t) = ũD. This completes the proof of Claim 5.2.
The last step in proving Theorem 5.1 is to show that

f(t) =
k∑
i=1

tλi ,

where λi is the Alexander number on the i-th strand at the top of β.
Before doing that, we shall prove the following

Claim 5.3. ũD =

n∑
i=1

n∑
j=1

ϑiDi,j

The element ũD is the bottom left corner entry of D̃, the matrix obtained by

performing row and column operations to D. Specifically, D̃ is obtained in two steps.
The first step is to replace the first column of D by the sum

∑n
j=1D∗,j of all its

columns. Here, D∗,j denotes the j-th column of D.
Let D′ be the matrix obtained after the first step. The second step is to replace the

last row of D′ by the linear combination
∑n

i=1 ϑiD
′
i,∗. Here, D′i,∗ denotes the i-th row

of D′, and ϑi is the unit in Z[t±1] whose existence is guaranteed by Proposition 2.6.
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Therefore, the bottom left entry in the resulting matrix D̃ is given by

ũD =
n∑
i=1

ϑiD
′
i,1 =

n∑
i=1

n∑
j=1

ϑiDi,j .

Note that D′i,1 =
∑n

j=1Di,j since D′i,j = Di,j for j 6= 1. This completes the proof of
Claim 5.3.

We are now ready to complete the proof of Theorem 5.1. To that end, suppose now
that B is the block circulant Jacobian matrix obtained by applying Definition 2.10
to the braid βq ∈ VBk. It follows that

B =


A0 A1 0 · · · 0
0 A0 A1 · · · 0
...

. . .
. . .

...
A1 0 · · · 0 A0

 ,
That is, A` is the zero matrix for ` ≥ 2. Now Corollary 4.7 implies that

C := X−1BX =


A D · · · 0

. . .
. . .

...
...

. . . D
0 · · · A

 ,
where A = A0 + A1 and D = A1. Note that the blocks in C are (n + k) × (n +
k) matrices. After performing the corresponding row and column operations to C̄,
Claim 5.3 implies that

f(t) = ũD =
n+k∑
i=1

n+k∑
j=1

ωiA1(i, j).

Here, the coefficients ω1, . . . , ωn+k are the units in Z[t±1] whose existence is guaranteed
by Lemma 2.11.

Equation (13) implies that

A1 =

[
0n×k 0n×n
−Ik 0k×n

]
,

so (A1)(n+ i, i) = −1 for 1 ≤ i ≤ k and (A1)(i, j) = 0 otherwise.
Thus, we have

f(t) =
n+k∑
i=1

n+k∑
j=1

ωiA1(i, j)

=
k∑
i=1

−ωn+i .=
k∑
i=1

ωn+i.

(The last step holds because f(t) is only defined up to multiplication by ±t`.)
From Lemma 2.11, we have that ωn+i = tλ

S
i for 1 ≤ i ≤ k, where recall that λSi is the
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Alexander number on the i-th strand of β. (That same Alexander number is denoted
simply λi here.) Therefore, it follows that

f(t)
.
=

k∑
i=1

ωn+i =
k∑
i=1

tλi

as desired. �

By constructing almost classical braids β with a given polynomial f(t) =
∑k

i=1 t
λi ,

one can realize q-periodic knots K as the closure of βq for many different prime powers
q = pr. We present an example that illustrates this idea.

0 1 1 2 2 2

Figure 18. The braid β = σ1τ2σ3τ4τ5 is almost classical.

Example 5.4. Let f(t) = 1+2t+3t2 and set k = f(1) = 6 (so β will have 6 strands).
We start by labeling the strands at the top of the braid in VB6 with Alexander
numbers, which are 0, 1, 1, 2, 2, 2 going from left to right. (The more general process
and reasoning for our choices will be described below). We then form the braid β
which drags the left-most strand across all the others with either classical or virtual
crossings (the choice of classical or virtual is determined by the Alexander numbering).
In this case, we get the braid β = σ1τ2σ3τ4τ5, see Figure 18. Notice that β is almost

classical and its closure β̂ represents the trivial knot. Notice further that βq closes
up to a virtual knot (as opposed to a virtual link) for any prime power q = pr as long

as p 6= 2, 3. For such q, the closure K = β̂q will be a q-periodic almost classical knot
diagram with trivial quotient. Applying Theorem 5.1, we see that

∆K(t)
.
= f(t)q−1 = (1 + 2t+ 3t2)q−1 mod p.

In this way, we can realize many different Alexander polynomials as arising from
q-periodic almost classical knots. The next result gives a general construction along
these lines.

Proposition 5.5. Suppose f(t) = a0 + a1t + · · · + ant
n ∈ Z[t±1] is a polynomial

satisfying f(1) 6≡ 0 mod p. Assume also that ai > 0 for i = 0, . . . , n. Then for
q = pr, there exists a q-periodic almost classical knot K with trivial quotient K∗ and
∆K(t)

.
= (f(t))q−1 mod p.
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Proof. We will construct an almost classical braid β ∈ VBk whose closure β̂ is trivial

with the property that, for the given polynomial, we have f(t) =
∑k

i=1 t
λi mod p,

where λi denotes the Alexander number on the i-th strand at the top of β. The result

will then follow by applying Theorem 5.1 to the closure K = β̂q.
Let k = f(1) and notice that since f(1) 6≡ 0 mod p, it follows that k is relatively

prime to p (otherwise, we could end up with β̂q being a virtual link, which we explain
near the end of the proof). Let β ∈ VBk be a braid with Alexander numbers along
the top strands given by

a0︷ ︸︸ ︷
0, . . . , 0,

a1︷ ︸︸ ︷
1 . . . , 1, . . . ,

an︷ ︸︸ ︷
n, . . . , n

as one goes from left to right. We form the braid β by crossing the left-most strand
across all the others, using a negative real crossing whenever the Alexander numbers
allow it (In other words, whenever the Alexander number on the left is one less
than the Alexander number on the right) and a virtual crossing otherwise (that is,
whenever the Alexander numbers on the two strands are equal). The condition that
each coefficient ai > 0 is positive ensures that, for every Alexander number i with

0 ≤ i ≤ n, there is at least one strand labeled i. (Otherwise, β̂ would be a virtual
link with two or more components.)

In any case, we can write β as the braid word

β = θ1θ2 · · · θk−1, where θi =

{
σi if λi+1 = λi + 1,

τi if λi+1 = λi.

It follows that β is almost classical (since it was Alexander numberable), and the
permutation induced by β is the k-cycle (k, k−1, k−2, . . . , 1) (since each θi corresponds
to the transposition (i i + 1)), which has order k. Notice, as in Figure 18, that the
i-th strand at the top goes to the (i− 1)-st at the bottom, for 1 < i ≤ k, and the first
strand goes to the k-th. This is what the permutation is reflecting. Thus the closure

K∗ = β̂ is a knot, and in fact an easy argument using real and virtual Reidemeister I
moves shows that K∗ is trivial. If p is a prime which does not divide k (note that the
assumptions of our theorem assumed that k 6= 0 mod p, so p cannot divide k), then

the closure K = β̂q for q = pr is also a virtual knot diagram (as opposed to being a
virtual link). The number of components in a link are determined by the number of
closed cycles when you write the permutation mentioned above as a product of closed
cycles. For βq, we have (k, k − 1, k − 2, . . . , 1)q, which will give us a k-cycle as long
as k and q are relatively prime, which they are. By construction, it follows that K

is q-periodic and almost classical, and its quotient K∗ = β̂ is trivial. Theorem 5.1
applies to show that ∆K(t)

.
= (f(t))q−1 mod p as claimed. �

6. Periods of almost classical knots

In this section we apply Theorem 5.1 to the problem of determining the possible
periods of an almost classical knot.

We recall some facts about Laurent polynomials. Let R be an integral domain.
A non-zero Laurent polynomial f ∈ R[t±1], also written as f(t), can be expressed
uniquely in the form f(t) =

∑n
j=m ajt

j where m,n are integers with m ≤ n, aj ∈ R
and where am, an 6= 0. The span of f , denoted span f , is the non-negative integer
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n −m. Since R is assumed to have no zero divisors, span fg = span f + span g. We
write f

.
= g if there exists a unit c ∈ R and an integer j such that c tjf(t) = g(t). If

f
.
= g then span f = span g. If R is a field, then a non-zero f ∈ R[t±1] has span f = 0

if and only if f is trivial, that is, f
.
= 1.

Given an integral Laurent polynomial f ∈ Z[t±1], its reduction modulo a prime
p, denoted f mod p, is obtained by reducing the coefficients of f(t) modulo p. We
denote the span of f mod p, as an element of Fp[t±1], by spanp f (assuming f mod p
is not zero). Observe that spanp f ≤ span f .

We make use of the following fact about the Alexander polynomial, ∆K , of an
almost classical knot K. By [BGH+17, Lemma 7.5], ∆K(1) = ±1 and so ∆K mod p
is never the zero polynomial for any prime p.

Proposition 6.1. Let K be an almost classical knot, p a prime, and r a positive
integer. Assume ∆K mod p is not trivial. If K has period pr, then spanp ∆K ≥ pr−1.

Proof. By Theorem 5.1, there are f, g ∈ Z[t±1] such that

∆K
.
= gp

r
fp

r−1 mod p.

It follows that spanp ∆K = pr spanp g + (pr − 1) spanp f . Note that f or g could be
trivial. Since, by assumption, ∆K mod p is not trivial, we have spanp ∆K > 0 and
so one of the numbers spanp g, spanp f is positive. At worst, we have spanp f = 1 and
spanp g = 0. Hence spanp ∆K ≥ pr − 1. �

An immediate consequence of the inequality spanp ∆K ≥ pr − 1 is the following
restriction on prime power periods for a given prime p.

Corollary 6.2. Let K be an almost classical knot and p a prime. If ∆K mod p is
not trivial, then pr is a period for K for at most finitely many r.

Proof. Since spanp ∆K ≤ span ∆K there are finitely many r such that pr − 1 ≤
spanp ∆K . �

The next result is a direct consequence of Proposition 6.1 and Corollary 6.2.

Corollary 6.3 (Finitely many periods). If K is an almost classical knot such that
spanp ∆K > 0 for all primes p, then K admits only finitely many periods.

Note that assuming spanp ∆K > 0 is equivalent to assuming that ∆K mod p is
non-trivial. Corollary 6.3 applies in many circumstances and gives a positive answer
to Question 1.4 from the Introduction. For instance, it applies to any classical fibered
knot K, and shows that such knots are virtually periodic for only finitely many
periods. Table 1 lists the Alexander polynomials of the 76 almost classical knots up
to 6 crossings, and Corollary 6.3 applies in 44 instances to show the given almost
classical knot admits only finitely many periods.

The next result applies more generally, but gives a weaker conclusion.

Theorem 6.4 (Finitely many prime periods). Let K be an almost classical knot such
that ∆K is not trivial. If K has prime period p, then p divides a non-zero coefficient
of ∆K , or span ∆K ≥ p− 1. In particular, there are at most finitely many primes p
for which K has period p.
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Proof. Let S be the (possibly empty) set of primes that divide some non-zero coef-
ficient of ∆K . Since ∆K has only finitely many coefficients, S is finite. For a prime
p /∈ S, we want to show that, if K has prime period p, spanpK ≥ p− 1. Since p /∈ S,
p does not divide any coefficients of ∆K , and we have span ∆K = spanp ∆K . By as-
sumption, span ∆K > 0 and hence for such p we have that ∆K mod p is non-trivial.
Let p be a prime for which K has period p, and assume p /∈ S. By Proposition 6.1,
span ∆K = spanp ∆K ≥ p−1. Since span ∆K ≥ p−1, there are at most finitely many
such p. �

The following refinement of Proposition 6.1 will be useful.

Proposition 6.5. Let K be an almost classical knot, p a prime, and r a positive
integer. Assume that ∆K mod p is divisible by distinct irreducibles u1, . . . , us where
s ≥ 1. If K has period pr, then spanp ∆K ≥ (pr − 1)

∑s
j=1 spanp uj.

Proof. By Theorem 5.1, there are f, g ∈ Z[t±1] such that

∆K
.
= gp

r
fp

r−1 mod p.

Since uj divides ∆K mod p and is irreducible, then uj divides either g or f and hence
must appear with multiplicity at least pr − 1. Therefore, (u1 · · ·us)pr−1 divides ∆K

mod p, from which the conclusion follows. �

Corollary 6.6. Let K be an almost classical knot, p a prime, and r a positive integer.
Assume that ∆K = u1 · · ·us mod p where the uj’s are distinct irreducible factors and
s ≥ 1. If K has period pr then p = 2 and r = 1.

Proof. The hypothesis on ∆K implies that spanp ∆K > 0. By Proposition 6.5,
spanp ∆K ≥ (pr−1) spanp ∆K , and so pr−1 = 1. It follows that p = 2 and r = 1. �

Corollary 6.7. Let K be an almost classical knot, p a prime, and r a positive integer.
Assume that ∆K = u1 mod p ,where u1 is irreducible. Then K cannot have period
pr for p 6= 2.

Theorem 5.1 is effective for the analysis of the (virtual) periods of torus knots.

Theorem 6.8. Let m,n be relatively prime integers with m,n ≥ 2 and let Km,n be
the classical (m,n)-torus knot. If pr is a (virtual) period for Km,n then p divides m
or n, or possibly p = 2 and r = 1.

Proof. The Alexander polynomial of Km,n is

∆Km,n(t) =
(t− 1)(tmn − 1)

(tm − 1)(tn − 1)
,

see [Lic97, page 119]. Note that ∆Km,n has highest order term t(m−1)(n−1) and lowest
order term 1. Hence for any prime p, span ∆Km,n = spanp ∆Km,n = (m− 1)(n− 1), a
positive number since we have assumed m,n ≥ 2. Observe that ∆Km,n divides tmn−1.

Let p be a prime that does not divide m or n. We have d
dt (tmn − 1) = mntmn−1 which

is not 0 modulo p because p - mn. Hence tmn − 1 and mntmn−1 are relatively prime
as polynomials over Fp and so tmn − 1 does not have multiple roots. The only root
of mntmn−1 is t = 0 (with multiplicity mn − 1), and this is not a root of tmn − 1.
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Since ∆Km,n divides tmn − 1, it follows that ∆Km,n does not have multiple roots as a
polynomial over Fp. If pr is a virtual period for Km,n, then by Theorem 5.1

∆Km,n =
(
∆(Km,n)∗

)pr
fp

r−1 mod p.

If r > 1 or if r = 1 and p 6= 2 then the right hand side has multiple roots, a
contradiction. This shows that if pr is a virtual period for Km,n then p divides m or
n or possibly p = 2 and r = 1. �

We can also use Theorem 5.1 to exclude certain composite periods, as illustrated
by the example below.

Example 6.9. Let K be any of the knots: 3.6 (the classical trefoil), 5.2160, 6.72938,
6.73053, 6.76479, 6.77833, 6.77844, 6.77985 in Table 3. The knot K does not have
period 6.

Proof. For K in the given list of knots ∆K = t2 − t+ 1. Suppose that K has period
6 = 2 · 3. Then by Theorem 3.8, there exists an almost classical braid β such that

K = β̂6. Note that K also has period 2 with quotient β̂3, and period 3 with quotient

β̂2. Since the period 3 and period 2 diagrams are the same (coming from the same
period 6 diagram), the polynomial f(t) appearing in Theorem 5.1 will be the same,
whether we regard K as having period 2 or 3. (This comes from the definition of f(t)

as
∑k

i=1 t
λi where k is the number of strands in β.) By Theorem 5.1, we have:

∆K = t2 + t+ 1
.
= (∆

β̂3)2f(t) mod 2.

Note that t2 + t+ 1 is irreducible modulo 2. Hence

f(t)
.
= t2 + t+ 1 mod 2

and ∆
β̂3

.
= 1 mod 2. Again by Theorem 5.1, we also have:

∆K = t2 + 2t+ 1
.
= (∆

β̂2)3(f(t))2 mod 3

implies (t+ 1)2
.
= (f(t))2 mod 3

implies t+ 1
.
= f(t) mod 3

and ∆
β̂2

.
= 1 mod 3. Since ∆K = t2 − t + 1 is irreducible over Z and ∆

β̂2 | ∆K ,

we have ∆
β̂2

.
= 1 or ∆

β̂2

.
= ∆K . The latter possibility is excluded because ∆

β̂2

.
= 1

mod 3 and ∆K 6= 1 mod 3, and so ∆
β̂2

.
= 1. Applying Theorem 5.1 again to ∆

β̂2 as

a period 2 knot,
1
.
= ∆

β̂2

.
= (∆

β̂
)2 f(t) mod 2.

Hence f(t)
.
= 1 mod 2, a contradiction since f(t)

.
= t2+t+1 mod 2. Thus K cannot

have period 6. �

Generalizing Example 6.9, we give some criteria for the exclusion of composite
periods of the form 2p, where p is an odd prime.

Let K be an almost classical knot with period 2p where p is an odd prime. By

Theorem 3.8, there exists an almost classical braid β such that K = β̂2p. Note that

K also has period p with quotient β̂2, and period 2 with quotient β̂p. The knot β̂ is

a quotient of both β̂2 and β̂p. By Theorem 5.1 there is a polynomial f(t) ∈ Z[t±1]
such that
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∆K = ∆
β̂2p

.
= (∆

β̂p)2f mod 2(17)

∆K = ∆
β̂2p

.
= (∆

β̂2)pfp−1 mod p(18)

∆
β̂2

.
= (∆

β̂
)2f mod 2(19)

∆
β̂p

.
= (∆

β̂
)pfp−1 mod p(20)

Proposition 6.10. Let K be an almost classical knot. Assume that ∆K mod p is
not trivial, where p is an odd prime. If ∆K is irreducible over Z and ∆K

.
= g2 mod 2

where g is irreducible modulo 2, then K cannot have period 2p.

Proof. Suppose that K has period 2p. By assumption, ∆K
.
= g2 mod 2 for some

polynomial g, which is irreducible modulo 2. By (17),

∆K
.
= g2

.
= (∆

β̂p)2f mod 2

Case 1: f
.
= 1 mod 2 and

∆K
.
= g2

.
= (∆

β̂p)2 mod 2

Since ∆K is irreducible over Z, and ∆
β̂p | ∆K , then ∆

β̂p = 1 or ∆
β̂p = ∆K . If

∆
β̂p = 1, then we would have

∆K
.
= g2

.
= (∆

β̂p)2 = 1 mod 2,

which is a contradiction, since ∆K 6= 1 mod 2. Therefore, we must have ∆
β̂p

.
= ∆K .

This gives

∆K
.
= g2

.
= (∆

β̂p)2 = (∆K)2 mod 2,

which is also a contradiction, as ∆K 6= (∆K)2 mod 2 for non-trivial ∆K . Thus Case
1 cannot occur.

Case 2: f
.
= g2 mod 2 and (∆

β̂p)2
.
= 1 mod 2. Again, we have that ∆

β̂p =

1 or ∆
β̂p = ∆K . Since (∆

β̂p)2
.
= 1 mod 2, we must have that ∆

β̂p = 1 over Z
(as ∆K 6= 1 mod 2). Now we use that β̂p is a period p knot. Applying (20), we get

1 = ∆
β̂p

.
= (∆

β̂
)pfp−1 mod p,

so that f
.
= 1 mod p. Regarding K as a period p knot, (18) yields

∆K
.
= (∆

β̂2)pfp−1 mod p

implies ∆K
.
= (∆

β̂2)p mod p,

since f
.
= 1 mod p. Since ∆K is irreducible over Z, and ∆

β̂2 | ∆K , then ∆
β̂2 =

1 or ∆
β̂2 = ∆K . But ∆K 6= 1 mod p, so ∆

β̂2 6= 1, and ∆
β̂2 6= ∆K since ∆K 6= (∆K)p

mod p. Thus, Case 2 cannot hold. Therefore, since neither case holds, K cannot have
period 2p. �

Proposition 6.11. Let K be an almost classical knot. Assume that ∆K mod p is
not trivial, where p is an odd prime. If ∆K

.
= g2 over Z for some polynomial g which

is irreducible modulo 2, then K cannot have period 2p.
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Proof. Suppose that K has period 2p. (17) gives

∆K
.
= g2

.
= (∆

β̂p)2f mod 2

Case 1: f
.
= 1 mod 2 and

∆K
.
= g2

.
= (∆

β̂p)2 mod 2

Since ∆K = g2 over Z, and ∆
β̂p | ∆K , then ∆

β̂p = 1, g, or g2 = ∆K . If ∆
β̂p = 1,

then we would have
∆K

.
= g2

.
= (∆

β̂p)2 = 1 mod 2,

which is a contradiction, since ∆K 6= 1 mod 2. If ∆
β̂p

.
= ∆K , this gives

∆K
.
= g2

.
= (∆

β̂p)2 = (∆K)2 mod 2,

which is also a contradiction, as ∆K 6= (∆K)2 mod 2 for non-trivial ∆K . If ∆
β̂p

.
= g,

this gives
∆K

.
= g2

.
= (∆

β̂p)2 = g2 mod 2,

which holds. Then, since β̂p is a period p knot, (20) gives

g = ∆
β̂p

.
= (∆

β̂
)pfp−1 mod p.

But g is irreducible, so this cannot hold by Corollary 6.7. Thus Case 1 cannot hold.
Case 2: f

.
= g2 mod 2 and (∆

β̂p)2
.
= 1 mod 2. Again, we have that ∆

β̂p =

1, g, or g2 = ∆K . Since (∆
β̂p)2

.
= 1 mod 2, we must have that ∆

β̂p = 1 over Z.

Now we use that β̂p is a period p knot. Applying (20), we get

1 = ∆
β̂p

.
= (∆

β̂
)pfp−1 mod p,

so that f
.
= 1 mod p. Now, looking at K as a period p knot, (18) gives

∆K
.
= (∆

β̂2)pfp−1 mod p

implies ∆K
.
= (∆

β̂2)p mod p,

since f
.
= 1 mod p. Since ∆K = g2 over Z, and ∆

β̂2 | ∆K , then ∆
β̂2 = 1, g, or g2 =

∆K . But ∆K 6= 1 mod p, so ∆
β̂2 6= 1, and ∆

β̂2 6= ∆K since ∆K 6= (∆K)p mod p.

The last choice is that ∆
β̂2 = g, but then we would have g2 = ∆K

.
= (∆

β̂2)p = gp

mod p, and g2 6= gp mod p. Thus Case 2 cannot hold. Therefore, since neither case
holds, K cannot have period 2p. �

We provide some examples of how the above results are used to eliminate periods,
and a full list of all known and excluded periods for almost classical knots up to 6
crossings is given in Table 3. Proposition 6.1 is particularly useful in eliminating
many possible periods for a given knot. However, if ∆K

.
= 1 mod p for some prime

p, then we cannot eliminate any prime power periods of the form pr, as Murasugi’s
condition holds trivially. In particular, for knots K with ∆K

.
= 1 trivial, we are unable

to exclude any periods using Murasugi’s conditions. This affects the knots 5.2012,
5.2025, 5.2080, 6.72507, 6.72557, 6.72692, 6.72695, 6.72975, 6,73007, and 6.73583.

The remaining knots all have ∆K nontrivial, and we make a few general observa-
tions about their possible periods. Notice that they all have span ∆K ≤ 4, and in
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each case ∆K mod p is nontrivial for p ≥ 7. It follows from Proposition 6.1 that their
only possible prime periods are 2, 3 and 5, though they may admit larger periods,
either as prime powers of 2, 3, 5, or as composite numbers.

Example 6.12 (Knot 4.99). ∆K
.
= 2t− 1.

This knot admits a 2-periodic diagram; in fact K = β̂2 for β = σ1τ2σ
−1
2 τ2. Propo-

sition 6.1 implies that K cannot have a prime period for any p ≥ 3, and since ∆K = 1
mod 2, we cannot eliminate prime power periods of the form 2r, r > 1. This gives a
partial answer to Question A in [KLS14] for 4.99.

Similar considerations apply to almost classical knots K with ∆K(t)
.
= 2t − 1 to

show that they have only 2r, r ≥ 1 as possible periods. This applies to the knots
5.2133, 6.72944, 6.75341, 6.75348, and 6.89815 in Table 3.

Example 6.13 (Knot 4.105). ∆K
.
= 2t2 − 2t+ 1.

This knot admits a 4-periodic diagram; in fact K = β̂4 for β = σ3τ4τ2τ1τ3τ2.
Proposition 6.1 implies that K cannot have a prime period p ≥ 5, and period 3 is
eliminated by Corollary 6.7, as ∆K = 2t2 + t+ 1 mod 3 is irreducible. Since ∆K = 1
mod 2, so we cannot exclude prime power periods of the form 2r, r > 2. This gives a
partial answer to Question A in [KLS14] for 4.105.

Similar considerations apply to almost classical knots K with ∆K(t)
.
= 2t2− 2t+ 1

to show that they have only 2r, r ≥ 1 as possible periods. This applies to the knots
6.77908, 6.85613, and 6.89623 in Table 3.

Example 6.14 (Knot 4.108). ∆K
.
= t2 − 3t+ 1.

This is the classical knot 41, which admits a classical diagram with period p = 2.
Proposition 6.1 implies that K cannot have a prime period for p ≥ 5, and period
3 is excluded by Corollary 6.6, as ∆K = t2 + 1 mod 3 is irreducible. As well, the
period 4 = 22 is eliminated by Proposition 6.1. Thus 4.108 has only 2 as a period,
and virtual knot diagrams of 41 do not introduce non-classical periods. This answers
Question A in [KLS14] for the figure eight knot.

Similar considerations apply to almost classical knots K with ∆K(t)
.
= t2 − 3t+ 1

to show that they have only 2 as a possible period. This applies to the knots 6.77905,
6.78358, and 6.79342 in Table 3.

Example 6.15 (Knot 5.2426). ∆K
.
= (t2 − t+ 1)2.

This knot has no known periods, but notice that ∆K 6= 1 mod p for any prime p.
Note that t2−t+1 mod p is an irreducible factor of ∆K mod p provided p 6= 3. Using
Proposition 6.5, with s = 1 and u1 = t2−t+1, if spanp ∆K < (pr−1) spanp(t

2−t+1),
then K cannot have period pr (for p 6= 3). Now, spanp ∆K = 4, and for prime p ≥ 5,

(p− 1) spanp(t
2 − t+ 1) = 2(p− 1) ≥ 8, so 4 = spanp ∆K < (p− 1) spanp(t

2 − t+ 1),

and K cannot have prime period p ≥ 5. For pr = 22, 4 = span2 ∆K < (22 −
1) span2(t

2 − t + 1) = 6, so K cannot have period 4 = 22. Prime power periods of
the form 3r, r > 1, are eliminated by Proposition 6.1 (since 4 = spanp ∆K < 3r − 1),
and the composite period 6 = 2 · 3 is eliminated by Proposition 6.11 as follows.
Notice that ∆K

.
= (t2 − t + 1)2

.
= g2 over Z and ∆K

.
= (t2 + t + 1)2

.
= g2 mod 2,

where g is irreducible in both cases. As well, ∆K is non-trivial modulo 3, so that
Proposition 6.11 applies to show that K cannot have period q = 6. The only possible
periods for K = 5.2426 are therefore 2 and 3.
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Similar considerations apply to almost classical knots K with ∆K(t)
.
= (t2− t+1)2

to show they have only 2, 3 as possible periods. This applies to the knots 6.87262,
6.89187, and 6.89198 in Table 3.

Example 6.16 (Knot 6.90099). ∆K = t4 − t2 + 1.

This knot admits a 3-periodic diagram; in fact K = β̂3 for β = τ3σ3σ4τ1τ3τ2.
Proposition 6.1 rules out prime periods for p ≥ 7, and also the prime power 32.
Corollary 6.6 excludes p = 5 as a period since ∆K = (t2 + 2t + 4)(t2 + 3t + 4)
mod 5, with both factors irreducible modulo 5. In addition, Proposition 6.5 can be
used to exclude 22 as a period, since ∆K = (t2 + t + 1)2 mod 2 and t2 + t + 1 is
irreducible modulo 2, so 4 = span2 ∆K < (3)(2). To exclude the composite period
q = 6 = 2 · 3, observe that ∆K is irreducible over Z, and that ∆K 6= 1 mod 3
and ∆K = (t2 + t + 1)2 = g2 mod 2, where g is irreducible modulo 2. Hence,
Proposition 6.10 applies to show K cannot have period q = 6. Therefore K has the
known period 3 and also possibly period 2, but no others.

Example 6.17 (Knot 6.90209). ∆K = t4 − 3t3 + 3t2 − 3t+ 1.
This is the classical knot 62, which admits a classical diagram with period 2. By

Proposition 6.1, K cannot have prime power period p for p ≥ 7. Since ∆K = (t2 + t+
2)(t2 + 2t+ 2) mod 3 with both factors irreducible modulo 3, Corollary 6.6 excludes
p = 3. Further, since ∆K = (t2 + t+1)2 mod 5, where t2 + t+1 is irreducible modulo
5, Proposition 6.5 excludes p = 5 as well, as span5 ∆K = 4 < (4)(2). Note that
∆K = t4 + t3 + t2 + t+ 1 mod 2, which is irreducible modulo 2, thus Proposition 6.5
applies again to show that K cannot have period 22. Thus K has only the known
period 2 and no others. In particular, we see that virtual knot diagrams of the classical
knot 62 do not introduce any non-classical periods.
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Knot Alexander polynomial

3.6 t2 − t+ 1
4.99 2t− 1
4.105 2t2 − 2t+ 1
4.108 t2 − 3t+ 1
5.2012 1
5.2025 1
5.2080 1
5.2133 2t− 1
5.2160 t2 − t+ 1
5.2331 t3 − t+ 1
5.2426 (t2 − t+ 1)2

5.2433 t4 − 2t3 + 4t2 − 3t+ 1
5.2437 2t2 − 3t+ 2
5.2439 t3 − 2t2 + 3t− 1
5.2445 t4 − t3 + t2 − t+ 1
6.72507 1
6.72557 1
6.72692 1
6.72695 1
6.72938 t2 − t+ 1
6.72944 2t− 1
6.72975 1
6.73007 1
6.73053 t2 − t+ 1
6.73583 1
6.75341 2t− 1
6.75348 t− 2
6.76479 t2 − t+ 1
6.77833 t2 − t+ 1
6.77844 t2 − t+ 1
6.77905 t2 − 3t+ 1
6.77908 2t2 − 2t+ 1
6.77985 t2 − t+ 1
6.78358 t2 − 3t+ 1
6.79342 t2 − 3t+ 1
6.85091 t2 + t− 1
6.85103 t3 − t2 + 2t− 1
6.85613 t2 − 2t+ 2

Knot Alexander polynomial

6.85774 t3 − t2 + 1
6.87188 (2t− 1)(t2 − t+ 1)
6.87262 (t2 − t+ 1)2

6.87269 (2t− 1)2

6.87310 t4 − t3 + 2t2 − 2t+ 1
6.87319 3t2 − 3t+ 1
6.87369 t3 − 2t2 + 3t− 1
6.87548 t3 − 2t2 − t+ 1
6.87846 t3 − t2 + 2t− 1
6.87857 t2 − 4t+ 2
6.87859 3t2 − 3t+ 1
6.87875 t3 + t2 − 2t+ 1
6.89156 2t3 − t2 − t+ 1
6.89187 (t2 − t+ 1)2

6.89198 (t2 − t+ 1)2

6.89623 2t2 − 2t+ 1
6.89812 t3 − 2t+ 2
6.89815 2t− 1
6.90099 t4 − t2 + 1
6.90109 (2t2 − 2t+ 1)(t2 − t+ 1)
6.90115 (t2 − 3t+ 1)(t2 − t+ 1)
6.90139 (3t2 − 3t+ 1)(t2 − t+ 1)
6.90146 t4 − 5t3 + 9t2 − 5t+ 1
6.90147 t4 − 3t3 + 6t2 − 5t+ 2
6.90150 t4 − 5t3 + 6t2 − 4t+ 1
6.90167 t4 − 2t3 + 4t2 − 4t+ 2
6.90172 t4 − 3t3 + 5t2 − 3t+ 1
6.90185 3t4 − 6t3 + 6t2 − 3t+ 1
6.90194 t4 − 4t3 + 8t2 − 5t+ 1
6.90195 2t4 − 3t3 + 3t2 − 2t+ 1
6.90209 t4 − 3t3 + 3t2 − 3t+ 1
6.90214 3t2 − 4t+ 2
6.90217 t3 − 4t2 + 3t− 1
6.90219 2t3 − 3t2 + 3t− 1
6.90227 (t− 2)(2t− 1)
6.90228 4t2 − 6t+ 3
6.90232 2t3 − 6t2 + 4t− 1
6.90235 t4 − 3t3 + 5t2 − 3t+ 1

Table 1. Alexander polynomials for almost classical knots up to six
crossings. (Boldface is used to indicate a classical knot.)
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Knot period Periodic virtual braid

3.6 = 31 2, 3 (σ1σ2)2, σ3
1

4.99 2 (σ1τ2σ
−1
2 τ2)2

4.105 4 (σ2τ1)4

4.108 = 41 2 (σ1σ
−1
2 )2

5.2433 5 (σ2τ1τ3)5

5.2437 = 52 2 (σ4τ2τ1σ2τ2σ3)2

5.2445 = 51 2, 5 (σ1σ2σ3σ4)2, σ5
1

6.85091 2 (τ3τ4τ3σ2σ3τ1τ2σ
−1
3 τ2τ1)2

6.87262 3 (τ1τ3τ2σ2τ2τ1σ2)3

6.87269 3 (σ2τ1σ
−1
2 τ1τ3)3

6.87310 3 (τ1τ2τ3τ2σ2τ2τ3σ3)3

6.87319 3 (σ−1
2 τ2τ1σ3τ2)3

6.87857 2 (τ4τ3τ2τ1τ2σ1τ2σ
−1
2 τ1τ2σ3)2

6.87859 2 (τ4τ3τ2σ2τ2σ
−1
1 τ3σ

−1
3 )2

6.89156 2 (τ4τ2σ2σ3τ4σ4τ2τ1)2

6.89187 = 31#31 2 (σ3
2τ1)2

6.89812 2 (σ3τ2τ3σ3τ1τ2τ3σ4τ1τ2)2

6.89815 2 (τ4τ2τ3τ2σ1σ2τ4σ
−1
4 )2

6.90099 3 (τ4τ3τ2σ2σ1τ2)3

6.90139 6 (σ2τ4τ6τ1τ3τ5)6

6.90146 3 (τ2σ2σ
−1
3 τ2τ1)3

6.90172 = 63 2 (σ4σ
−1
2 σ−1

3 σ1σ
−1
4 σ2σ3σ

−1
1 )2

6.90185 3 (σ3τ2σ3τ2)3

6.90194 3 (τ3σ1σ
−1
2 )3

6.90209 = 62 2 (σ−1
4 σ−1

3 σ−1
2 σ1)2

6.90214 2 (τ3τ4τ3τ2σ2τ2σ1σ3)2

6.90219 2 (τ4τ3τ2σ2τ2σ1τ3σ
−1
3 )2

6.90227 = 61 2 (τ3τ2τ1σ2τ2τ3σ
−1
2 σ4)2

6.90228 6 (τ1σ3τ5τ2τ4τ6)6

6.90232 2 (τ4τ3τ2σ1τ2σ2σ
−1
3 τ3)2

6.90235 3 (τ1τ4τ6τ5τ4τ3τ4τ5σ3σ
−1
2 )3

Table 2. Periodic almost classical knots as closures of periodic vir-
tual braids.
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Excluded Periods Non-Excluded

Knot
Known
Periods

Prime
Prime
Powers

Composite
Periods

3.6 = 31 2, 3 p ≥ 5 22 2 · 3 none
4.99 2 p ≥ 3 - N/A 2k, k ≥ 2
4.105 4 p ≥ 3 - N/A 2k, k ≥ 3
4.108 = 41 2 p ≥ 3 22 N/A none
5.2012 - - - - q ≥ 2
5.2025 - - - - q ≥ 2
5.2080 - - - - q ≥ 2
5.2133 - p ≥ 3 - N/A 2k, k ≥ 1
5.2160 - p ≥ 5 22, 32 2 · 3 2, 3
5.2331 - p ≥ 3 22 N/A 2
5.2426 - p ≥ 5 22, 32 2 · 3 2, 3
5.2433 5 p 6= 2, 5 22, 52 2 · 5 2
5.2437 = 52 2 p ≥ 3 - N/A 2k, k ≥ 2
5.2439 - p ≥ 3 22 N/A none
5.2445 = 51 2, 5 p 6= 2, 5 22, 52 2 · 5 none
6.72507 - - - - q ≥ 2
6.72557 - - - - q ≥ 2
6.72692 - - - - q ≥ 2
6.72695 - - - - q ≥ 2
6.72938 - p ≥ 5 22, 32 2 · 3 2, 3
6.72944 - p ≥ 3 - N/A 2k, k ≥ 1
6.72975 - - - - q ≥ 2
6.73007 - - - - q ≥ 2
6.73053 - p ≥ 5 22, 32 2 · 3 2, 3
6.73583 - - - - q ≥ 2
6.75341 - p ≥ 3 - N/A 2k, k ≥ 1
6.75348 - p ≥ 3 - N/A 2k, k ≥ 1
6.76479 - p ≥ 5 22, 32 2 · 3 2, 3
6.77833 - p ≥ 5 22, 32 2 · 3 2, 3
6.77844 - p ≥ 5 22, 32 2 · 3 2, 3
6.77905 - p ≥ 3 22 N/A 2
6.77908 - p ≥ 3 - N/A 2k, k ≥ 1
6.77985 - p ≥ 5 22, 32 2 · 3 2, 3
6.78358 - p ≥ 3 22 N/A 2
6.79342 - p ≥ 3 22 N/A 2
6.85091 2 p ≥ 3 22 N/A none
6.85103 - p ≥ 3 22 N/A 2
6.85613 - p ≥ 3 - N/A 2k, k ≥ 1
6.85774 - p ≥ 3 22 N/A 2
6.87188 - p ≥ 3 22 N/A 2
6.87262 3 p ≥ 5 22, 32 2 · 3 2
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Excluded Periods Non-Excluded

Knot
Known
Periods

Prime
Prime
Powers

Composite
Periods

6.87269 3 p ≥ 5 32 -
2k, k ≥ 1

3 · 2k, k ≥ 1
6.87310 3 p ≥ 5 22, 32 2 · 3 2

6.87319 3 p ≥ 5 22 -
2, 3k, k ≥ 2
2 · 3k, k ≥ 1

6.87369 - p ≥ 3 22 N/A 2
6.87548 - p ≥ 3 22 N/A 2
6.87846 - p ≥ 3 22 N/A 2
6.87857 2 p ≥ 3 - N/A 2k, k ≥ 2

6.87859 2 p ≥ 5 22 -
3k, k ≥ 1

2 · 3k, k ≥ 1
6.87875 - p ≥ 3 22 N/A 2
6.89156 2 p ≥ 3 22 N/A none
6.89187 = 31#31 2 p ≥ 5 22, 32 2 · 3 3
6.89198 = 31#3∗1 - p ≥ 5 22, 32 2 · 3 2, 3
6.89623 - p ≥ 3 - N/A 2k, k ≥ 1
6.89812 2 p ≥ 3 - N/A 2k, k ≥ 2
6.89815 - p ≥ 3 - N/A 2k, k ≥ 1
6.90099 3 p ≥ 5 22, 32 2 · 3 2
6.90109 - p ≥ 3 22 N/A 2
6.90115 - p ≥ 3 22 N/A 2
6.90139 6 p ≥ 5 22, 32 - none
6.90146 3 p ≥ 5 22, 32 2 · 3 2
6.90147 - p ≥ 3 22 N/A 2
6.90150 - p ≥ 3 22 N/A 2
6.90167 - p ≥ 3 - N/A 2k, k ≥ 1
6.90172 = 63 2 p ≥ 5 22, 32 2 · 3 3

6.90185 3 p ≥ 5 22 -
2, 3k, k ≥ 2
2 · 3k, k ≥ 1

6.90194 3 p ≥ 5 22 2 · 3 2
6.90195 - p ≥ 3 22 N/A 2
6.90209 = 62 2 p ≥ 3 22 N/A none
6.90214 2 p ≥ 3 - N/A 2k, k ≥ 2
6.90217 - p ≥ 3 22 N/A 2
6.90219 2 p ≥ 3 22 N/A none

6.90227 = 61 2 p ≥ 5 32 -
2k, k ≥ 2

3 · 2k, k ≥ 1

6.90228 6 p ≥ 5 - -
2j , 3k, j, k ≥ 2
2j · 3k, j, k ≥ 2

6.90232 2 p ≥ 3 - N/A 2k, k ≥ 2
6.90235 3 p ≥ 5 22, 32 2 · 3 2

Table 3. Known and excluded periods of almost classical knots.
Classical knots are indicated by their Rolfsen number.
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