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We show that theSU(3) Casson invariant for spliced sums along certain torus
knots equals 16 times the product of th8i(2) Casson knot invariants. The key
stepis a splitting formula fosun) spectral flow for closed 3—manifolds split along
a torus.
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1 Introduction

Given knotsK; andK; in homology 3-sphereM; and M,, respectively, the spliced

sum of M1 and M, along K; and K5 is the homology 3-sphere obtained by gluing

the two knot complements along their boundaries matching the meridian of one knot

to the longitude of the other. This operation is a generalization of connected sum;

indeed wherK; andK5 are trivial knots, the spliced sum &, andM, alongK; and

K> is none other than the connected sig#M,. Casson’s invarianf\syz), which

is additive under connected sum, is also additive under the more general operation of
spliced sum by Boyer and Nica6][and independently Fukuhara and Maruyarh@.[

What is remarkable about this is that the Casson invariant of a spliced sum does not
depend on the knotik; andK; along which the splicing is performed.

While the integer-valuedsU(3) Casson invariantsyg) of [3] is not additive under
connected sum, by3[ Theorem 4], the differencesyz) — 2>\§U(2) is, and a natural
guestion to ask is whether it is also additive under spliced sum. In general, the answer
is no and we briefly explain why not. Recall from Savelié¥|[that a Seifert-fibered
homology spheréez(p, g,r, s) can be described as a spliced sum of Brieskorn spheres
along the cores of their singular fibers in three different ways: (i) the spliced sum of
3(p, q,rs) and X(r, s, pg); (ii) the spliced sum obX(p, s, qr) and X(q, r, ps); and (iii)

the spliced sum ok(p,r, g9 and 3(q, s, pr). Additivity under splicing would imply

that the evaluation ofsys) — 2A5y,) on all three of these pairs of Brieskorn spheres
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agree, but the results idl][ provide examples where they do not. This shows that
TSUE) — 2)\§U(2) is not additive under spliced sum.

Thus, it is an interesting problem to understand the behaviour o6th(&) Casson
invariant under spliced sum, and in this paper we focus on the simplest possible case,
namely wherK; andKj; are torus knots. We verify a conjecture &j py identifying

the SU(3) Casson invariant of the spliced sum with a multiple of the product of the
CassorSU(2) knot invariants in the cagd€; andK; are (2q;) and (2 gp) torus knots.

Our results combine a detailed analysis of 8l6(3) representation varieties of the
knot complements with computations of teg(3) spectral flow of the odd signature
operator coupled to a path &U(3) connections. An essential tool developed here is
the general splitting formula dfheorem 2.10which is applied to compute the spectral
flow for closed 3—manifolds split along a torus.

We now outline the argument and highlight the special role played by the splitting
formula. We assum&; and K, are knots inS* and we denote by; and X, their
complements and b = X; Ut X, their spliced sum. IrSection 3 we give a
description of the components of the varid®M, SU(3)) of SU(3) representations
of m1M under certain transversality assumptions on the imag&gf SU(3)) in the
SU(3) pillowcaseR(T, SU(3)). In particular, it follows from our description that every
component of R(M, SU(3)) with dimC > 0 hasy(C) = 0, and thus byZ, Theorem
7], it follows that only O—dimensional components contribute to 81€3) Casson
invariant. For instance, this generaliz8sTheorem 14] and shows that the correction
term gu(3)(M) for the Cassor8U(3) invariant must vanish. Becausgu(g,)(M) =0
and our earlier analysis of the components, we see that

Asug(M) = AgygM) = > (-1)SFOA,
[AleMSys

WhereMgU(3) denotes the moduli space of isolated, irreducible Sld§3) connections

on M. The integer-valued invariai@U(3) Casson invariantsyz)(M) can be analyzed
with similar considerations, and in fact it is not difficult to show thatyz)(M) =
Asy)(M). In any case, this outlines a straightforward approach for computing the
SU(3) Casson invariants for spliced sums.

We carry out these computations in the specific case wheisthe spliced sum along
two torus knots of type (211) and (202). Any representatiom: 71(M) — SU(3)
determines, by restriction, representatiens m1(X1) — SU3) andaz: m1(X2) —
SU(3). We show that the conjugacy class] [is isolated (and hence contributes
nontrivially to theSU(3) Casson invariant d1) only when is irreducible and both
a1 andag are reducible. By conjugating, we can arrange thais anSU(2) x U(1))
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representation and that, is an S(U(1) x U(2)) representation. To complete the
computation, we just need to enumerate all such representations and determine the
su3) spectral flow from the trivial connectio® to the flat connectiorA on M
corresponding tae.

Since theS(U(2) x U(1)) representation variety of a torus knot is connected, there is
a pathAq; of flat SU(2) x U(1)) connections orX; connecting®|x, to Alx,, and
likewise a pathAz; of flat SU(1) x U(2)) connections oX, connectingO|x, to Alx, .
Moreover, these paths can be chosen to satisfy the hypothe$basanem 2.10 The
splitting theorem then describes the spectral flow on the splicedéwas a sum of the
spectral flows of the path&;; and Ay of flat connections on knot complemerxs

and X, the spectral flow of a closed path $fJ(3) connections on the solid torus, and
some finite dimensional Maslov triple indices. Each of these terms can be computed
by direct analysis, and from this we deduce our main application, which identifies the
SU(3) Casson invariant of the spliced sum with a multiple of the product oStR)
Casson knot invariants for spliced sums along certain torus knots. The following is a
restatement ofheorem 7.6our main result.

Theorem Suppose&; andK; are torus knots of type (8) and (2 g), respectively,
andM is their spliced sum. Then

Asua)(M) = 16 Asy2) (K1) Asyz)(K2),

where)\’su(z)(K) is the SU(2) Casson knot invariant normalized to be 1 for the trefoil.

Remark As noted above, this result also computes the integer-velg8) Casson
invariantrsyg)(M) of [3]. While the results of$] and [4] show that neither th&U(3)
Casson invariant has finite-type, the above theorem shows that the behaxiggHf
and 7sy) under splicing is very similar to that of the finite-type invariant of degree
three. Note that additivity of the Cass@J(2) invariant under spliced sun,[10],
implies thatAsye)(M) = 0 for any 3—manifoldV obtained as the spliced sum along
two knots inS°.

Here is a brief synopsis of the rest of the paperSéction 2we present the splitting
theorem in the general settinection 3contains some general results ab&ui(3)
representations of spliced sums, &@wekttion 4and Section 5give descriptions of the
reducible and irreducibl&U(3) representations of torus knot$Section 6contains
cohomology calculations, ar@lection 7presents the main application to computing
the SU(3) Casson invariant for spliced sums along torus knots.
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2 A splitting formula for su(n) spectral flow

The SU(3) Casson invariant for homology 3-spheres is defined3]rbfy counting
gauge orbits of irreducible (perturbed) fIat[3) connections with sign given by the
su(3) spectral flow. In the case of a 3—manifold split along a surface, a useful tool for
performing computations of the spectral flow is provided by splitting the spectral flow
along the manifold decomposition. Existing splitting formulas treat mainiy3tg2)

case and do not readily apply to our situation, so in this section our goal is to develop a
suitably general splitting formula for 3—manifolds split along a torus. Our results here
are the naturasu(n) generalizations of the results establishedlit] for su2) spectral

flow, and the arguments that are routine extensions of those givéd]iwill only be
outlined.

When working on manifolds with boundary, it is essential to have a family or at least a
path of “nice” boundary conditions associated to the restrictioA;db the boundary

(see Atiyah—Patodi—Singet]). For example, given a path of Atiyah—Patodi—Singer
boundary conditions, we could derive a splitting formula for arbitrary splitting surfaces,
however, in general we cannot find a path of Atiyah—Patodi—Singer boundary conditions
for a given path of connections which is continous in the gap topology. We note that
before choosing boundary conditions we may assume any path between flat connections
to stop a finite number of times and to be flat on the boundary torus, because the spectral
flow is homotopy invariant. Therefore, 8ection 2.2we describe an explicit family of
boundary conditions together with a family of flat connections on the boundary torus
which is suitable for all the spectral flow computations we have in mind.

This section assumes some level of familiarity with the background material on spectral
flow, Maslov index, and their relationship. Readers interested in learning more about
these aspects are referred to Cappell-Lee—Milftafid Nicolaescul4)].
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2.1 Preliminaries

In order to describe the family of Atiyah—Patodi—Singer boundary conditions and
formulate the splitting formula, we recall the basic setup and review the concepts and
notation that will be used throughout this section.

i i o
~—

X T x[-1,1] Y

Figure 1: The collar around

For the splitting formula we will assume the following:

(1) The orientation of the toru¥ = S' x St = {(€M, &) | m ¢ € [0,2n)} is
determined bydmA d¢ € Q3(T). We regardT with its product metric from
the standard metric o', and note that the fundamental growp(T) is the
free abelian group generated by the meridjan= {(€™, 1)} and longitude

A={1,¢e9}.
(2) The 3—-manifoldsX and Y have boundarylT and are oriented so th@X =
T = —9Y. We place metrics oiX and Y such that collars 06X and 0Y are

isometricto -1,0] x T and [Q 1] x T, respectively.

(3) Consider the 3—manifol = X Ut Y with the orientation and metric induced
by the orientation and metric ad andY. SeeFigure 1

(4) Fix a principal bundle with structure groupU(n) over M and consider its
trivialization.

For anSU(n) connectionA € Q'(M; sun)), theodd signature operator twisted by A
is defined to be

Da: Q%FH(M; sun) — Q%FH(M; sun))
(a7 ﬂ) = (dz\ﬂv *dAﬂ + dAOé),

whereQ%1(M; sun)) = QM) @ sun) & Q(M) ® sun) and denotes the Hodge
star operator on the 3—manifoM. For anSU(n) connectiona € Q(T; sun)), thede
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Rham operator twisted by ia defined to be
Sit QT sun) — Q0T sun))
(a, B,7) = (xUaf, — * dacx — da x 7y, da * ),
wherex denotes the Hodge star operator on the 2—manifold
If ais flat, then the Laplacian twisted tayis given by A, = S, which is an operator
Aq: Q2T sun)) — QOFHH2(T; sun)).
We equipL2(Q+1+2(T; sun))) with an almost complex structuteby setting

(2-1) I, 3,7) = (— * v, x0, *a).

Let A be a connection oM, which is in cylindrical form in a collar ofT, that is
A = ija, whereiy: T — [-1,1] x T is the inclusion atu € [-1,1] anda is a
connection onl. We define the following function

r: Q%([—1,1] x T;sun)) — Q°+2(T; sun))
(0,7) = (ig(0),i(7), *ig (T0%)) »

wherem% denotes contraction af with %. This also gives us a restriction map of
QO+1(X; sun)) and Q°L(Y; sun)) to Q%+1+2(T; sun)). The Cauchy data spacesf
Dalx andDaly are

N - g2
Axp = r(KerDA|x)L and Aya = r(KerDA|Y)L , respectively
with the correspondiniimiting values of extended?ksolutions

Lx A = Projgerg,(Axa N (P~ UKerSy))
and Ly A = Projgers (P UKerS,) N Ay a).

We may attach a collar t& andY and define

|12 |12
AR == r(Ker Dalxupo.R) and  A§ 5 = r(KerDalyu—ro) .

|12 |12
aswellas A’y = r(KerDalxujo,oc)) and  AJa i= r(KerDalvu(—co,0) -

2.2 Afamily of Atiyah—Patodi—Singer boundary conditions

In this subsection, we construct a family of flat connectiag®on the 2—torus and
introduce boundary conditiong’; parametrized by € A with the property that, for
3—manifoldsX with 9X = T, given any connectio on X whose restrictiorA|T is
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flat, thenA is gauge equivalent to somf with A'|t = a; for someg™e A and P

is an Atiyah—Patodi—Singer boundary condition for the twisted odd signature operator
Du, ie &5 contains all eigenvectors of the tangential oper&grwith sufficiently

large eigenvalues. Furthermore, we describe a natural topolog& on which it
continuously parametrizes the family of boundary conditions and flat connections.

Let R(T, SU(n)) be the representation variety @f namely the space of conjugacy
classes of representatiogs 71(T) — SU(n). By Donaldson and KronheimeB,
Proposition 2.2.3], the holonomy map gives a homeomorphism from the moduli space
1 of flat SU(n) connections ovel to the representation varieB®(T, SU(N)).

LetA:={a=(a1...,an) €R"| a3 +---+ an = O}, which is isomorphic taR"~1
via the standard projection onto the first- 1 coordinates. Fow € A, set

a1 0
diag() =

0 Qn

Definition 2.1 Foro, 3 € A, let a, g := —idiag() dm— idiag(5) d/. We substitute
an indexa, g by («, 3), for exampleS, s = S, 4, Dag = Aa, 4-

Notice thata, s is a flat connection om with holonomy holé, g) equal to the
representationp, g: m1(T) — SUN) given by ¢, g(1) = exp(2ridiag()) and

©Ya,3(A) = exp(2ridiag@)). The map &,[) — a, g defines a smooth family of
flat connections parameterized By, and the mapd(, 3) — [¢a,3] gives a branched
coverA? — R(T,SU(n)).

Under the action of the standard maximal tofist ¢ SU(n), the Lie algebra
decomposes asun) = U, & W, into diagonal and off-diagonal parts. The torus
acts trivially on the diagonal patd, = R"~* and nontrivially on the off-diagonal part
Wi, which further decomposes &, = @ C!, where

i<j

Cl:={aesun)|aq=0for{kl} # {i,j}} = C.

Moreover,S, s and A, 5 preserve the induced splitting 6F°++2(T; sun)). There-

fore, the detailed analysis of our boundary conditions can be dongyfer R"* and

W, = @ Cl by effectively reducing them to the computations ii][ Notice that
i<j

W, = C0).

Fori < j, we define subspaces

(2-2) Q! 5 = span.(s¥) ¢ QO(T; Wy),
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wheregl = (¢)) € QO(T; W) is given by
g (i —ag)m+(3i - 5)¢) if (k,1) = (i,]),

(2_3) ¢E|(m7 E) = _é((ajiai)m—k(ﬁjiﬁi)g) if (k7 I) = (jv |)7
0 otherwise.
We set
(2_4) Qa,ﬁ = @ Qgéﬁ'
1<J

For a proof of the next result, se®l} Proposition 3.1.2].

Proposition 2.2 We have for the harmonic forms of A, g on the torus:
AT sUn) = A 5T Un) @ A 5 4(T5 Wh).
In the first case, we have trivially that
Up, ifi =0,
7 5(T;Up) = { Undme Undet, ifi = 1, and
In the second case, we have
AT = AT,
i<j
with
Qs if(a—ay, b — ) €Z?
0 otherwise,

%lB(T CU) = {Qi’ﬁ dm@ Qiyﬁ d¢ if(Oéi - Oéj)ﬁi - ﬁ]) € Zz,
Q, , 0

%ﬂa?,g(-r; Cij) = {

otherwise,

%ZB(T'C”) _ {Qg{,ﬁ dmAdl  if (o — a4, 5 — 3) € 72,
a, ) 0

otherwise.

Let a be anSU(n) connection onT and E;,, denote thev—eigenspace o§,. For
v > 0, we set

P:, = spanz {¢ | Sayp = py) for pu > v},

Pa, = spanz{y | S = ) for p < —v},

E, = spanz{v | Sw = ) for 0 <y < v},
and Ea, i=spane{y | S = wp for —v < pu <0},
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Notice that

L2
Py, = P E, and Ef, = P Eapu
+u>v O<tp<v

If v = 0, we write P5 in place ofP;, and if o, 8 € A, we write ngﬁ in place of
P, ,- Define Pi(‘fﬁ = Pjﬁ N L2(QO++2(T; Cl)). Observe that the space of twisted
harmonic forms#2+1+2(T; sun)) in L2(Q%+1+2(T, sun))) is equal to Kef,. By the
spectral theorem for self-adjoint elliptic operators we have

L2(Q%H (T, sun))) = P @ KerS, @ P;.

Just as in1, Proposition 3.2.3], we get a decompositiorL8{Q2°+1 (T, sun))) into
eigenspaces ak,, g respecting the decompositiosgn) = U,&W, andW, = @ ci.

i<j
Further note that the decompositionlg{Q°+1+2(T, Uy)) is independent ofc(, 5) and
the decomposition of2(Q%+1+2(T, Cl)) depends only ondj — qj, 6i — ) € R2.
The dimension of Ke§, g jumps wheneverd; — o, 5 — ;) lies in the integer lattice
72 c R? for somei < j. We set

Zij = {(a, B) € A? | (i — oy, B — B) € 72},

Z Z:UZij.

i<j

Remark As spectral flow on a closed manifold is an invariant of homotopy rel end-
points, for the purpose of the spectral flow calculations in this paper, we can always
assume that if a path(t), 5(t)) hits Zjj whent = to, then it approachegjj in such a
way that
Gi(t) — 6i()
oj(t) — ai(t)
is constant on some intervak (o — ¢, to), and similarly for when it leaves;. For
such a path, the kernel &, 5ty converges as — to and the kernel aty equals this
limit plus an additional subspace determineddy

= taneij, Gij S Sl,

We take an alternative approach and shallintroduce a parametergbmm topology

so that every continuous path ix? is "sufficiently nice" in an appropriate sense. This
viewpoint has a conceptual advantage and provides additional flexibility, because the
spectral flow along a path of connections on a manifold with torus boundary is homotopy
invariant rel endpoints, as long as its restriction respects a certain family of boundary
conditions together with flat connections parametrized\By
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By explicitly computing some sufficiently nice path of eigenfunctions with nonzero
eigenvalue, which vanish in the limit, we can see that the additional eigenspace in the
kernel of the tangential operator only depends on the direction in whichdj, 5 — 3))
approache&?. We will make this precise. Far< j, we denote this angle g € s,

and we introduce the parameter space

A2:= A2 x (SHE)/ ~,
where the equivalence relation collapses th dircle away from 2, ie for 6 =
(%)i<j € (S )(2) we have

(o, B,60) ~ (v, 3,0") provided#y = H{j forall i <j with (o, 3) € Zjj.

We put a topology om2 as follows. Given &, p) € A? andi < j, seta.J =aj —qj
and Bj = G — Bj. Then @, By« € R, set0? = (R2® for notational
convenience, and notice that the map — Q2 given by ¢, 5) — (aij, Bji<j is an
embedding. As before, define
02 = 02 x (SHe)/ ~,

where the equivalence relation collapses ting dircle for (o, 5j) & 7. Just as on
p. 2275 of [L1], there is a bijective map from2 to (R2)(2), where R is the result
of removing open disks of radius/4 around each integer lattice point R?, and
we put a topology o2 that makes this map a homeomorphlsm The embedding

2 5 (SH® - 02 x (Y descends to an injective may — 02, and in this way
A2 inherits the pullback topology fromz2.

The next result is analogous t@l], Theorem 3.2.2]. Before stating it, we define
0+142
families K(a 5o) = @ K(a 5.9) Of subspaces oP7,;"*(T; sun)) parameterized by

A2 by setting, for eachl <],
e {Spaf&{w”i vit} if (o, B) € 2,
@89 10 otherwise,
where
PIE = ¢l 1 ¢l (i Im 6; dm— i Red; do),
iE = ¢V dmA de + ¢ (i Rey dm+ i Im 6; de),
and¢! e QO(T; sun)) is the function given by equatio2£3).
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Theorem 2.3
(1) The maps P*: A2\ Z — {closed subspaces of L?(Q°T%(T su(n)))} are con-
tinuous.
(2) If («(t), B(t)) € A%, t € [0,¢) is a smooth path with (a(t), 3(t)) ¢ Zj for
t € (0, &) such that %‘t:o (aij (t) + 15 (t)) # 0, we set
 ofO+i5(0)
R CTORIEACT

Then
o it i+ Y -
Jim Plaw.sm = Koo @ Pag  and M Py s = Kaso @ Plas-

(3) Extend P* to A2 by setting Pa 5.0) = P(j 5 Then

Pt p K*: A2 - {closed subspaces of L2(Q%T1+2(T sun)))}
are continuous.

O

Then, we can define a continuous family of boundary conditions parametrizANa by
(cf [11, Definition 3.2.4]).

Definition 2.4 Define a family = of subspaces of (2%"2(T, sun))) continu-
ously parametrized by € A2 as
PE =Pt o Lo KE,
where A A A
L :=UaUdl and £ :=3¥"
andJ is given in @-1). The spacefi can be chosen arbitrarily—the proof of the

splitting formula does not make use of it—but the above choice makes computations for
our application easier.

If Lit, Loy andLay, t € [0,1] are paths of Lagrangian subspaces in a symplectic
Hilbert space with almost complex structude such that L, L) is a Fredholm
pair for all'i,j = 1,2,3, t € [0, 1], then we can define a Maslov triple index by
translating 12, Definition 6.8] by Kirk and Lesch into the language of Lagrangian
subspaces. By the proof ol?, Lemma 6.10], we see that, is determined by
Tu(L,L,L) =0 and

Tu(L1,1,L21, L3 1) — 7u(l10, L2o, L3 o) = Mas@Ly, Lo) +Mas@Lp, L3) —Mas(Ly, Ls).

Some easy and useful properties are summarized in the following.
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Lemma 2.5 Let L3, Ly, and L3 be pairwise Fredholm Lagrangians in a Hilbert space
H. Then

° 7'M(L17 Li,Ly) = TM(Lla Lo, Ly) =0,
° TM(L]_, Lo, Ll) = dim(JL1 N Lz), and
o 7,(L1,L2,L3) = dimJLz N L) — 7u(L1, L3, L2).

2.3 Derivation of the su(n) splitting formula

In this subsection we develop a splitting formula which expressesum spectral

flow of the odd signature operator between flat connections on a closed 3—manifold
M = X Ut Y split along a torusT in terms of spectral flows oiX and Y with the
Atiyah—Patodi—Singer boundary conditions fr&@action 2.2

Theorem 2.6 Let M = XUt Y be a closed 3—-manifold split along the torus T. Let
A; be a path of SU(n) connections on M with the following properties:

(1) A: is in cylindrical form and flat in a collar of T.

(2) A restricts to the path a,) on T for some path ¢ in A2 with 7 o 0 = o, where
7. A2 — A? is the obvious projection, and

(3) Ag and A; are flat on M.

Then we have the splitting formula:

SF@) = SFAx; ) + SFAY: P30) + Tu(0% 000, Koy @ 2T, L o0)
— (0% 01), Ky & L7, L 00)-

Proof The proof is very similar to]1, section 4.4]. Recall from Nicolaesc(4,
Definition 4.8] that the non-negative numbers fainc R | Axa N P§, = 0} and
min{v € R [ P, N Ay a = 0} are called the non-resonance levelafix andDaly
respectively. Letv be the maximum of the non-resonance levelDaf|x, Da,|x,
Dasly andDa,|y. Fore = 0,1, we useEZ, for the space€s | , and set

Qg(e) v
Hey = E;:V &) KEI’SQ(E) ) E;V.
Using the notation from abov&x: := Ax s andAyy := Aya,:

(1) Fix some pathLx.t, ¢ = 0,1, of Lagrangians irH. , from A;’(?g NH., to
925_(5) NH:,,and
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(2) fix some pathLy.t, € = 0,1, of Lagrangians irH., from A$<j5 NH:, to
@g(s) NH.,.

Consider the Maslov index of the patiAyt, Ayt). Then by the results of Daniel
[8, Theorem 4.3] (see also Nicolaesdul| Theorem 3.14]), we have that %) =
Mas(Ax,, Av,), as well as the relative version S¥fx; %5,)) = Mas(Axt, P5,) and
SFAv; ﬂg(t)) = Mas(@&t),Ay7t) by Kirk and Lesch 12, Theorem 7.5]. We can
homotope the pathA, Av;) to the concatenation of paths/4, .4)), i =1,...,11
given inTable 1without changing the Maslov index.

Observe first, that the Maslov index of each of the pairg,(4),i = 1,4,6,8, 11 is
zero (seel2 Lemma 8.10]).

Furthermore we can applyL?, Theorem 8.5], wher&Vx C dE,, C ES“V for Day|x
andWy C dESfV C By, for Day|y are as in the theorem, anddenotes the orthogonal
complement irdE, , anddEJ, respectively, to get

Mas(#2, .42) + Mas(#7, .47)
= Mas(x,ot, Ly,00) — Maslx,ot, Ly,0,1)

= 7,(ILx,0,1, Ly,0,0 Ly,0,1) — 7.(ILx,0,0, Lv,0,0, Lv,0,1)-

We haveESfU = dE,, ® d*E; ,, and we can compute

7,(ILx,0,1, Ly,00, Lv,01)
= 7u(Eg, ® Kig® LT, (W & IW) & dE;, & L 0,Ef, & Kip & L)
= ru(d"Eg, @ Ko & 2T, (Wy & IW) & L0, d"Ey, @ Ky & L)
= dim@W) + dim@Z0 N (Kfg & 2 T)).

Similarly

7,(ILx,0,0, Ly,00, Ly,0,1)
= 7 (W & Wy) @ "By, & L 0, Wy © IWg) @ dE;, & Zr o,
ES, ® Kig® 2T
= ru(d"Eg, @ IB0, Wy & IWY) & L0, d"Eg, & K & .27)
= dimIW) + (0% 0, L0, Kfio) ® £ 1)
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[ paths.#;(t) Endpoints of 7 and._4{ paths.{(t)
. Axo Avo .
1 Axo Avo
Ao AV -
2 PO,I/ @ Lx707t AY:,L(;t
- Z50) Avp
3 P : Ave
Za) Ava
4 constant AR
Za) A2
5 constant P, @ Lyt
— + ’
B Zaw Zaw N
6 Z 51 - N Z iy
Z50) Z50)
7 Po, © Lx0,1-t constant
’ = +
- Z0) Z o)
8 Ao constant
AX,O P 320)
9 Ax t ‘@&t)
Axa Py
10 Afff 1 PIV @© Lyt
A AV
Ry ’ ’ Ri_
11 ALY AV
Axa Ava

)

Table 1: The paths homotopic oy ; and Ay broken up into pieces
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Thus, together with]2, Proposition 6.11], this shows

Mas( 2, A2) + Mas( 7, 47) = dimQZ0 N (Kjg) & £1))
— 7(3% 0, L 0, KE,F(O) o2
= T(‘]gx,()a Kg(o) S5 j-i_a gY,O)'

Similarly we get

Mas( s, As) + Mas( 1o, No) = —T(0Lx 1, Ky © L, A1),
This completes the proof. ad

The ideal situation for applyindheorem 2.6s when the manifoldV splits into a
solid torusD? x S and its complemenY, and the path consists of connections that
are flat onY. When this is not the cas@heorem 2.6can still provide some useful
information. We start with a simple observation.

Lemma 2.7 Let A; and A be loops of SU(n) connections on 3—manifolds X and
X', both with boundary the surface 3 , and let &, a continuous family of boundary
conditions that make Dp, and Dy self-adjoint. Then

SFAx, Z) = SFE|x/, P%).

Proof Let A be a Lagrangian subspace, such that4,) is a Fredholm pair for all
t. Then, by the contractibility of the space of connections we have

SF@Ax, 21) = Mas(Ax a, Z4) = Mas(\, ) = Mas(Ax n, P1) = SFRx:, ).

O

Therefore, the spectral flow of the odd signature operator coupled to a Id8p(nojf
connections on a manifold with boundary only depends on its restriction to the bound-
ary. Orient the solid toru$ such that the orientations &and X agree in a collar of
0S = oX.

Definition 2.8 Given a loope~in A2 with projection p in A2, let A; be a path of
SU(n) connections on the solid tor&restricting toa,t) on the boundary. We define
SF() := SF;s; P5y)-
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Since the spectral flow is a homotopy invariant and additive under concatenation
of paths in A2 the computation for an arbitrary loop in2 can be reduced to a
loop ¢ = (o, 3,0), where ((t), 5(t)) is constant and lies in exactly ong;, and

0(t) = (Bu(t)) for Oi(t) = 1 unlessk = i and| = j, in which casef;(t) = et

t € [0,1]. After gauge transformation we may further assume thgj & (1, 2).
Then, we can assume after homotopy that

(avﬂ) = ((041,042, ). O) (ﬁlaﬁZa SER) O)) € Z12.

Consequentlyys, az, 81, 82 € %Z. Let us identifySU(2) with SU(2) x {Id} < SU(n)
andsy(2) with su2) x {0} C sun). Let o be the projection op In A?, and letA; be
a path ofSU(2) connections on the solid tor&restricting toa,t on the boundary.
Then we compute

SF(@) = SFAs; Z54)
= SFs; P3G @ (Undme Undma df) & KZE).

SinceU,dma U,dmA df is transverse tdJ, & U, d¢, we can apply 11, Theorem
5.3.3] to compute that SBY = 4.

We define the winding number for loopsin A2 as foIIows First homotope fo
a producte® * - - - « g™ of loops such that eachk = 7K « (X, 5K, 0%) « (7K)~1 with
(oX(t), B(t)) constant. Then we define

m
wind(@:=>_ > wind (6(t)).
k=1 (i)
(ok,8 ez

Let us summarize.

Proposition 2.9 Let g(t) be a loop in A2, Then
SF(@©) = 4 wind(9).

Now we can state the main splitting formula.

Theorem 2.10 Consider two flat connections By and By on M = XUt Y. Let A
and A{ be paths of SU(n) connections on X and Y, respectively, with B.|x = A
and B.|y = AL, e = 0,1, satisfying the properties in Theorem 2.6 with § and ¢’ the
corresponding paths in A2. Then

SF@o, B1) = SF@; Z4y) + SFOG P5y) + SFEL — 1) + 3'(1))
+ (0% 0, Ky @ L, Ly 0) — Tu(0%k 1, Ky © L, A1),
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Proof ExtendA{ arbitrarily to a pathB; from By to B;. Then
SFB:) = SFB|x; 955(0) + SF@Bily; Py) + SFA ,@g(t)) — SFA; @5{0),
+ 7. (3% 0, Ky @ P, Loo) — (0L, K3 © Pt Ria)
=SFAG P5y) + SFOG P50) + SFALt+ Belxs 281 .m0
+ 7,0 %0, Koy @ L1, Lr0) — 7u(0-Lk1, Ky & LT, L ).

With Lemma 2.7the desired formula follows. O

SF(9) can be defined for paths other than loops. Some examples have been computed
in the casen = 2 by Himpel [L1, Theorem 5.3.3].

3 The SU(3)representation variety of a spliced sum

Suppos&; andK; are knots irS® with complement; = S*\vK; andX; = S\ vKy,
and letM = X1 Ut X, be the spliced sum. In this section, we establish some basic
results about the representation variBv, SU(3)).

Given a representation: m1(M) — SU(3), we setay = oz, (x,), 2 = ¢fry(x,), and
ag = &l (1), and we will sometimes writer = ag Uq, 2.

Lemma3.1 If a: wm1(M) — SU(3) is a representation with a1 or a2 abelian, then o
is trivial.

Remark This lemma is true in general for representatians m (M) — SU(n),
whereM is the spliced sum along knots 8, but not for spliced sums along knots in
homology spheres.

Proof Supposey; is abelian. Becausk, lies in the commutator subgroup, it follows
thata(A;) = |. Splicing identifiesu, with A1, and it follows thata (i) = |. Because
2 normally generates;(Xz2), we conclude thatv; is trivial. In particulara()2) =1,
and splicing again shows(;:1) = | and the same argument showsis also trivial. O

Lemma 3.2 If a: wm1(M) — SWU(3) is a representation with a(u1) or a(uy) central,
then « is trivial.

Proof Supposex(u1) is central. Sincei; normally generates(Xy), it follows that
a1 is abelian, and we applyemma 3.1to make the conclusion. ad
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Becausery(T) = Z? is abelian, we can conjugateso that bothyg is diagonal. Thus,
the stablizer subgroup Staky) must contain the maximal toriSsyaz) = T2. The next
two results show that, for the purposes of computing$h#3) Casson invariant, we
can restrict our attention to representations with Stah€ Tsya).

Proposition 3.3 If «: w1(M) — SU(3) is a nontrivial representation with Stab(vg) #
Tsuy@3), then oy and o are both irreducible.

Proof Sincer1(T) = Z? is abelian, we can conjugate so thata(u1) and (A1)

are both diagonal. Now if either of these elements has three distinct eigenvalues, then
Stab() = Tsyg). Thus our hypotheses imply that(x.1) and a(u2) both have a
double eigenvalue. If their 2—dimensional eigenspaces do not coincide, then we can
find integersk, | such that the diagonal matr'tx(u'{/\'l) has three distinct eigenvalues,

and it would then follow that Stabg) = Tsygs). Thus, we can assume that, up to

conjugation,
a0 o b 0 O
aw))=(0 a 0 and a(\)=|(0 b O
0 0 @& 0 0 b?

for somea, b € U(1) not equal to a third root of unity.

Now suppose to the contrary thag is reducible. Then, up to conjugationy has
image in S(U(2) x U(1)). Since\; lies in the commutator subgroup afi(X1),

its image under must lie in the commutator group &(U(2) x U(1)), which is
SU(2) x {1}. This shows that one of the eigenvaluescdf\1) must equal 1. If
b =1, thena(u2) = a(N1) = | andLemma 3.2implies « is trivial, a contradiction.

Otherwise,b> = 1 andb = —1 and we see then that(u1) lies in the center of
a1(m1(X1)). Becauseus normally generates this group, this shows thatis abelian
andLemma 3.1gives the desired contradiction. O

For further results, we need to make the additional assumptions that the representa-
tion varietiesR(X1, SU(3)) and R(X2, SU(3)) are in general position in theSU(3)
pillowcase”R(T, SU(3)). Specifically, we assume that the images@X;, SU(3)) and

R(Xz2, SU(3)) intersect transversely iR(T, SU(3)), and that the restriction maps

R(X1, SU@B)) — R(T,SUB3)) and R(Xz, SU®3)) — R(T, SU{3))

are both local immersions in a neighborhood of each intersection point. These assump-
tions will not hold in general for spliced sums along knotsSh but one can check
that they do hold for spliced sums along @ torus knots.
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In the following result, we used]] to denote the conjugacy class of a representation
a: (M) — SU(3).

Proposition 3.4 Suppose the above transversality assumption holds for all represen-
tations o: m1(M) — SWU(3) and suppose « is nontrivial with Stabg) # Tsuy@g)-
Set

C={[p] € RM,SU(3)) | G is conjugate to o fori =1,2}.

Then C C R*(M,SU3)) and is diffeomorphic to S(U(2) x U(1))/Zsygz), where
Zsy@) = Z3 is the center of SU(3). In particular, we have x(C) = 0.

Proof Proposition 3.3mplies thatC consists entirely of irreducible representations,

and under the transversality assumption, this component can be described as the double
cosetl'1\I'g/I'2, wherel'; = Stabg;). Proposition 3.3hows thaf’y = I'; = Zsyga),

and its proof shows thdty = SU(2) x U(1)). SinceSU(2) x U(1)) is diffeomorphic

to U(2), it has zero Euler characteristic. ad

If o: m (M) — SU3) is a nontrivial representation with Stalj = Tsys), then we
have exactly three possibilities:

(a) Both oy anday are irreducible,
(b) One ofay, az is irreducible, the other is reducible and nonabelian, or

(c) Both oy andas are reducible and nonabelian.

The next result shows that, for the purposes of computingth@) Casson invariant
of spliced sums, the only contributions come from case (c).

Proposition 3.5 Let the above assumption hold for all representations o: 7w1(M) —
SU(3), and suppose « is a nontrivial representation with Stab) = Tsyg) and one
of a1 or ap irreducible. (So we are in case (a) or case (b).) Set

C={[B] € RM,SU(3)) | G is conjugate to ;i fori =1,2}.
Then C C R*(M, SU(3)) with C = Tsyz)/Zsuya) in Case (a) and C = Tsyz)/U(1) in

case (b). In either case, we see that x(C) = 0.

Proof Using the double coset description of the component, we seeQhat
I''\I'o/I'> whereT'o = Tsyzg). In case (a), we get thdf; = I'> = Zsyg) and
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the first result follows. In case (b), assuming (wlog) thatis irreducible andx; is
reducible, we find thal'y = Zsys) and

0 0
Iy = 0 & 0 |[|oc[0,2n]y =U(®D),
0 0 e
and the second result follows. O

The only remaining case is Case (c), where bethand «, are reducible and non-
abelian. There are two possibilities here:

(c-1) Both a1 anday can be simultaneously conjugated to lieSfU(2) x U(1). In
this caseq = a1 Uy, a2 is reducible and lies on a componéhe: St consisting
entirely of reducible representations.

(c-2) After conjugating,x; liesin S(U(2) x U(1)) anday liesin SU(1) x U(2)). In
this casex = a1 Uy, 2 is irreducible and its conjugacy class][is an isolated
point in R*(M, SU(3)).

The next result summarizes our discussion and gives a classification of the possible
components oR(M, SU(3)) for spliced sums satisfying the transversality assumption.

Theorem 3.6 Suppose M is a spliced sum along knots in S and satisfies the transver-
sality assumption. Then the representation variety R(M, SU(3)) = Uje ; Gj is a disjoint
union of components Cj that are either entirely contained in R*(M, SU(3)) or disjoint
from R*(M, SU(3)). If C; € R*(M, SU(3)), then C;j is diffeomorphic to one of

SU(2) x U(1))/Zsuz), Tsue)/Zsua), Tsuwe)/U(L), {x},

depending on the level of reducibility of ag, a1, oz Otherwise, if C;NR*(M, SU(3)) =
@, then Cj is diffeomorphic to St or {*}, the latter occurring only when Cj = {[©]},
the trivial representation.

Remark Notice that the positive dimensional compone@isall satisfy x(Cj) = 0.

Using the homeomorphism between the moduli spaZeof flat SU(3) connections

on M and the representation varig®M, SU(3)) provided by the holonomy map, the
transversality assumption ensures that each of the corresponding compongrits in
is a nondegenerate critical submanifold for the Chern—Simons function. In particular,
by [2, Theorem 7], we see that these components do not contribute t8SU®
Casson invariant. In order to compute 86(3) Casson invariant, iBection Sve will
concentrate on the O—dimensional or isolated components.
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Notice further that for components of type (c-2), which are the isolated points of
R*(M, SU(3)), itis possible to have; conjugate tax; asSU(2) x U(1)) representa-
tions of 1(X1), anda, conjugate tar, asU(1) x U(2)) representations of;(Xy),

but a1 U, a2 NOt conjugate tay) Uay, oy, as SU(3) representations af1(M) for the
spliced sumM = X; Ut X2. This is a consequence of the existence of discrete gluing
parameters in this context, and we will return to this issu€hirorem 5.1where we
enumerate the isolated component®R0(M, SU(3)) for certain spliced sums.

4 SU(3)representation varieties of knot complements

Inthe previous section, we examined Big(3) representation varieties of spliced sums
and discovered that the only contributions to 8ig(3) Casson invariant come from
representations = a1 U, 2 With a1 anda reducible, nonabelian representations of
the knot complements. Inthis section, we study the representation vaR&XieSU(3))

for knot complements. In generd®(X, SU(3)) is a union of three different strata:

1. R*(X,SU(3)) the stratum of irreducible representations,
2. R®4(X, SU(3)) the stratum of reducible nonabelian representations, and

3. R¥(X, SU(3)) the stratum of abelian representations.

Because our computations d§y3)(M) for spliced sums involve only those representa-
tions that restrict to reducible, nonabelian representation§ @amdX,, we concentrate

on the stratunR®4(X, SU(3)). We shall use the results of Klasség][to give a useful
description in cas«& is the complement of a (2) torus knot. The curious reader is
referred to fi, Section 3] for descriptions of the other strata. The results presented here
are complementary to those [

Let K be the (2q) torus knot andX = S*\ vK its complement. The knot group (X)
has presentation

(4_1) 7T1(X) = <X7 y | X2 = yq>,
with meridianys = xy'2° and longitude) = x2~2.

Every reducible representation 71(X) — SU(3) can be conjugated to lie B(U(2) x
U(1)). Furthermore, evergU(2) x U(1)) representation ofr1(X) is obtained by
twisting anSU(2) representation. Irlf], Klassen proves thd* (X, SU(2)) is a union
of g — 1 open arcs, and using this, we shall show tR&f(X, SU(3)) is a union of
g — 1 open Mdbius bands.
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In the next result, we identifsU(2) with the unit quaternions by the map

<_aB g)Haerj fora,b € C with |a® + |b* = 1.

To eacht € [0, %] we associate the abelian representatipn m1(X) — SU(2) with
Be(p) = €™, In this way, we parameteriZ°(X, SU(2)) by the closed interval [G].

Figure 2: TheSU(2) representation variety of a (@ torus knot

Proposition 4.1 (Klassen) The representation variety R*(X, SU(2)) consists of (0 —
1)/2 open arcs given as follows. For k € {1,3,...,q— 2} and s € [0, 1], define (s
by setting

Bis(¥) =i cosfrs) +j sin(rs),
Brsy) = cosrk/q) + i sinrk/q) = /9,

Then the resulting paths of SU(2) representations (s are irreducible and have
H(X; su?2)g,.) = R and H(z; C?@k ) =0forse (0,1).

When s = 0, 1 the representations ko and (1, are abelian with
k=1 kmi [Se il
Bro(u) =(=1)zex and [ra(p) =(-1)z ex.

Using [0, %] to parameterize the abelian representations, we see that the arc [(is is

attached at the bifurcation points {%, ZC}TTK} (see Figure 2).

Observe that the image of the meridian is given by

Bis(1) = (i costrs) + j singrs))e™ (") 7

and a quick calculation shows that () is conjugate to the diagonal matrix

eZU7ri 0
< 0 e 2uri > ’

cos(2ru) = cosfrs) sin (M> .

whereu € [0, 3] satisfies

2q
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Sinces € [0, 1] and

sin (M) = sin k(5 -~ &)) = (1 Pcos(f5).
we see that
(4-2) ue (& %)

Since = x?u~2, then B s()\) is conjugate to

_e72q(2u7ri) 0
0 _e2q(2u7ri) :

We are interested in the restriction@{s to the boundary torus. Recall th&T, SU(2))

is modelled by the pillowcase, which is the quotient of the 2-tartidy the involution
sending %, y) to (1— x, 1 —y), where we think ofT? as [Q 1] x [0, 1] with opposite
sides identified. Under this identification, the point\) < [0, %] x [0,1] in the
pillowcase corresponds to the diagonal representatiom1(T) — SU(2) with

Bl) = (ezoﬂ e_‘;um) and(\) = <ez;ﬂ e_gm)_

Fors € [0, 1], the restriction ofjk s to the boundary torus gives a line of slop&q in

the pillowcase connectin %, 0) to (%‘, 0) and wrapping around vertically — k
times.

Using thetwistingoperation £, § 3.2], we give an explicit description &¢d4(X, SU(3))
as a union of @ — 1)/2 Mobius bands, which are 2—dimensional families obtained by
twisting the arcsiy s by characters, : m1(X) — U(1).

First, in terms of matrices, iA = (_at_) g) € SU(2) ande? € U(1), we define the

twist of A by €’ to be theS(U(2) x U(1)) matrix

€ 0 o a b o éa db 0
0 € 0o b ao]l=|-€% d%a 0 |.
0 0 e2¢ 0 01 0 0 e4f

Given an irreducible representatigh w1(X) — SU(2) and an abelian representation
x : m1(X) — U(1), we define the reduciblBU(3) representation obtained by twisting
8 by x, denotedy © g, to be theS(U(2) x U(1)) representation taking an element
~ € m1(X) to the twist of 5(v) by x(v).

Since abelian representations factor through the homology gkagl, Z), which
is generated by the meridigm, we see that a representatign 71(X) — U(1) is
determined byy (u).
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Definition 4.2 For € € U(1), let x4 be theU(1) representation withy,(u) = €.
Fork e {1,3,...,9—2} ands € (0, 1), let 5k s be theSU(2) representation described
in Proposition 4..and definey s g = x9 © fk s to be the reducibl&U(3) representation
obtained by twistingd s by xs.

Notice that ifd = «, the twist of anSU(2) representatio by y, takes values in the
SU(2) x {1} matrices, and a quick calculation shows that

(4-3) Xr © Bks is conjugate tgh 1.

Thus, fork € {1,3,...,9— 2}, the 2—dimensional familyy sy is parameterized by
(s,0) € (0,1)x [0, 7] with identification €, 0) ~ (1—s, 7). This gives an open bbius
band. The next result summarizes our discussion.

Proposition 4.3 If X is the complement of the (2, Q) torus knot, then R4(X, SU(3))
is a union of q%l open Modbius bands. The closure of each stratum intersects the
abelian stratum REP(X, SU(3)) in an immersed circle with isolated double points.

5 Isolated components oR*(M, SU(3))

In this section, we enumerate the isolated componen®&*{iM, SU(3)) for M the
spliced sum along torus knots of type @) and a (202). Let K1 andK> be (2 q1)
and (20) torus knots with complementX; and X, and write v = a1 Uy, a2
according to the decompositiod = X; Ut Xp. Assume that 4] is isolated. By
Section 3 we can assume that is irreducible and bothlw; and a, are reducible.
These are the type (c-2) components fidaction 3and they are the only components
that contribute nontrivially to th&sU(3) Casson invariant. Note further that such a
representation can be conjugated so thateduces t&S(U(2) x U(1)), a» reduces to
SU(1) x U(2)), andag is diagonal.

We can describer; as the twist of arBU(2) representatio;, by a charactegy,, and
we get a similar statement fer, using the following refinement of twisting. For this
purpose, we seb; = ® and define®, to be the twisting induced by the map which,

for €Y € U(1) andA = (_ag 2) € SU(2), gives theS(U(1) x U(2)) matrix

e’ 0 0 1 0 O et 0 0
0 e 0 0 a b|=(o0 e—iea_ eifp | .
0 0 e/ \0 -b a 0 -elp gllg
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On the level of representations, fb: m1(X2) — SU2) and xg,: m1(X2) — U(1),
then sety, ©2 3y, to be theS(U(1) x U(2)) representation obtained by twistirt
by xs, in this way. Assume nowv; = xg, ©1 /1 and az = xg, ©2 B2 for SU(2)
representationgs, S and charactergy, , X,

Remark Note that, by.emma 3.1 we can assume thgf and S, are both irreducible
sincea = a1 Uy, az is irreducible.

The pairas: m1(X1) — SU(2) x U(1)) az: m1(X2) — SU(1) x U(2)) will extend
to a representation: 71(M) — SU(3) if and only if their restrictions tor1(T) agree,
namely if and only ifa1(u1) = az(X2) and az(u2) = ar(A1).

Theorem 5.1 Suppose M is the spliced sum along torus knots K1 and Ky of type
(2,0q1) and (2, 02). Then the number of isolated conjugacy classes in R*(M, SU(3)) is
given by

(0f — 1)(@5 - 1)
16XAsy2) (K1) Asyp)(K2) = —+ 2 2,

where Agiyp)(K) = Ak (1) is the SU(2) Casson knot invariant.

Proof Using equation4—1) and the splice relations, we find thaf(M) has presen-
tation
(M) = (X1, Y1, %, Y2 | X6 = VI, %8 = Y2, 111 = Ao, M1 = pu2),

Q-1 _ G2—1 _
wherey = xay; 2 A1 = X2u; ™™ and iz = Xy, 2 , Ay = X2, *®. Assumea =

a1 Ug, a2 1S an irreducible representation of(M) with «q and oz both reducible,
and conjugate so that; isin U(2) x U(1)) anday is in SU(1) x U(2)).

Because the longitud&; lies in the commutator subgroup af(X1), reducibility of

a1 implies thata; (A1) must have a 1 in the lower right-hand corner. Similarly, because
A2 lies in the commutator subgroup af(X2), reducibility of ax implies thataa(A2)

must have a 1 in the upper left-hand corner. Notice that twisting does not alter the
image of the longitude sincgg,(Ai) = 1 for any6; € [0, w]. Thus, if a1 = x4, ©1 f1
andaz = xg, @2 32, then the only way to have a 1 in the upper right-hand corner of
a1(n1) and also in the lower right-hand corner @j(u2) is if

—01i — 05
Papa) = <eo e%) and  B(u2) = <eo e&) .
In that case,

— 20101 0 _ g2%0bai 0
510\1):( 0 _ezq191i> and 520‘2):( 0 _eZq202i>
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If a1 = xp, ©1 f1 @andaz = xg, ©2 B2, an easy compuation shows

1 0 0 — 2ol 0 0
(5_1) al(ﬂl) =10 e201i 0 R 041()\1) = 0 _e—ZQ191i 0
0 0 e 0 0 1

2% o 0 1 0 0

(5-2) ()= 0 e 0], a(X)=|0 —e% 0
0 0 1 0 0 — @ 2020

The results of the previous section imply thét and 3, are conjugate to repre-
sentationsfy, s, and By, s, of Proposition 4.1for somek; = 1,3,...,01 — 2 and
kn =1,3,...,00 — 2 ands;, S, € (0,1). As noted inSection 4 fy, s (11) and
Bks,s,(112) are conjugate to

872u17ri 0 e72u27ri 0
O e2U17ri and O e2U27ri ?

respectively, wherei;, u, satisfy

€0s(2rup) = cosfrsy) sin (%) and cosl(y) = cosfrsy) sin (%)
anduy € (%, ijq_lkl) andu, € <4"—§2, quq_zk2>.
Fix k; andk, as above and séy = 27wu; and#, = 2ru,. Consider the two paths
a1s, = Xo, O1 O, @and azs, = xp, ©2 Pk, Of reducible SU3) representations
defined fors;, s, € (0,1). (We conjugatefy, s, and Gk, s, SO that f, s (11) and

Br,s,(112) are both diagonal iSU(2).) Notice that the upper left-hand entry@f s, (111)
is always equal to 1, as is the lower right-hand entryg§, (1:2).

Consider the two arcs ifi? defined in terms ofv; s, andays, as follows. The first arc
has its first coordinate given by the, @ entry of g 5 (111) and its second coordinate
given by the (11) entry of ey 5 (A1). The second arc has its first coordinate given
by the (22) entry of az5,(A\2) and its second coordinate given by the )Lentry of
azs,(12). By (5-1) and 6-2), we see that the first arc is given bg?{, —e?%o)

k 201 —k: : : 0,i 0,
for 01 € (21—(;;, %) whereas the second arc is given byef®%' ?2) for

ko (202—kp)m
02 € (ZQ2’ 20, )

Using v1 and~, to denote the resulting curves iit, notice thaty; has slopey; and
wraps around the 2-torus vertically — k; times, whereas, has slopeql2 and wraps
around the 2-torus horizontallg, — ky times. From this, one sees thgt and ~»
intersect in §; — k1)(02 — k) points. (One can perform the computation in homology
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by adding a horizontal segment4g that missesy, and a vertical segment tg that
missesy, creating 1—cycles in the pillowcase minus the corners.)

Of course, the intersection points ¢f and~, exactly coincide with choices af; g,
and ay s, that extend to an irreducibl8U(3) representation ofr1(M), and each of
these is an isolated point iR* (M, SU(3)).

Summing overk; € {1,3,...,aq1 — 2} andk; € {1,3,...,02 — 2} and setting

j1=%>1 andj, = %51, we compute that

g1—1 g1 g—1 a1
2 2

2 2
YD w221+ D@ -2+ D)= Y w-2Z1+1]| D @-22+1

j1=1j>=1 j1=1 jo=1

_ (@ -D@ -1
N 16 ’

We now take into account the fact that the conjugacy clasg 0f,,a, oNM = X{Ut X2

is not determined by the conjugacy classeapbn X; anda, on X; (see the Remark
following Theorem 3.5 Suppose as abovey: 71(T) — SU(3) is abelian with
Stab) = Tsyg), the maximal torus, and consider the effect of conjugating by an
element inSY(3) that normalizeSsys). (RecallNry,; /Z1g,, = Ss, the symmetric
group on three letters.) OXy, we further require that the conjugating element preserve
SU(2) x U(1)), and onX; that it preserveS(U(1) x U(2)). Specific elements are
given by the matrices

0 10 1 0 O
Al=1-1 00 and Ao=|0 0 1
0 01 0 -1 0

Conjugatinga; by A gives rise to an action ¢f, which switches the order of the two
eigenvalues ofyi (1;) notequalto 1. Thé&, actions gives us discrete gluing parameters,
and their overall effect on our count is to multiply by a factor of four. Thus, we see
that the total number of isolated componentsRif(M, SU(3)) is 3(aZ — 1)(3 — 1),

and because the Casson invariant of theg2orus knot equal%(q2 — 1), we obtain

the desired formula. m|

6 Cohomology calculations for(p, g)torus knots

In this section, we present various cohomology results that are needed as input for
the spectral flow computations in the next section, where we shall prove that the
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spectral flow to each of theselU(3) representations is even. We choose a nice path
of representations connecting the trivial representation to t8&§8) representations

and compute at which points the dimension of kernel of the odd signature operator with
the boundary conditions frofefinition 2.4jumps.

Let K be the p, q)-torus knot inS® and X = S*\ vK its complement. We identify
T (as inSection 3 with 9X, such that the inclusiop: T = 90X — X carries\ to
a null-homologous loop iX. We orientX so that—9X = T, and we put a metric
on X such that a collar oK is isometric to [01] x T. The formdmon T extends
to a closed 1-form orX generating the first conomologyt'(X; R), which we will
continue to denote@m. In this section we will compute Kgi{) and Im{*), where
i*: HOGUB)a) — HI(OX; u@)+a), a: m(X) — U(2) x U(1)) is a representation,
andSU(2) x U(1)) acts onsu(3) via the adjoint representation.

If we identify S(U(2) x U(1)) with U(2) via
(6-1) (‘Q t°2> A

where|t| = 1 andA € SU(2), thensu3) decomposes invariantly with respect to the
adjoint action ofS(U(2) x U(1)) as

su3) = u(2) ® C?,

wheretA € U(2) acts onu(2) via the adjoint representation and @A via multiplica-
tion by t3A. If F is the covering from thé&J(2) representation space of(X) to itself
given by F(a)(w) := t3A wherea(w) = tA with |t| = 1 andA € SU(2), the twisted
cohomology splits as

H'(X; su3)a) = H'(X; u(2)a) ® H'(X; CE (),

where o« acts by the adjoint representation a(2) and F(«) acts by the defining
representation oft2. In this section, we concentrate on the case(@) coefficients.
There are analogous computations for the cohomology groups@¥itboefficients,
see b, Section 6.1] and4, Section 3.1] for instance, but these computations are not
needed here.

Proposition 6.1 Let o be an U(2) representation of 71(X), where U(2) acts on u(2)
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via the adjoint representation. Then
4 if « is central,

(6-2) dimHO(X; u(2),) = { 2 ifa is abelian, but not central,
1 otherwise.

if v is abelian and o(XP) is central,

otherwise.

(6-3) dimHY(X; u(2),) = {z

Proof The knot groupri(X) of the (o, g) torus knotk ¢ S* admits the presentation

m1(X) = (x,y | X* = yA).
Since evenyU(2) matrix is diagonalizable, any representation 71(X) — U(2) can

O a ’

We will use the bar resolution to compute the cohomology. (éltlz_ \3|> € u(2).
Then

G DY) -G D6 (%

yields

u z a? 0 0 z
oo Yoo )G

If o is central, then Ket®) = u(2). If « is abelian and non-central, thery) is also
diagonal, and

Ker(5%) = Ker(5°(-)() = Ker(3°(-)(y))
is the 2—dimensional space of diagoné2) matrices. Ifa is not abelian, thewr(y) is
not diagonal, and Kef(-)(x)) and Ker¢°(-)(y)) are not equal. Then

Ker(5%) = Ker(5°(-)(x)) N Ker(6°(-)(y))

is 1-dimensional, becaus(elé)I

Let ¢ be a 1-cocycle. Theg(x) = X and((y) = Y for X,Y € u(2) satisfying the
equation

Sl) commutes with conjugation. This show&—).
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If « is central, the above equation simplifiespg®d = qY and the space of 1-cocycles
is 4—dimensional. It is non-central, we compute

S8 Dl 925 2)(5 2

(6—5) i=0 i=0 .
- ui 0\ o= 0 0 z
0 vi o &2)\-z 0/’

If «is abelian and non-central, note thdk)? = «(y)9 need not be central. A statement
for y analogous to@-5 then shows that the space of 1-cocycles is 4—dimensional if
a(X)P is non-central, and is 6-dimensionahifx)P is central. If« is irreducible, then
a(X)® = a(y)® = 1. Then, just like for the 0-cocycles, Ké#) does not contain

all diagonal matrices ofi(2), but only those with equal entries. Therefore, in view of
(6-9H), the space of 1-cocycles is 5—dimensional doirreducible. Since byg—4) the
space of 1-coboundaries is O—dimensionaldacentral, 2—dimensional far abelian

and non-central, and 3—dimensional otherwie3[ follows. O

Proposition 6.2 Let « be an U(2) representation of m1(T), where U(2) acts on u(2)
via the adjoint representation. Then

4 ifais central
(6-6) dimHO(T: u(2),) = oS centrdh

2 otherwise,

8 ifa is central
(6-7) dimHY(T;u(@)y) = ¢ 1 &1 o

4  otherwise.

Proof The computation of@—6) works just like the computation fo6{2), keeping

in mind that all representations are abelian and we may assume that they are diagonal.
For (6—7) note that a 1-cocyclé satisfies((A) — - C(A) = C(u) — X - (). For «
non-centrak is therefore uniquely determined up to coboundary (compare @t

by its values in the diagonal matrices. |

Together with the computations froRroposition 6. andProposition 6.2ve can prove
the following result. In the following, we decomposg) = U & W into diagonal and
off-diagonal matrices, and further decompase- U’ ¢ U”, where

o-{(5 2)}v={( @) == {(E %)}

Define Q.5 = Q%5 C Q°(T; W) to be theu(2)-analogue of the subspace described
for sun) in (2-2 and @—4), and recall the representatian, 3 of 71(T) given just
after Definition 2.1
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Theorem 6.3 Suppose A is a U(2) connection on X with hol(A) = p and p|t = ¢a 3.
Then

U® Qup®Udmo Q, zdm if p is central,
(6-8) LA=<U®Udm if p is abelian, but not central,
U' @ U(@dm-pgd)®U”"dmAdl  otherwise,

and for Wp := Ker(H(X; u(2),) — HY(0X; u(2),))

(6-9) dima) {2 if p is non-central and p(XP) is central,

0 otherwise.
Note that the non-central abelian representations with p(XP) central are twisted bifur-
cation points of the SU(2) representation variety of the knot complement, that is, the
‘T’-type intersections in the SU(2) representation variety of the knot complement (see
Figure 2), twisted in the sense of Definition 4.2.

Proof First observe thap is central if and only if its pull-back te1(T) is central, be-
cause the meridian normally generates the fundamental group of the knot complement.
Let us compute the limiting values of extendettsolutions. Notice that

Im(HY(X; u(2),) — HYOX; u(2),))

is the differential of the restriction maR(X, U(2)) — R(T, U(2)) for p non-central.
For p central orp abelian with p(x?) non-central the computations are simple, and
the result is obvious. Iy is non-central and abelian with(x?) central, we make
use of the fact that InW(*(X; u(2),) — H(0X;u(2),)) is 2-dimensional and that it
containsU dm. Let p be irreducible. We know thad(;) = ¢, (1) is diagonal. Then
¢(n) = M is diagonal andp(xP) is central. Therefore{(\) = —pqM. Again, we
make use of the fact that ItE(X; u(2),) — H(0X; u(2),)) is 2—dimensional. Then
we employ the de Rham theorem to progeg).

Equation 6-9) follows directly fromProposition 6.JandProposition 6.2 |

7 The SU(3)Casson invariant of spliced sums

SupposeK; andK; are (2q;) and (2 qz) torus knots with complements; and X,

in S, respectively, and leM = X; Ut X, denote their spliced sum. We shall relate
the SU(3) Casson invariant o to the SU(2) Casson invariants of 1 surgeries on
K1 andK;, which are equal to the Casson knot invaria)k(g@(z)(Kl) and )\’SU(Z)(KZ),
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using the approach of Taubekg] to make the connection. This involves comparing
various spectral flows, and in applying the results from the previous sectiofs ve
have to be careful with our parametrizations of the boundary: The paranigetansl
m of 90X, are identified withm, and/,. Let X, be with a metric and orientation as
in Section 6 We orientX; such thatdX; = —T and place a metric oy, such that

a collar of Xy is isometric to F1,0] x T. It will be convenient to use the notation
Pt =Pt and P? = 2.

Let B(t) be a path o5U(3) connections oM with B(0) = © andB(1) irreducible, such

that B(1) is reducible on either knot complement. Bymma 3.1andTheorem 2.10it
suffices to consider the spectral flow along a pat§@f(2) x U(1)) andSU(1) x U(2))
connections onX; and X,. Whenever convenient, identifgU(2) x U(1)) (and
similarly S(U(1) x U(2))) with U(2) as in 6—1) with the induced action osu3) =

u(2) @ C? as before. We can assume that each path is the composition of a path of
SU(2) connections with a path of twists of a fix&J2) connection. The following
definition makes this more precise.

Definition 7.1 Arrange pathsAy(t) and A(t) of SU(2) connectionst € [0, 3], as
well as path#\; (t) andAx(t) of SU(3) connectionst € [0, 1], on the knot complement
X1 and X, respectively, satisfying

(1) A1(0) =©, A(0) = ©, Ag(1) = B(1)[x,, Ax(1) = B(1)[x,

(2) Aq(t) andAy(t) are paths of flaBU(2) connections, and we denote By(t) and
Ay(t) the corresponding paths &U(2) x {1} and {1} x SU(2) connections,
and

(3) pa(t) := hol(Au(t)) is a @1-twist of hol(Bq(2)) for t € [1,1], and pa(t) =
hol(Ax(t)) is a a-twist of hol@(3)) for t € [1,1].

(4) 01 andg; are paths im2 with A(t)|T = ay(y asinDefinition 2.1, 51(0) = 02(0)
and gi(1) = 62(1), wherer o 5, = o; and7: A2 — A? = R* the projection.

Figure 3describes the situation in the case of a spliced sum of two trefoil complements.
It shows theirSU(2) representation varieties immersed in ®ig(2) pillow case and

the holonomy ofA(t), which is the untwisted part of the patAgt). The grey line is

on the back of the pillowcase and the black line is on the front of the pillowcase. Let
Bij: m1(X1) — SU2) andBzj: m1(X2) — SU(2) be representations fpr=1,...,4

such that

(Xor; ©1 B1j) U (X0; @2 B2)
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are SU(3) representations of1(M). As in the proof ofTheorem 5.1we find four
of the isolatedSU(3) representations af;(M), and the others (there are 16 total) are
obtained by applying the discrete gluing parameters.

01

Figure 3: TheSU(2) representation varieties of two trefoils

By Theorem 2.1@ve have

SFB(1) = SF@u(); 27 ) + SF@a(t); Z5,) + SFELL — 1) * Ga(t)
+ 700 B0, KL 0) LT, Lro0) = Tu(0Bxy. 1. KL o) D LT, L)

In order to compute the above summands, we can break upuBg spectral flow

into u(2) and C? spectral flow. Note that the boundary conditions also respect the
decomposition o6u3). In particular, we will see in this section that th# spectral
flow is even, and that the(2) spectral flow vanishes fare [%, 1] and equals theu2)
spectral flow alongi;(t) or A(t) for t € [0, %]. Let us start with the easier case.

Proposition 7.2 Let A(t) be a path of U(2) connections on X; with A(t)|T = a,(),
o = mo ¢ and hol(A(t)) acting on C? via multiplication. Then SF2(A(t); e@ié(t)) is
even.
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Proof Since Dag and S, are C-linear, &%, N LA(QCHH2(T; C?)) is a vec-
tor space ovelC and the eigenspaces &fa with boundary conditions%, N
L2(Q0+1+2(T; C?)) are complex subspaces. Therefore, the eigenvectors come in pairs
and the (real) spectral flow is even as claimed. |

We will need the following lemma for various computations.

Lemma 7.3 Let A(t) be any path of irreducible U(2) connections on X; with A(t)|t =
Ayt and o = mo 0. Then _
SR)(A); Ph) =0

Proof Consider the case= 1. The computation of the limiting values of extended
L2-solutions inTheorem 6.3and the definition ofZ in Definition 2.4show that for
hol(A) = a, 3, ¢ arbitrary, andu(2) coefficients,
AR N PL g =aN 2T =U"dmAdL,
and hence byl2, Lemma 8.10]
dimKer@a; 27 5 5) = dim(AX N 2} ;) = 1.

Therefore, there is nw(2) spectral flow along a path of irreducibles. A similar
computation fori = 2 completes the proof. m|

The SU(3) Casson invariant d¥l is a signed count of irreducib®U(3) representations

of m1(M). By Theorem 2.10this sign is determined by the(3) spectral flow orX;,

i = 1,2, tothese representations. The following proposition motivates the appearance
of the SU(2) Casson invariant: thisu(3) spectral flow is equal to theu2) spectral

flow to certain irreducibleéSU(2) connections orX;. It turns out that there is a fixed
number of such irreducibl&U(2) connections associated to each irreduciblé?)
representation, the signed count of which is 8i2) Casson invariant.

Proposition 7.4 For the path Ai(t) given in Definition 7.1, we have
(7-1) SRi(AIY); ) = SFua) (A®); Z5),  telo, 3],
(7-2) SR (At); P5) =0, tel[3,1]

Proof By Theorem 6.3ve get for holf) = a, g3 andd arbitrary
Kerye)(Da; ‘@otﬁ,e) = U’ & Kersyz)(Da; ‘@;ﬁﬁ)
and Kerue)(Da; 2, 5.4) = Ketsyz)(Da; 2, 54) © U” dma de.
Sincesu2) eigenfunctions are alag2) eigenfunctions, we get{1). Lemma 7.3and
the Remark irSection Syield (7-2). m|
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Let Xf and er be +1 surgery on the corresponding knots. 1Set= X"\ X;, which

is a solid torus, whos&U(2) representation variety maps into the pillow case as
the diagonal. A simple computation analogousTtteorem 6.3gives the limiting
values of extendetl?-solutions.%g with sun) coefficients forS keeping in mind the
parametrization induced by surgery.

Lemma 7.5 Let A be an SU(n) connection on § with hol(A) = p and p|t = ..
Decompose sun) = U, & W, into diagonal and off-diagonal matrices as before and
let Q.3 be as defined in equation (2—4). Then

~ JUn® Qu 5 ® Un(dm+ df) & Qq g(dm+ df) if p is central,
Sh0of Un @ Up (dm+ df) otherwise.

By Lemma 7.3we can elongaté(t), t € [O, %], by a path of irreducibleSU(2)
connections to a path(t) of flat connections on; such thatA;(1) can be extended
flatly to A/(t) on X;*. We assume thad,; ) ;= Ai(t)|t, 7o Gi(t) = oi(t) for some path
oi which agrees withp;"for t € [0, %]. Working modulo 2, we applyfheorem 2.10
Lemma 7.3Proposition 7.2Proposition 7.4andProposition 2.90 see that

SFua)(B() = SRuz)(Au(); 222 ) + SFsua)(Aa(t); Z5,)
+ 700 %84,0:00 K3y 0) © L, Bosr(0) — Tu0-Bs001): K1) © LT Lo, 00(0)
— (- B,010), Ky 0) @ LT L.010) + 0By, 000, K3, 0) € LT L0 0)

1 1

— 70(0L5,000) Koy & L Bro,a(@) + Tu(0-Ls,0001) Kty & L Lto.rn()-

Note that the Maslov triple indices in the last two lines are with respest(®) coef-
ficients, while the first two Maslov triple indices are with respectt€8) coefficients.
It remains to show that these Maslov triple indices add up to an even number.

Recall that in generah, and Da preserve the decompositicun) = U, & W, into
diagonal and off-diagonal parts and are complex linear on the forms with values in the
off-diagonal matrices. Therefore, we only need to consider the triple Maslov indices on
the forms with values in the diagonsil(n) matrices, because the contribution from the
off-diagonalsun) matrices is always even. Furthermore, the remaining Lagrangians
are direct sums of Lagrangian subspace&%f2%+2(T; Uy,)) and L2(Q(T; Uy)). As
before, we identifysu3) with u(2) @ C? and alsoUs with U in order to apply
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Theorem 6.30 see that, modulo 2, we have

70 B,010 Kf0) @ L, Broa(0) = 7u(U dmA de, U dma de, U)

(7-3)
+ 7,(UdmUdmUdm),

0B, KLy @ L1, Bepoy) = 7u(U' dmA dE, U dmA df, U')
(7-4) + 7,(U",U" dmA d¢, U” dmA de)
+ 7, (U (dm+ pg df), U dm U (dm— pq d?)).

Clearly the Maslov triple indices on the right side @@ and the first two on the right
side of (7—4) vanish byLemma 2.5 For the third Maslov triple index on the right side
of (7—4), note thatU is 2—dimensional. Therefore/€3 and (/—4) are congruent to O
mod 2.

ude ud¢
U(dm+ pq d’)

J(U(dm— pgd))

Udm \ Udm f

k* J(U(dm+ de)) /

u(de — dm

Figure 4: Path for{-7) Figure 5: Path for{-8

For the Maslov triple indices concerning thg2) coefficients, we leU = U, and see
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that, modulo two, we have
Tu0B.010) K 0) & LT Lgy.on() = 7,(U dmA dZ, U dmA dt, U)

(7-5)
+ 7,(Udm U dm U (dm+ d?)),

(7_6) T.U‘(Jgslya?(o)’ K;—z(o) @ j—i_’ jXQ,O'z(O)) = T:U'(U dm/\ dﬁ, U dm/\ df, U)
+ 7,(U (d¢ — dm),U dm U dm),

(7_7) Tu(JozﬂXl,al(l), Ka—;(l) @ 922—’_7 gSZ,G'l(l)) = Tu(u, U dm/\ dﬁ, U dm/\ dg)

+ 7,(U (dm+ pg df), U dm U (dm+ de)),

(L5001, Ky © L7, Bryorn) =
(7-8) 7,(UdmAa d¢, UdmA de, U dmA d)
+ 7, (U (d¢ — dm), U dm U (dm— pq d¥)).

Again, the Maslov triple indices on the right side of—§ and (7—6) vanish by
Lemma 2.5 One can see that the Maslov triple indices on the right side of equa-
tions (/—7) and (/-8 vanish as follows. Choose the shortest path frondm to

U (dm+ pq /) by a rotation as indicated irigure 4and notice that this path intersects
neitherU d/ = J(U dm) nor J(U (dm+-d¥¢)). Similarly Figure 5describes the situation

for a path fromU dmto U (d¢ — dm) by a rotation, which intersects neith&fU dm)

nor J(U (dm— pg d?)). In summary, all Maslov triple indices in our formula are even
as claimed.

Recall that every contribution to thHeU(2) Casson invariant is positive. Then we get
the following result directly fronTheorem 5.1

Theorem 7.6 Suppose K1 and K> are torus knots of type (2, 1) and (2, ), respec-
tively, and M is their spliced sum. Then

Asua)(M) = 16 Ay (K1) Asuz)(K2),

where )\’SU(Z)(K) is the SU(2) Casson knot invariant normalized to be 1 for the trefoil.
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