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We show that theSU(3) Casson invariant for spliced sums along certain torus
knots equals 16 times the product of theirSU(2) Casson knot invariants. The key
step is a splitting formula forsu(n) spectral flow for closed 3–manifolds split along
a torus.
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1 Introduction

Given knotsK1 andK2 in homology 3-spheresM1 andM2, respectively, the spliced
sum of M1 and M2 along K1 and K2 is the homology 3-sphere obtained by gluing
the two knot complements along their boundaries matching the meridian of one knot
to the longitude of the other. This operation is a generalization of connected sum;
indeed whenK1 andK2 are trivial knots, the spliced sum ofM1 andM2 alongK1 and
K2 is none other than the connected sumM1#M2. Casson’s invariantλSU(2), which
is additive under connected sum, is also additive under the more general operation of
spliced sum by Boyer and Nicas [6] and independently Fukuhara and Maruyama [10].
What is remarkable about this is that the Casson invariant of a spliced sum does not
depend on the knotsK1 andK2 along which the splicing is performed.

While the integer-valuedSU(3) Casson invariantτSU(3) of [3] is not additive under
connected sum, by [3, Theorem 4], the differenceτSU(3) − 2λ2

SU(2) is, and a natural
question to ask is whether it is also additive under spliced sum. In general, the answer
is no and we briefly explain why not. Recall from Saveliev [15] that a Seifert-fibered
homology sphereΣ(p,q, r, s) can be described as a spliced sum of Brieskorn spheres
along the cores of their singular fibers in three different ways: (i) the spliced sum of
Σ(p,q, rs) andΣ(r, s,pq); (ii) the spliced sum ofΣ(p, s,qr) andΣ(q, r,ps); and (iii)
the spliced sum ofΣ(p, r,qs) andΣ(q, s,pr). Additivity under splicing would imply
that the evaluation ofτSU(3) − 2λ2

SU(2) on all three of these pairs of Brieskorn spheres
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agree, but the results in [4] provide examples where they do not. This shows that
τSU(3) − 2λ2

SU(2) is not additive under spliced sum.

Thus, it is an interesting problem to understand the behaviour of theSU(3) Casson
invariant under spliced sum, and in this paper we focus on the simplest possible case,
namely whenK1 andK2 are torus knots. We verify a conjecture in [2] by identifying
the SU(3) Casson invariant of the spliced sum with a multiple of the product of the
CassonSU(2) knot invariants in the caseK1 andK2 are (2,q1) and (2,q2) torus knots.
Our results combine a detailed analysis of theSU(3) representation varieties of the
knot complements with computations of thesu(3) spectral flow of the odd signature
operator coupled to a path ofSU(3) connections. An essential tool developed here is
the general splitting formula ofTheorem 2.10, which is applied to compute the spectral
flow for closed 3–manifolds split along a torus.

We now outline the argument and highlight the special role played by the splitting
formula. We assumeK1 and K2 are knots inS3 and we denote byX1 and X2 their
complements and byM = X1 ∪T X2 their spliced sum. InSection 3, we give a
description of the components of the varietyR(M,SU(3)) of SU(3) representations
of π1M under certain transversality assumptions on the images ofR(Xi ,SU(3)) in the
SU(3) pillowcaseR(T,SU(3)). In particular, it follows from our description that every
componentC of R(M,SU(3)) with dimC > 0 hasχ(C) = 0, and thus by [2, Theorem
7], it follows that only 0–dimensional components contribute to theSU(3) Casson
invariant. For instance, this generalizes [2, Theorem 14] and shows that the correction
term λ′′SU(3)(M) for the CassonSU(3) invariant must vanish. Becauseλ′′SU(3)(M) = 0
and our earlier analysis of the components, we see that

λSU(3)(M) = λ′SU(3)(M) =
∑

[A]∈M0
SU(3)

(−1)SF(Θ,A),

whereM0
SU(3) denotes the moduli space of isolated, irreducible, flatSU(3) connections

on M . The integer-valued invariantSU(3) Casson invariantτSU(3)(M) can be analyzed
with similar considerations, and in fact it is not difficult to show thatτSU(3)(M) =
λSU(3)(M). In any case, this outlines a straightforward approach for computing the
SU(3) Casson invariants for spliced sums.

We carry out these computations in the specific case whereM is the spliced sum along
two torus knots of type (2,q1) and (2,q2). Any representationα : π1(M) → SU(3)
determines, by restriction, representationsα1 : π1(X1) → SU(3) andα2 : π1(X2) →
SU(3). We show that the conjugacy class [α] is isolated (and hence contributes
nontrivially to theSU(3) Casson invariant ofM ) only whenα is irreducible and both
α1 andα2 are reducible. By conjugating, we can arrange thatα1 is anS(U(2)×U(1))
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representation and thatα2 is an S(U(1) × U(2)) representation. To complete the
computation, we just need to enumerate all such representations and determine the
su(3) spectral flow from the trivial connectionΘ to the flat connectionA on M
corresponding toα.

Since theS(U(2)× U(1)) representation variety of a torus knot is connected, there is
a pathA1,t of flat S(U(2)× U(1)) connections onX1 connectingΘ|X1 to A|X1 , and
likewise a pathA2,t of flat S(U(1)×U(2)) connections onX2 connectingΘ|X2 to A|X2 .
Moreover, these paths can be chosen to satisfy the hypotheses inTheorem 2.10. The
splitting theorem then describes the spectral flow on the spliced sumM as a sum of the
spectral flows of the pathsA1,t and A2,t of flat connections on knot complementsX1

andX2, the spectral flow of a closed path ofSU(3) connections on the solid torus, and
some finite dimensional Maslov triple indices. Each of these terms can be computed
by direct analysis, and from this we deduce our main application, which identifies the
SU(3) Casson invariant of the spliced sum with a multiple of the product of theSU(2)
Casson knot invariants for spliced sums along certain torus knots. The following is a
restatement ofTheorem 7.6, our main result.

Theorem SupposeK1 andK2 are torus knots of type (2,q1) and (2,q2), respectively,
andM is their spliced sum. Then

λSU(3)(M) = 16λ′SU(2)(K1) λ′SU(2)(K2),

whereλ′SU(2)(K) is theSU(2) Casson knot invariant normalized to be 1 for the trefoil.

Remark As noted above, this result also computes the integer-valuedSU(3) Casson
invariantτSU(3)(M) of [3]. While the results of [5] and [4] show that neither theSU(3)
Casson invariant has finite-type, the above theorem shows that the behavior ofλSU(3)

and τSU(3) under splicing is very similar to that of the finite-type invariant of degree
three. Note that additivity of the CassonSU(2) invariant under spliced sum [6, 10],
implies thatλSU(2)(M) = 0 for any 3–manifoldM obtained as the spliced sum along
two knots inS3.

Here is a brief synopsis of the rest of the paper. InSection 2we present the splitting
theorem in the general setting.Section 3contains some general results aboutSU(3)
representations of spliced sums, andSection 4andSection 5give descriptions of the
reducible and irreducibleSU(3) representations of torus knots.Section 6contains
cohomology calculations, andSection 7presents the main application to computing
the SU(3) Casson invariant for spliced sums along torus knots.
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2 A splitting formula for su(n)spectral flow

The SU(3) Casson invariant for homology 3-spheres is defined in [3] by counting
gauge orbits of irreducible (perturbed) flatSU(3) connections with sign given by the
su(3) spectral flow. In the case of a 3–manifold split along a surface, a useful tool for
performing computations of the spectral flow is provided by splitting the spectral flow
along the manifold decomposition. Existing splitting formulas treat mainly theSU(2)
case and do not readily apply to our situation, so in this section our goal is to develop a
suitably general splitting formula for 3–manifolds split along a torus. Our results here
are the naturalsu(n) generalizations of the results established in [11] for su(2) spectral
flow, and the arguments that are routine extensions of those given in [11] will only be
outlined.

When working on manifolds with boundary, it is essential to have a family or at least a
path of “nice” boundary conditions associated to the restriction ofAt to the boundary
(see Atiyah–Patodi–Singer [1]). For example, given a path of Atiyah–Patodi–Singer
boundary conditions, we could derive a splitting formula for arbitrary splitting surfaces,
however, in general we cannot find a path of Atiyah–Patodi–Singer boundary conditions
for a given path of connections which is continous in the gap topology. We note that
before choosing boundary conditions we may assume any path between flat connections
to stop a finite number of times and to be flat on the boundary torus, because the spectral
flow is homotopy invariant. Therefore, inSection 2.2, we describe an explicit family of
boundary conditions together with a family of flat connections on the boundary torus
which is suitable for all the spectral flow computations we have in mind.

This section assumes some level of familiarity with the background material on spectral
flow, Maslov index, and their relationship. Readers interested in learning more about
these aspects are referred to Cappell-Lee–Miller [7] and Nicolaescu [14].
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2.1 Preliminaries

In order to describe the family of Atiyah–Patodi–Singer boundary conditions and
formulate the splitting formula, we recall the basic setup and review the concepts and
notation that will be used throughout this section.

X T× [−1,1]

T

Y

Figure 1: The collar aroundT

For the splitting formula we will assume the following:

(1) The orientation of the torusT = S1 × S1 = {(eim,ei`) | m, ` ∈ [0,2π)} is
determined bydm∧ d` ∈ Ω2(T). We regardT with its product metric from
the standard metric onS1, and note that the fundamental groupπ1(T) is the
free abelian group generated by the meridianµ = {(eim,1)} and longitude
λ = {(1,ei`)}.

(2) The 3–manifoldsX and Y have boundaryT and are oriented so that∂X =
T = −∂Y. We place metrics onX and Y such that collars of∂X and∂Y are
isometric to [−1,0]× T and [0,1]× T , respectively.

(3) Consider the 3–manifoldM = X ∪T Y with the orientation and metric induced
by the orientation and metric onX andY. SeeFigure 1.

(4) Fix a principal bundle with structure groupSU(n) over M and consider its
trivialization.

For anSU(n) connectionA ∈ Ω1(M; su(n)), theodd signature operator twisted by A
is defined to be

DA : Ω0+1(M; su(n)) → Ω0+1(M; su(n))

(α, β) 7→ (d∗Aβ, ?dAβ + dAα),

whereΩ0+1(M; su(n)) = Ω0(M) ⊗ su(n) ⊕ Ω1(M) ⊗ su(n) and? denotes the Hodge
star operator on the 3–manifoldM . For anSU(n) connectiona ∈ Ω1(T; su(n)), thede
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Rham operator twisted by ais defined to be

Sa : Ω0+1+2(T; su(n)) → Ω0+1+2(T; su(n))

(α, β, γ) 7→ (∗daβ,− ∗ daα− da ∗ γ,da ∗ β),

where∗ denotes the Hodge star operator on the 2–manifoldT .

If a is flat, then the Laplacian twisted bya is given by∆a = S2
a , which is an operator

∆a : Ω0+1+2(T; su(n)) → Ω0+1+2(T; su(n)).

We equipL2(Ω0+1+2(T; su(n))) with an almost complex structureJ by setting

(2–1) J(α, β, γ) := (− ∗ γ, ∗β, ∗α).

Let A be a connection onM , which is in cylindrical form in a collar ofT , that is
A = i∗ua, where iu : T ↪→ [−1,1] × T is the inclusion atu ∈ [−1,1] and a is a
connection onT . We define the following function

r : Ω0+1([−1,1]× T; su(n)) → Ω0+1+2(T; su(n))

(σ, τ ) 7→
(
i∗0(σ), i∗0(τ ), ∗i∗0

(
τy ∂

∂u

))
,

whereτy ∂
∂u denotes contraction ofτ with ∂

∂u . This also gives us a restriction map of
Ω0+1(X; su(n)) andΩ0+1(Y; su(n)) to Ω0+1+2(T; su(n)). TheCauchy data spacesof
DA|X andDA|Y are

ΛX,A := r(KerDA|X)
L2

and ΛY,A := r(KerDA|Y)
L2

, respectively,

with the correspondinglimiting values of extended L2-solutions

LX,A := projKerSa
(ΛX,A ∩ (P− ∪ KerSa))

LY,A := projKerSa
((P+ ∪ KerSa) ∩ ΛY,A).and

We may attach a collar toX andY and define

ΛR
X,A := r(KerDA|X∪[0,R])

L2

and ΛR
Y,A := r(KerDA|Y∪[−R,0])

L2

,

Λ∞X,A := r(KerDA|X∪[0,∞))
L2

and Λ∞Y,A := r(KerDA|Y∪(−∞,0])
L2

.as well as

2.2 A family of Atiyah–Patodi–Singer boundary conditions

In this subsection, we construct a family of flat connectionsa%̃ on the 2–torusT and
introduce boundary conditionsP%̃ parametrized by ˜% ∈ Λ̃ with the property that, for
3–manifoldsX with ∂X = T, given any connectionA on X whose restrictionA|T is
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flat, thenA is gauge equivalent to someA′ with A′|T = a%̃ for some ˜% ∈ Λ̃ andP%̃

is an Atiyah–Patodi–Singer boundary condition for the twisted odd signature operator
DA′ , ie P%̃ contains all eigenvectors of the tangential operatorSa%̃ with sufficiently

large eigenvalues. Furthermore, we describe a natural topology onΛ̃ in which it
continuously parametrizes the family of boundary conditions and flat connections.

Let R(T,SU(n)) be the representation variety ofT , namely the space of conjugacy
classes of representationsϕ : π1(T) → SU(n). By Donaldson and Kronheimer [9,
Proposition 2.2.3], the holonomy map gives a homeomorphism from the moduli space
MT of flat SU(n) connections overT to the representation varietyR(T,SU(n)).

Let Λ := {α = (α1 . . . , αn) ∈ Rn | α1 + · · ·+αn = 0}, which is isomorphic toRn−1

via the standard projection onto the firstn− 1 coordinates. Forα ∈ Λ, set

diag(α) =

α1 0
...

0 αn

 .

Definition 2.1 For α, β ∈ Λ, let aα,β := −idiag(α) dm− idiag(β) d`. We substitute
an indexaα,β by (α, β), for exampleSα,β = Saα,β

, ∆α,β = ∆aα,β
.

Notice that aα,β is a flat connection onT with holonomy hol(aα,β) equal to the
representationϕα,β : π1(T) → SU(n) given by ϕα,β(µ) = exp(2πi diag(α)) and
ϕα,β(λ) = exp(2πi diag(β)). The map (α, β) 7→ aα,β defines a smooth family of
flat connections parameterized byΛ2, and the map (α, β) 7→ [ϕα,β] gives a branched
coverΛ2 → R(T,SU(n)).

Under the action of the standard maximal torusTn−1 ⊂ SU(n), the Lie algebra
decomposes assu(n) = Un ⊕ Wn into diagonal and off-diagonal parts. The torus
acts trivially on the diagonal partUn

∼= Rn−1 and nontrivially on the off-diagonal part
Wn, which further decomposes asWn =

⊕
i<j

Cij , where

Cij := {a ∈ su(n) | akl = 0 for {k, l} 6= {i, j}} ∼= C.

Moreover,Sα,β and∆α,β preserve the induced splitting ofΩ0+1+2(T; su(n)). There-
fore, the detailed analysis of our boundary conditions can be done forUn

∼= Rn−1 and
Wn =

⊕
i<j

Cij by effectively reducing them to the computations in [11]. Notice that

Wn
∼= C(n

2).

For i < j , we define subspaces

(2–2) Qij
α,β = spanC(φij ) ⊂ Ω0(T; Wn),
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whereφij = (φij
kl) ∈ Ω0(T; Wn) is given by

(2–3) φij
kl(m, `) =


ei((αi−αj )m+(βi−βj )`) if (k, l) = (i, j),

−ei((αj−αi )m+(βj−βi )`) if (k, l) = (j, i),

0 otherwise.

We set

(2–4) Qα,β =
⊕
i<j

Qij
α,β.

For a proof of the next result, see [11, Proposition 3.1.2].

Proposition 2.2 We have for the harmonic forms of ∆α,β on the torus:

H 0+1+2
α,β (T; su(n)) = H 0+1+2

α,β (T; Un)⊕H 0+1+2
α,β (T; Wn).

In the first case, we have trivially that

H i
α,β(T; Un) =


Un, if i = 0,

Un dm⊕ Un d`, if i = 1, and

Un dm∧ d`, if i = 2.

In the second case, we have

H 0+1+2
α,β (T; Wn) =

⊕
i<j

H 0+1+2
α,β (T; Cij ),

with

H 0
α,β(T; Cij ) =

{
Qij

α,β if (αi − αj , βi − βj) ∈ Z2,

0 otherwise,

H 1
α,β(T; Cij ) =

{
Qij

α,β dm⊕Qij
α,β d` if (αi − αj , βi − βj) ∈ Z2,

0 otherwise,

H 2
α,β(T; Cij ) =

{
Qij

α,β dm∧ d` if (αi − αj , βi − βj) ∈ Z2,

0 otherwise.

Let a be anSU(n) connection onT and Ea,ν denote theν–eigenspace ofSa. For
ν > 0, we set

P+
a,ν := spanL2 {ψ | Saψ = µψ for µ > ν} ,

P−a,ν := spanL2{ψ | Saψ = µψ for µ < −ν},
E+

a,ν := spanL2{ψ | Saψ = µψ for 0< µ ≤ ν},
E−a,ν := spanL2{ψ | Saψ = µψ for − ν ≤ µ < 0}.and
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Notice that

P±a,ν :=
⊕
±µ>ν

Ea,µ

L2

and E±a,ν :=
⊕

0<±µ≤ν

Ea,µ.

If ν = 0, we writeP±a in place ofP±a,0, and if α, β ∈ Λ, we write P±α,β in place of

P±aα,β
. DefinePij±

α,β := P±α,β ∩ L2(Ω0+1+2(T; Cij )). Observe that the space of twisted

harmonic formsH 0+1+2
a (T; su(n)) in L2(Ω0+1+2(T, su(n))) is equal to KerSa. By the

spectral theorem for self-adjoint elliptic operators we have

L2(Ω0+1+2(T, su(n))) = P+
a ⊕ KerSa ⊕ P−a .

Just as in [11, Proposition 3.2.3], we get a decomposition ofL2(Ω0+1+2(T, su(n))) into
eigenspaces of∆α,β respecting the decompositionssu(n) = Un⊕Wn andWn =

⊕
i<j

Cij .

Further note that the decomposition ofL2(Ω0+1+2(T,Un)) is independent of (α, β) and
the decomposition ofL2(Ω0+1+2(T,Cij )) depends only on (αi − αj , βi − βj) ∈ R2.
The dimension of KerSα,β jumps whenever (αi −αj , βi −βj) lies in the integer lattice
Z2 ⊂ R2 for somei < j . We set

Zij := {(α, β) ∈ Λ2 | (αi − αj , βi − βj) ∈ Z2},

Z :=
⋃
i<j

Zij .

Remark As spectral flow on a closed manifold is an invariant of homotopy rel end-
points, for the purpose of the spectral flow calculations in this paper, we can always
assume that if a path (α(t), β(t)) hitsZij when t = t0, then it approachesZij in such a
way that

βj(t)− βi(t)
αj(t)− αi(t)

= tanθij , θij ∈ S1,

is constant on some intervalt ∈ (t0 − ε, t0), and similarly for when it leavesZij . For
such a path, the kernel ofSα(t),β(t) converges ast → t0 and the kernel att0 equals this
limit plus an additional subspace determined byθij .

We take an alternative approach and shall introduce a parameter spaceΛ̃2 with topology

so that every continuous path iñΛ2 is "sufficiently nice" in an appropriate sense. This
viewpoint has a conceptual advantage and provides additional flexibility, because the
spectral flow along a path of connections on a manifold with torus boundary is homotopy
invariant rel endpoints, as long as its restriction respects a certain family of boundary

conditions together with flat connections parametrized byΛ̃2.
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By explicitly computing some sufficiently nice path of eigenfunctions with nonzero
eigenvalue, which vanish in the limit, we can see that the additional eigenspace in the
kernel of the tangential operator only depends on the direction in which (αi−αj , βi−βj)
approachesZ2. We will make this precise. Fori < j , we denote this angle byθij ∈ S1,
and we introduce the parameter space

Λ̃2 := Λ2 × (S1)(
n
2)/ ∼,

where the equivalence relation collapses the (ij ) circle away fromZij , ie for θ =
(θij )i<j ∈ (S1)(

n
2) , we have

(α, β, θ) ∼ (α, β, θ′) providedθij = θ′ij for all i < j with (α, β) ∈ Zij .

We put a topology oñΛ2 as follows. Given (α, β) ∈ Λ2 and i < j , setαij = αi − αj

and βij = βi − βj . Then (αij , βij )i<j ∈ (R2)(
n
2) . Set Ω2 = (R2)(

n
2) for notational

convenience, and notice that the mapΛ2 → Ω2 given by (α, β) 7→ (αij , βij )i<j is an
embedding. As before, define

Ω̃2 = Ω2 × (S1)(
n
2)/ ∼,

where the equivalence relation collapses the (ij ) circle for (αij , βij ) 6∈ Z2. Just as on

p. 2275 of [11], there is a bijective map from̃Ω2 to (Ṙ2)(
n
2) , whereṘ2 is the result

of removing open disks of radius 1/4 around each integer lattice point inR2, and

we put a topology oñΩ2 that makes this map a homeomorphism. The embedding

Λ2 × (S1)(
n
2) → Ω2 × (S1)(

n
2) descends to an injective map̃Λ2 → Ω̃2, and in this way

Λ̃2 inherits the pullback topology from̃Ω2.

The next result is analogous to [11, Theorem 3.2.2]. Before stating it, we define
families K±(α,β,θ) =

⊕
i<j

K ij±
(α,β,θ) of subspaces ofH 0+1+2

(α,β) (T; su(n)) parameterized by

Λ̃2 by setting, for eachi < j,

K ij±
(α,β,θ) =

{
spanC{ψ

ij±
1 , ψij±

2 } if (α, β) ∈ Zij ,

0 otherwise,

where

ψij±
1 = φij ∓ φij (i Im θij dm− i Reθij d`),

ψij±
2 = φij dm∧ d`± φij (i Reθij dm+ i Im θij d`),

andφij ∈ Ω0(T; su(n)) is the function given by equation (2–3).
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Theorem 2.3

(1) The maps P± : Λ2\Z → {closed subspaces of L2(Ω0+1+2(T, su(n)))} are con-
tinuous.

(2) If (α(t), β(t)) ∈ Λ2 , t ∈ [0, ε) is a smooth path with (α(t), β(t)) /∈ Zij for
t ∈ (0, ε) such that d

dt

∣∣
t=0

(
αij (t) + iβij (t)

)
6= 0, we set

θij =
α′ij (0) + iβ′ij (0)

‖α′ij (0) + iβ′ij (0)‖
.

Then

lim
t→0+

Pij+
(α(t),β(t)) = K ij+

(α,β,θ) ⊕ Pij+
(α,β) and lim

t→0+
Pij−

(α(t),β(t)) = K ij−
(α,β,θ) ⊕ Pij−

(α,β).

(3) Extend P± to Λ̃2 by setting P±(α,β,θ) = P±(α,β) . Then

P± ⊕ K± : Λ̃2 → {closed subspaces of L2(Ω0+1+2(T, su(n)))}
are continuous.

Then, we can define a continuous family of boundary conditions parametrized byΛ̃2

(cf [11, Definition 3.2.4]).

Definition 2.4 Define a familyP± of subspaces ofL2(Ω0+1+2(T, su(n))) continu-

ously parametrized by ˜% ∈ Λ̃2 as

P±
%̃ := P±%̃ ⊕ L̂ ± ⊕ K±%̃ ,

where
L̂ − := U ⊕ U d` and L̂ + := JL̂ −

and J is given in (2–1). The spaceL̂ ± can be chosen arbitrarily–the proof of the
splitting formula does not make use of it–but the above choice makes computations for
our application easier.

If L1,t , L2,t and L3,t , t ∈ [0,1] are paths of Lagrangian subspaces in a symplectic
Hilbert space with almost complex structureJ, such that (JLi,t,Lj,t) is a Fredholm
pair for all i, j = 1,2,3, t ∈ [0,1], then we can define a Maslov triple indexτµ by
translating [12, Definition 6.8] by Kirk and Lesch into the language of Lagrangian
subspaces. By the proof of [12, Lemma 6.10], we see thatτµ is determined by
τµ(L,L,L) = 0 and

τµ(L1,1,L2,1,L3,1)−τµ(L1,0,L2,0,L3,0) = Mas(JL1,L2)+Mas(JL2,L3)−Mas(JL1,L3).

Some easy and useful properties are summarized in the following.
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Lemma 2.5 Let L1,L2, and L3 be pairwise Fredholm Lagrangians in a Hilbert space
H . Then

• τµ(L1,L1,L2) = τµ(L1,L2,L2) = 0,

• τµ(L1,L2,L1) = dim(JL1 ∩ L2), and

• τµ(L1,L2,L3) = dim(JL2 ∩ L3)− τµ(L1,L3,L2).

2.3 Derivation of thesu(n)splitting formula

In this subsection we develop a splitting formula which expresses thesu(n) spectral
flow of the odd signature operator between flat connections on a closed 3–manifold
M = X ∪T Y split along a torusT in terms of spectral flows onX and Y with the
Atiyah–Patodi–Singer boundary conditions fromSection 2.2.

Theorem 2.6 Let M = X ∪T Y be a closed 3–manifold split along the torus T . Let
At be a path of SU(n) connections on M with the following properties:

(1) At is in cylindrical form and flat in a collar of T .

(2) At restricts to the path a%(t) on T for some path %̃ in Λ̃2 with π ◦ %̃ = %, where
π : Λ̃2 → Λ2 is the obvious projection, and

(3) A0 and A1 are flat on M .

Then we have the splitting formula:

SF(At) = SF(At|X; P+
%̃(t)) + SF(At|Y; P−

%̃(t)) + τµ(JLX,%(0),K
+
%̃(0) ⊕ L̂ +,LY,%(0))

− τµ(JLX,%(1),K
+
%̃(1) ⊕ L̂ +,LY,%(1)).

Proof The proof is very similar to [11, section 4.4]. Recall from Nicolaescu [14,
Definition 4.8] that the non-negative numbers min{ν ∈ R | ΛX,A ∩ P+

a,ν = 0} and
min{ν ∈ R | P−a,ν ∩ ΛY,A = 0} are called the non-resonance levels ofDA|X andDA|Y
respectively. Letν be the maximum of the non-resonance levels ofDA0|X , DA1|X ,
DA0|Y andDA1|Y . For ε = 0,1, we useE±ε,ν for the spacesE±a%(ε),ν and set

Hε,ν := E+
ε,ν ⊕ KerS%(ε) ⊕ E−ε,ν .

Using the notation from aboveΛX,t := ΛX,At andΛY,t := ΛY,At :

(1) Fix some pathLX,ε,t , ε = 0,1, of Lagrangians inHε,ν from Λ∞X,ε ∩ Hε,ν to
P−

%̃(ε) ∩ Hε,ν , and
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(2) fix some pathLY,ε,t , ε = 0,1, of Lagrangians inHε,ν from Λ∞Y,ε ∩ Hε,ν to
P+

%̃(ε) ∩ Hε,ν .

Consider the Maslov index of the path (ΛX,t,ΛY,t). Then by the results of Daniel
[8, Theorem 4.3] (see also Nicolaescu [14, Theorem 3.14]), we have that SF(At) =
Mas(ΛX,t,ΛY,t), as well as the relative version SF(At|X; P+

%̃(t)) = Mas(ΛX,t,P
+
%̃(t)) and

SF(At|Y; P−
%̃(t)) = Mas(P−

%̃(t),ΛY,t) by Kirk and Lesch [12, Theorem 7.5]. We can
homotope the path (ΛX,t,ΛY,t) to the concatenation of paths (Mi ,Ni), i = 1, . . . ,11
given inTable 1without changing the Maslov index.

Observe first, that the Maslov index of each of the pairs (Mi ,Ni), i = 1,4,6,8,11 is
zero (see [12, Lemma 8.10]).

Furthermore we can apply [12, Theorem 8.5], whereWX ⊂ dE−0,ν ⊂ E+
0,ν for DA0|X

andWY ⊂ dE+
0,ν ⊂ E−0,ν for DA0|Y are as in the theorem, and⊥ denotes the orthogonal

complement indE−0,ν anddE+
0,ν respectively, to get

Mas(M2,N2) + Mas(M7,N7)

= Mas(LX,0,t,LY,0,0)−Mas(LX,0,t,LY,0,1)

= τµ(JLX,0,1,LY,0,0,LY,0,1)− τµ(JLX,0,0,LY,0,0,LY,0,1).

We haveE+
0,ν = dE−0,ν ⊕ d∗E−0,ν , and we can compute

τµ(JLX,0,1,LY,0,0,LY,0,1)

= τµ(E+
0,ν ⊕ K+

%̃(0) ⊕ L̂ +, (WY ⊕ JW⊥
Y )⊕ dE−0,ν ⊕LY,0,E

+
0,ν ⊕ K+

%̃(0) ⊕ L̂ +)

= τµ(d∗E−0,ν ⊕ K+
%̃(0) ⊕ L̂ +, (WY ⊕ JW⊥

Y )⊕LY,0,d
∗E−0,ν ⊕ K+

%̃(0) ⊕ L̂ +)

= dim(JWY) + dim(JLY,0 ∩ (K+
%̃(0) ⊕ L̂ +)).

Similarly

τµ(JLX,0,0,LY,0,0,LY,0,1)

= τµ((JWX ⊕W⊥
X )⊕ d∗E−0,ν ⊕ JLX,0, (WY ⊕ JW⊥

Y )⊕ dE−0,ν ⊕LY,0,

E+
0,ν ⊕ K+

%̃(0) ⊕ L̂ +)

= τµ(d∗E−0,ν ⊕ JLX,0, (WY ⊕ JW⊥
Y )⊕LY,0,d

∗E−0,ν ⊕ K+
%̃(0) ⊕ L̂ +)

= dim(JWY) + τ (JLX,0,LY,0,K
+
%̃(0) ⊕ L̂ +).
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i pathsMi(t) Endpoints ofMi andNi pathsNi(t)

ΛX,0 ΛY,0

1 ΛRt
X,0 ΛRt

Y,0
Λ∞X,0 Λ∞Y,0

2 P−0,ν ⊕ LX,0,t ΛR1−t
Y,0

P−
%̃(0) ΛY,0

3 P−
%̃(t) ΛY,t

P−
%̃(1) ΛY,1

4 constant ΛRt
Y,1

P−
%̃(1) Λ∞Y,1

5 constant P+
1,ν ⊕ LY,1,t

P−
%̃(1) P+

%̃(1)
6 P−

%̃(1−t) P+
%̃(1−t)

P−
%̃(0) P+

%̃(0)
7 P−0,ν ⊕ LX,0,1−t constant

P−
%̃(0) P+

%̃(0)
8 ΛR1−t

X,0 constant
ΛX,0 P+

%̃(0)
9 ΛX,t P+

%̃(t)
ΛX,1 P+

%̃(1)
10 ΛRt

X,1 P+
1,ν ⊕ LY,1,1−t

Λ∞X,1 Λ∞Y,1

11 ΛR1−t
X,1 ΛR1−t

Y,1
ΛX,1 ΛY,1

Table 1: The paths homotopic toΛX,t andΛY,t broken up into pieces
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Thus, together with [12, Proposition 6.11], this shows

Mas(M2,N2) + Mas(M7,N7) = dim(JLY,0 ∩ (K+
%̃(0) ⊕ L̂ +))

− τ (JLX,0,LY,0,K
+
%̃(0) ⊕ L̂ +)

= τ (JLX,0,K
+
%̃(0) ⊕ L̂ +,LY,0).

Similarly we get

Mas(M5,N5) + Mas(M10,N10) = −τ (JLX,1,K
+
%̃(1) ⊕ L̂ +,LY,1).

This completes the proof.

The ideal situation for applyingTheorem 2.6is when the manifoldM splits into a
solid torusD2 × S1 and its complementY, and the path consists of connections that
are flat onY. When this is not the case,Theorem 2.6can still provide some useful
information. We start with a simple observation.

Lemma 2.7 Let At and A′t be loops of SU(n) connections on 3–manifolds X and
X′ , both with boundary the surface Σ , and let Pt a continuous family of boundary
conditions that make DAt and DA′t self-adjoint. Then

SF(At|X,Pt) = SF(A′t|X′ ,Pt).

Proof Let Λ be a Lagrangian subspace, such that (Λ,Pt) is a Fredholm pair for all
t . Then, by the contractibility of the space of connections we have

SF(At|X,Pt) = Mas(ΛX,At ,Pt) = Mas(Λ,Pt) = Mas(ΛX′,A′t ,Pt) = SF(A′t|X′ ,Pt).

Therefore, the spectral flow of the odd signature operator coupled to a loop ofSU(n)
connections on a manifold with boundary only depends on its restriction to the bound-
ary. Orient the solid torusS such that the orientations ofS andX agree in a collar of
∂S= ∂X.

Definition 2.8 Given a loop ˜% in Λ̃2 with projection% in Λ2, let At be a path of
SU(n) connections on the solid torusS restricting toa%(t) on the boundary. We define
SF(%̃) := SF(At|S; P+

%̃(t)).
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Since the spectral flow is a homotopy invariant and additive under concatenation

of paths in Λ̃2, the computation for an arbitrary loop iñΛ2 can be reduced to a
loop %̃ = (α, β, θ), where (α(t), β(t)) is constant and lies in exactly oneZij , and
θ(t) = (θkl(t)) for θkl(t) = 1 unlessk = i and l = j, in which caseθij (t) = e2πit ,
t ∈ [0,1]. After gauge transformation we may further assume that (i, j) = (1,2).
Then, we can assume after homotopy that

(α, β) ≡ ((α1, α2,0, . . . ,0), (β1, β2,0, . . . ,0)) ∈ Z12.

Consequently,α1, α2, β1, β2 ∈ 1
2Z. Let us identifySU(2) with SU(2)×{Id} ⊂ SU(n)

andsu(2) with su(2)× {0} ⊂ su(n). Let % be the projection of ˜% in Λ2, and letAt be
a path ofSU(2) connections on the solid torusS restricting toa%(t) on the boundary.
Then we compute

SF(%̃) = SF(At|S; P+
%̃(t))

= SF(At|S; P12+
%̃(t) ⊕ (Un dm⊕ Un dm∧ d`)⊕ K12+

%̃(t) ).

SinceUn dm⊕ Un dm∧ d` is transverse toUn ⊕ Un d`, we can apply [11, Theorem
5.3.3] to compute that SF( ˜%) = 4.

We define the winding number for loops ˜% in Λ̃2 as follows. First homotope ˜% to
a product ˜%1 ∗ · · · ∗ %̃m of loops such that each ˜%k = τ̃ k ∗ (αk, βk, θk) ∗ (τ̃ k)−1 with
(αk(t), βk(t)) constant. Then we define

wind(%̃) :=
m∑

k=1

∑
(i,j)

(αk,βk)∈Zij

wind
(
θk

ij (t)
)
.

Let us summarize.

Proposition 2.9 Let %̃(t) be a loop in Λ̃2 . Then

SF(%̃) = 4 wind(%̃).

Now we can state the main splitting formula.

Theorem 2.10 Consider two flat connections B0 and B1 on M = X ∪T Y. Let At

and A′t be paths of SU(n) connections on X and Y, respectively, with Bε|X = Aε

and Bε|Y = A′ε , ε = 0,1, satisfying the properties in Theorem 2.6 with %̃ and %̃′ the
corresponding paths in Λ̃2 . Then

SF(B0,B1) = SF(At; P
+
%̃(t)) + SF(A′t; P

−
%̃′(t)) + SF(%̃(1− t) ∗ %̃′(t))

+ τµ(JLX,0,K
+
%̃(0) ⊕ L̂ +,LY,0)− τµ(JLX,1,K

+
%̃(1) ⊕ L̂ +,LY,1).
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Proof ExtendA′t arbitrarily to a pathBt from B0 to B1. Then

SF(Bt) = SF(Bt|X; P+
%̃′(t)) + SF(Bt|Y; P−

%̃′(t)) + SF(At; P
+
%̃(t))− SF(At; P

+
%̃(t)),

+ τµ(JLX,0,K
+
%̃(0) ⊕ L̂ +,LY,0)− τµ(JLX,1,K

+
%̃(1) ⊕ L̂ +,LY,1)

= SF(At; P
+
%̃(t)) + SF(A′t; P

−
%̃′(t)) + SF(A1−t ∗ Bt|X; P+

%̃(1−t)∗%̃′(t))

+ τµ(JLX,0,K
+
%̃(0) ⊕ L̂ +,LY,0)− τµ(JLX,1,K

+
%̃(1) ⊕ L̂ +,LY,1).

With Lemma 2.7the desired formula follows.

SF(%̃) can be defined for paths other than loops. Some examples have been computed
in the casen = 2 by Himpel [11, Theorem 5.3.3].

3 TheSU(3)representation variety of a spliced sum

SupposeK1 andK2 are knots inS3 with complementsX1 = S3\νK1 andX2 = S3\νK2,
and letM = X1 ∪T X2 be the spliced sum. In this section, we establish some basic
results about the representation varietyR(M,SU(3)).

Given a representationα : π1(M) → SU(3), we setα1 = α|π1(X1), α2 = α|π1(X2) , and
α0 = α|π1(T) , and we will sometimes writeα = α1 ∪α0 α2.

Lemma 3.1 If α : π1(M) → SU(3) is a representation with α1 or α2 abelian, then α
is trivial.

Remark This lemma is true in general for representationsα : π1(M) → SU(n),
whereM is the spliced sum along knots inS3, but not for spliced sums along knots in
homology spheres.

Proof Supposeα1 is abelian. Becauseλ1 lies in the commutator subgroup, it follows
thatα(λ1) = I . Splicing identifiesµ2 with λ1, and it follows thatα(µ2) = I . Because
µ2 normally generatesπ1(X2), we conclude thatα2 is trivial. In particularα(λ2) = I ,
and splicing again showsα(µ1) = I and the same argument showsα1 is also trivial.

Lemma 3.2 If α : π1(M) → SU(3) is a representation with α(µ1) or α(µ2) central,
then α is trivial.

Proof Supposeα(µ1) is central. Sinceµ1 normally generatesπ1(X1), it follows that
α1 is abelian, and we applyLemma 3.1to make the conclusion.
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Becauseπ1(T) = Z2 is abelian, we can conjugateα so that bothα0 is diagonal. Thus,
the stablizer subgroup Stab(α0) must contain the maximal torusTSU(3)

∼= T2. The next
two results show that, for the purposes of computing theSU(3) Casson invariant, we
can restrict our attention to representations with Stab(α0) = TSU(3).

Proposition 3.3 If α : π1(M) → SU(3) is a nontrivial representation with Stab(α0) 6=
TSU(3) , then α1 and α2 are both irreducible.

Proof Sinceπ1(T) = Z2 is abelian, we can conjugateα so thatα(µ1) and α(λ1)
are both diagonal. Now if either of these elements has three distinct eigenvalues, then
Stab(α0) = TSU(3). Thus our hypotheses imply thatα(µ1) and α(µ2) both have a
double eigenvalue. If their 2–dimensional eigenspaces do not coincide, then we can
find integersk, l such that the diagonal matrixα(µk

1λ
l
1) has three distinct eigenvalues,

and it would then follow that Stab(α0) = TSU(3). Thus, we can assume that, up to
conjugation,

α(µ1) =

a 0 0
0 a 0
0 0 ā2

 and α(λ1) =

b 0 0
0 b 0
0 0 b̄2


for somea,b ∈ U(1) not equal to a third root of unity.

Now suppose to the contrary thatα1 is reducible. Then, up to conjugation,α1 has
image in S(U(2) × U(1)). Sinceλ1 lies in the commutator subgroup ofπ1(X1),
its image underα must lie in the commutator group ofS(U(2) × U(1)), which is
SU(2) × {1}. This shows that one of the eigenvalues ofα(λ1) must equal 1. If
b = 1, thenα(µ2) = α(λ1) = I andLemma 3.2impliesα is trivial, a contradiction.
Otherwise,b2 = 1 and b = −1 and we see then thatα(µ1) lies in the center of
α1(π1(X1)). Becauseµ1 normally generates this group, this shows thatα1 is abelian
andLemma 3.1gives the desired contradiction.

For further results, we need to make the additional assumptions that the representa-
tion varietiesR(X1,SU(3)) and R(X2,SU(3)) are in general position in the “SU(3)
pillowcase”R(T,SU(3)). Specifically, we assume that the images ofR(X1,SU(3)) and
R(X2,SU(3)) intersect transversely inR(T,SU(3)), and that the restriction maps

R(X1,SU(3))→ R(T,SU(3)) and R(X2,SU(3))→ R(T,SU(3))

are both local immersions in a neighborhood of each intersection point. These assump-
tions will not hold in general for spliced sums along knots inS3, but one can check
that they do hold for spliced sums along (2,q) torus knots.
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In the following result, we use [α] to denote the conjugacy class of a representation
α : π1(M) → SU(3).

Proposition 3.4 Suppose the above transversality assumption holds for all represen-
tations α : π1(M) → SU(3) and suppose α is nontrivial with Stab(α0) 6= TSU(3) .
Set

C = {[β] ∈ R(M,SU(3)) | βi is conjugate to αi for i = 1,2}.

Then C ⊂ R∗(M,SU(3)) and is diffeomorphic to S(U(2) × U(1))/ZSU(3) , where
ZSU(3)

∼= Z3 is the center of SU(3). In particular, we have χ(C) = 0.

Proof Proposition 3.3implies thatC consists entirely of irreducible representations,
and under the transversality assumption, this component can be described as the double
cosetΓ1\Γ0/Γ2, whereΓi = Stab(αi). Proposition 3.3shows thatΓ1 = Γ2 = ZSU(3),
and its proof shows thatΓ0 = S(U(2)×U(1)). SinceS(U(2)×U(1)) is diffeomorphic
to U(2), it has zero Euler characteristic.

If α : π1(M) → SU(3) is a nontrivial representation with Stab(α0) = TSU(3), then we
have exactly three possibilities:

(a) Both α1 andα2 are irreducible,

(b) One ofα1, α2 is irreducible, the other is reducible and nonabelian, or

(c) Both α1 andα2 are reducible and nonabelian.

The next result shows that, for the purposes of computing theSU(3) Casson invariant
of spliced sums, the only contributions come from case (c).

Proposition 3.5 Let the above assumption hold for all representations α : π1(M) →
SU(3), and suppose α is a nontrivial representation with Stab(α0) = TSU(3) and one
of α1 or α2 irreducible. (So we are in case (a) or case (b).) Set

C = {[β] ∈ R(M,SU(3)) | βi is conjugate to αi for i = 1,2}.

Then C ⊂ R∗(M,SU(3)) with C ∼= TSU(3)/ZSU(3) in Case (a) and C ∼= TSU(3)/U(1) in
case (b). In either case, we see that χ(C) = 0.

Proof Using the double coset description of the component, we see thatC =
Γ1\Γ0/Γ2 where Γ0 = TSU(3). In case (a), we get thatΓ1 = Γ2 = ZSU(3) and
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the first result follows. In case (b), assuming (wlog) thatα1 is irreducible andα2 is
reducible, we find thatΓ1 = ZSU(3) and

Γ2 =


eθi 0 0

0 eθi 0
0 0 e−2θi

∣∣∣∣∣∣ θ ∈ [0,2π]

 ∼= U(1),

and the second result follows.

The only remaining case is Case (c), where bothα1 andα2 are reducible and non-
abelian. There are two possibilities here:

(c-1) Both α1 andα2 can be simultaneously conjugated to lie inS(U(2)× U(1). In
this case,α = α1∪α0α2 is reducible and lies on a componentC ∼= S1 consisting
entirely of reducible representations.

(c-2) After conjugating,α1 lies in S(U(2)×U(1)) andα2 lies in S(U(1)×U(2)). In
this caseα = α1∪α0 α2 is irreducible and its conjugacy class [α] is an isolated
point in R∗(M,SU(3)).

The next result summarizes our discussion and gives a classification of the possible
components ofR(M,SU(3)) for spliced sums satisfying the transversality assumption.

Theorem 3.6 Suppose M is a spliced sum along knots in S3 and satisfies the transver-
sality assumption. Then the representation variety R(M,SU(3)) =

⋃
j∈J Cj is a disjoint

union of components Cj that are either entirely contained in R∗(M,SU(3)) or disjoint
from R∗(M,SU(3)). If Cj ⊆ R∗(M,SU(3)), then Cj is diffeomorphic to one of

S(U(2)× U(1))/ZSU(3), TSU(3)/ZSU(3), TSU(3)/U(1), {∗},

depending on the level of reducibility of α0, α1, α2 . Otherwise, if Cj∩R∗(M,SU(3)) =
∅, then Cj is diffeomorphic to S1 or {∗}, the latter occurring only when Cj = {[Θ]},
the trivial representation.

Remark Notice that the positive dimensional componentsCj all satisfyχ(Cj) = 0.
Using the homeomorphism between the moduli spaceM of flat SU(3) connections
on M and the representation varietyR(M,SU(3)) provided by the holonomy map, the
transversality assumption ensures that each of the corresponding components inM
is a nondegenerate critical submanifold for the Chern–Simons function. In particular,
by [2, Theorem 7], we see that these components do not contribute to theSU(3)
Casson invariant. In order to compute theSU(3) Casson invariant, inSection 5we will
concentrate on the 0–dimensional or isolated components.
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Notice further that for components of type (c-2), which are the isolated points of
R∗(M,SU(3)), it is possible to haveα1 conjugate toα′1 asS(U(2)×U(1)) representa-
tions ofπ1(X1), andα2 conjugate toα′2 asS(U(1)×U(2)) representations ofπ1(X2),
but α1 ∪α0 α2 not conjugate toα′1 ∪α′0

α′2 asSU(3) representations ofπ1(M) for the
spliced sumM = X1 ∪T X2. This is a consequence of the existence of discrete gluing
parameters in this context, and we will return to this issue inTheorem 5.1, where we
enumerate the isolated components ofR∗(M,SU(3)) for certain spliced sums.

4 SU(3)representation varieties of knot complements

In the previous section, we examined theSU(3) representation varieties of spliced sums
and discovered that the only contributions to theSU(3) Casson invariant come from
representationsα = α1∪α0α2 with α1 andα2 reducible, nonabelian representations of
the knot complements. In this section, we study the representation varietiesR(X,SU(3))
for knot complements. In general,R(X,SU(3)) is a union of three different strata:

1. R∗(X,SU(3)) the stratum of irreducible representations,

2. Rred(X,SU(3)) the stratum of reducible nonabelian representations, and

3. Rab(X,SU(3)) the stratum of abelian representations.

Because our computations ofλSU(3)(M) for spliced sums involve only those representa-
tions that restrict to reducible, nonabelian representations onX1 andX2, we concentrate
on the stratumRred(X,SU(3)). We shall use the results of Klassen [13] to give a useful
description in caseX is the complement of a (2,q) torus knot. The curious reader is
referred to [4, Section 3] for descriptions of the other strata. The results presented here
are complementary to those in [4].

Let K be the (2,q) torus knot andX = S3 \νK its complement. The knot groupπ1(X)
has presentation

(4–1) π1(X) ∼= 〈x, y | x2 = yq〉,

with meridianµ = xy
1−q

2 and longitudeλ = x2µ−2q.

Every reducible representationα : π1(X) → SU(3) can be conjugated to lie inS(U(2)×
U(1)). Furthermore, everyS(U(2)× U(1)) representation ofπ1(X) is obtained by
twisting anSU(2) representation. In [13], Klassen proves thatR∗(X,SU(2)) is a union
of q− 1 open arcs, and using this, we shall show thatRred(X,SU(3)) is a union of
q− 1 open M̈obius bands.
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In the next result, we identifySU(2) with the unit quaternions by the map(
a b
−b̄ ā

)
7→ a + bj for a,b ∈ C with |a|2 + |b|2 = 1.

To eacht ∈ [0, 1
2] we associate the abelian representationβt : π1(X) → SU(2) with

βt(µ) = e2πit . In this way, we parameterizeRab(X,SU(2)) by the closed interval [0, 1
2].

. . .

. . .

Figure 2: TheSU(2) representation variety of a (2,q) torus knot

Proposition 4.1 (Klassen) The representation variety R∗(X,SU(2)) consists of (q−
1)/2 open arcs given as follows. For k ∈ {1,3, . . . ,q− 2} and s∈ [0,1], define βk,s

by setting

βk,s(x) =i cos(πs) + j sin(πs),

βk,s(y) = cos(πk/q) + i sin(πk/q) = ekπi/q.

Then the resulting paths of SU(2) representations βk,s are irreducible and have
H1(X; su(2)βk,s) = R and H1(Z; C2

βk,s
) = 0 for s∈ (0,1).

When s = 0,1 the representations βk,0 and βk,1 , are abelian with

βk,0(µ) = (−1)
k−1

2 e
kπi
2q and βk,1(µ) = (−1)

k+1
2 e

kπi
2q .

Using [0, 1
2] to parameterize the abelian representations, we see that the arc βk,s is

attached at the bifurcation points
{

k
4q,

2q−k
4q

}
(see Figure 2).

Observe that the image of the meridian is given by

βk,s(µ) = (i cos(πs) + j sin(πs))e
kπi

“
1−q
2q

”
,

and a quick calculation shows thatβk,s(µ) is conjugate to the diagonal matrix(
e2uπi 0

0 e−2uπi

)
,

whereu ∈ [0, 1
2] satisfies

cos(2πu) = cos(πs) sin
(

k(q−1)π
2q

)
.



Splitting spectral flow and the SU(3) Casson invariant 23

Sinces∈ [0,1] and

sin
(

k(q−1)π
2q

)
= sin

(
k
(

π
2 −

π
2q

))
= (−1)(k−1)/2 cos

(
kπ
2q

)
,

we see that

(4–2) u ∈
(

k
4q,

2q−k
4q

)
.

Sinceλ = x2µ−2q, thenβk,s(λ) is conjugate to(
−e−2q(2uπi) 0

0 −e2q(2uπi)

)
.

We are interested in the restriction ofβk,s to the boundary torus. Recall thatR(T,SU(2))
is modelled by the pillowcase, which is the quotient of the 2-torusT2 by the involution
sending (x, y) to (1− x,1− y), where we think ofT2 as [0,1]× [0,1] with opposite
sides identified. Under this identification, the point (u, v) ∈ [0, 1

2] × [0,1] in the
pillowcase corresponds to the diagonal representationβ : π1(T) → SU(2) with

β(µ) =
(

e2uπi 0
0 e−2uπi

)
andβ(λ) =

(
e2vπi 0

0 e−2vπi

)
.

For s∈ [0,1], the restriction ofβk,s to the boundary torus gives a line of slope−2q in

the pillowcase connecting
(

k
4q,0

)
to
(

2q−k
4q ,0

)
and wrapping around verticallyq− k

times.

Using thetwistingoperation [4, §3.2], we give an explicit description ofRred(X,SU(3))
as a union of (q− 1)/2 Möbius bands, which are 2–dimensional families obtained by
twisting the arcsβk,s by charactersχ : π1(X) → U(1).

First, in terms of matrices, ifA =
(

a b
−b̄ ā

)
∈ SU(2) andeiθ ∈ U(1), we define the

twist of A by eiθ to be theS(U(2)× U(1)) matrixeiθ 0 0
0 eiθ 0
0 0 e−2iθ

 a b 0
−b̄ ā 0
0 0 1

 =

 eiθa eiθb 0
−eiθb̄ eiθā 0

0 0 e−2iθ

 .

Given an irreducible representationβ : π1(X) → SU(2) and an abelian representation
χ : π1(X) → U(1), we define the reducibleSU(3) representation obtained by twisting
β by χ, denotedχ � β, to be theS(U(2)× U(1)) representation taking an element
γ ∈ π1(X) to the twist ofβ(γ) by χ(γ).

Since abelian representations factor through the homology groupH1(X,Z), which
is generated by the meridianµ, we see that a representationχ : π1(X) → U(1) is
determined byχ(µ).
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Definition 4.2 For eiθ ∈ U(1), let χθ be theU(1) representation withχθ(µ) = eiθ .
For k ∈ {1,3, . . . ,q−2} ands∈ (0,1), letβk,s be theSU(2) representation described
in Proposition 4.1and defineαk,s,θ = χθ�βk,s to be the reducibleSU(3) representation
obtained by twistingβk,s by χθ .

Notice that ifθ = π, the twist of anSU(2) representationβ by χπ takes values in the
SU(2)× {1} matrices, and a quick calculation shows that

(4–3) χπ � βk,s is conjugate toβk,1−s.

Thus, fork ∈ {1,3, . . . ,q− 2}, the 2–dimensional familyαk,s,θ is parameterized by
(s, θ) ∈ (0,1)×[0, π] with identification (s,0)∼ (1−s, π). This gives an open M̈obius
band. The next result summarizes our discussion.

Proposition 4.3 If X is the complement of the (2,q) torus knot, then Rred(X,SU(3))
is a union of q−1

2 open Möbius bands. The closure of each stratum intersects the
abelian stratum Rab(X,SU(3)) in an immersed circle with isolated double points.

5 Isolated components ofR∗(M, SU(3))

In this section, we enumerate the isolated components inR∗(M,SU(3)) for M the
spliced sum along torus knots of type (2,q1) and a (2,q2). Let K1 andK2 be (2,q1)
and (2,q2) torus knots with complementsX1 and X2, and writeα = α1 ∪α0 α2

according to the decompositionM = X1 ∪T X2. Assume that [α] is isolated. By
Section 3, we can assume thatα is irreducible and bothα1 and α2 are reducible.
These are the type (c-2) components fromSection 3, and they are the only components
that contribute nontrivially to theSU(3) Casson invariant. Note further that such a
representation can be conjugated so thatα1 reduces toS(U(2)×U(1)), α2 reduces to
S(U(1)× U(2)), andα0 is diagonal.

We can describeα1 as the twist of anSU(2) representationβ1 by a characterχθ1, and
we get a similar statement forα2 using the following refinement of twisting. For this
purpose, we set�1 = � and define�2 to be the twisting induced by the map which,

for eiθ ∈ U(1) andA =
(

a b
−b̄ ā

)
∈ SU(2), gives theS(U(1)× U(2)) matrix

e2iθ 0 0
0 e−iθ 0
0 0 e−iθ

1 0 0
0 a b
0 −b̄ ā

 =

e2iθ 0 0
0 e−iθa e−iθb
0 −e−iθb̄ e−iθā

 .
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On the level of representations, ifβ2 : π1(X2) → SU(2) andχθ2 : π1(X2) → U(1),
then setχ2 �2 βθ2 to be theS(U(1)× U(2)) representation obtained by twistingβ2

by χθ2 in this way. Assume nowα1 = χθ1 �1 β1 andα2 = χθ2 �2 β2 for SU(2)
representationsβ1, β2 and charactersχθ1, χθ2

Remark Note that, byLemma 3.1, we can assume thatβ1 andβ2 are both irreducible
sinceα = α1 ∪α0 α2 is irreducible.

The pairα1 : π1(X1) → S(U(2)× U(1)) α2 : π1(X2) → S(U(1)× U(2)) will extend
to a representationα : π1(M) → SU(3) if and only if their restrictions toπ1(T) agree,
namely if and only ifα1(µ1) = α2(λ2) andα2(µ2) = α1(λ1).

Theorem 5.1 Suppose M is the spliced sum along torus knots K1 and K2 of type
(2,q1) and (2,q2). Then the number of isolated conjugacy classes in R∗(M,SU(3)) is
given by

16λ′SU(2)(K1)λ′SU(2)(K2) =
(q2

1 − 1)(q2
2 − 1)

4
,

where λ′SU(2)(K) = ∆′′
K(1) is the SU(2) Casson knot invariant.

Proof Using equation (4–1) and the splice relations, we find thatπ1(M) has presen-
tation

π1(M) = 〈x1, y1, x2, y2 | x2
1 = yq1

1 , x
2
2 = yq2

2 , µ1 = λ2, λ1 = µ2〉,

whereµ1 = x1y
q1−1

2
1 , λ1 = x2

1µ
−2q1
1 andµ2 = x2y

q2−1
2

2 , λ2 = x2
2µ
−2q2
2 . Assumeα =

α1 ∪α0 α2 is an irreducible representation ofπ1(M) with α1 andα2 both reducible,
and conjugate so thatα1 is in S(U(2)× U(1)) andα2 is in S(U(1)× U(2)).

Because the longitudeλ1 lies in the commutator subgroup ofπ1(X1), reducibility of
α1 implies thatα1(λ1) must have a 1 in the lower right-hand corner. Similarly, because
λ2 lies in the commutator subgroup ofπ1(X2), reducibility of α2 implies thatα2(λ2)
must have a 1 in the upper left-hand corner. Notice that twisting does not alter the
image of the longitude sinceχθi (λi) = 1 for anyθi ∈ [0, π]. Thus, ifα1 = χθ1 �1 β1

andα2 = χθ2 �2 β2, then the only way to have a 1 in the upper right-hand corner of
α1(µ1) and also in the lower right-hand corner ofα2(µ2) is if

β1(µ1) =
(

e−θ1i 0
0 eθ1i

)
and β2(µ2) =

(
e−θ2i 0

0 eθ2i

)
.

In that case,

β1(λ1) =
(
−e2q1θ1i 0

0 −e−2q1θ1i

)
and β2(λ2) =

(
−e2q2θ2i 0

0 −e−2q2θ2i

)
.
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If α1 = χθ1 �1 β1 andα2 = χθ2 �2 β2, an easy compuation shows

α1(µ1) =

1 0 0
0 e2θ1i 0
0 0 e−2θ1i

 , α1(λ1) =

−e2q1θ1i 0 0
0 −e−2q1θ1i 0
0 0 1

 ,(5–1)

α2(µ2) =

e2θ2i 0 0
0 e−2θ2i 0
0 0 1

 , α2(λ2) =

1 0 0
0 −e2q2θ2i 0
0 0 −e−2q2θ2i

 .(5–2)

The results of the previous section imply thatβ1 and β2 are conjugate to repre-
sentationsβk1,s1 and βk2,s2 of Proposition 4.1for somek1 = 1,3, . . . ,q1 − 2 and
k2 = 1,3, . . . ,q2 − 2 and s1, s2 ∈ (0,1). As noted inSection 4, βk1,s1(µ1) and
βk2,s2(µ2) are conjugate to(

e−2u1πi 0
0 e2u1πi

)
and

(
e−2u2πi 0

0 e2u2πi

)
,

respectively, whereu1,u2 satisfy

cos(2πu1) = cos(πs1) sin
(

k1(q1−1)π
2q1

)
and cos(u2) = cos(πs2) sin

(
k2(q2−1)π

2q2

)
andu1 ∈

(
k1

4q1
, 2q1−k1

4q1

)
andu2 ∈

(
k2

4q2
, 2q2−k2

4q2

)
.

Fix k1 and k2 as above and setθ1 = 2πu1 and θ2 = 2πu2. Consider the two paths
α1,s1 = χθ1 �1 βk1,s1 and α2,s2 = χθ2 �2 βk2,s2 of reducibleSU(3) representations
defined for s1, s2 ∈ (0,1). (We conjugateβk1,s1 and βk2,s2 so that βk1,s1(µ1) and
βk2,s2(µ2) are both diagonal inSU(2).) Notice that the upper left-hand entry ofα1,s1(µ1)
is always equal to 1, as is the lower right-hand entry ofα2,s2(µ2).

Consider the two arcs inT2 defined in terms ofα1,s1 andα2,s2 as follows. The first arc
has its first coordinate given by the (2,2) entry ofα1,s1(µ1) and its second coordinate
given by the (1,1) entry ofα1,s1(λ1). The second arc has its first coordinate given
by the (2,2) entry ofα2,s2(λ2) and its second coordinate given by the (1,1) entry of
α2,s2(µ2). By (5–1) and (5–2), we see that the first arc is given by (e2θ1i ,−e2q1θ1i)

for θ1 ∈
(

k1π
2q1
, (2q1−k1)π

2q1

)
, whereas the second arc is given by (−e2q2θ2i ,e2θ2i) for

θ2 ∈
(

k2π
2q2
, (2q2−k2)π

2q2

)
.

Using γ1 andγ2 to denote the resulting curves inT2, notice thatγ1 has slopeq1 and
wraps around the 2-torus verticallyq1− k1 times, whereasγ2 has slope1

q2
and wraps

around the 2-torus horizontallyq2 − k2 times. From this, one sees thatγ1 and γ2

intersect in (q1− k1)(q2− k2) points. (One can perform the computation in homology
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by adding a horizontal segment toγ1 that missesγ2 and a vertical segment toγ2 that
missesγ1, creating 1–cycles in the pillowcase minus the corners.)

Of course, the intersection points ofγ1 andγ2 exactly coincide with choices ofα1,s1

and α2,s2 that extend to an irreducibleSU(3) representation ofπ1(M), and each of
these is an isolated point inR∗(M,SU(3)).

Summing overk1 ∈ {1,3, . . . ,q1 − 2} and k2 ∈ {1,3, . . . ,q2 − 2} and setting
j1 = k1−1

2 and j2 = k2−1
2 , we compute that

q1−1
2∑

j1=1

q2−1
2∑

j2=1

(q1 − 2j1 + 1)(q2 − 2j2 + 1) =


q1−1

2∑
j1=1

q1 − 2j1 + 1




q2−1
2∑

j2=1

q2 − 2j2 + 1


=

(q2
1 − 1)(q2

2 − 1)
16

.

We now take into account the fact that the conjugacy class ofα1∪α0α2 onM = X1∪TX2

is not determined by the conjugacy classes ofα1 on X1 andα2 on X2 (see the Remark
following Theorem 3.6). Suppose as aboveα0 : π1(T) → SU(3) is abelian with
Stab(α0) = TSU(3), the maximal torus, and consider the effect of conjugating by an
element inSU(3) that normalizesTSU(3). (RecallNTSU(3)/ZTSU(3)

∼= S3, the symmetric
group on three letters.) OnX1, we further require that the conjugating element preserve
S(U(2)× U(1)), and onX2 that it preserveS(U(1)× U(2)). Specific elements are
given by the matrices

A1 =

 0 1 0
−1 0 0
0 0 1

 and A2 =

1 0 0
0 0 1
0 −1 0

 .

Conjugatingαi by Ai gives rise to an action ofZ2 which switches the order of the two
eigenvalues ofαi(µi) not equal to 1. TheZ2 actions gives us discrete gluing parameters,
and their overall effect on our count is to multiply by a factor of four. Thus, we see
that the total number of isolated components inR∗(M,SU(3)) is 1

4(q2
1 − 1)(q2

2 − 1),
and because the Casson invariant of the (2,q) torus knot equals18(q2 − 1), we obtain
the desired formula.

6 Cohomology calculations for(p, q)-torus knots

In this section, we present various cohomology results that are needed as input for
the spectral flow computations in the next section, where we shall prove that the
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spectral flow to each of theseSU(3) representations is even. We choose a nice path
of representations connecting the trivial representation to theseSU(3) representations
and compute at which points the dimension of kernel of the odd signature operator with
the boundary conditions fromDefinition 2.4jumps.

Let K be the (p,q)-torus knot inS3 and X = S3 \ νK its complement. We identify
T (as inSection 2) with ∂X, such that the inclusionj : T = ∂X → X carriesλ to
a null-homologous loop inX. We orientX so that−∂X = T , and we put a metric
on X such that a collar ofX is isometric to [0,1] × T . The formdm on T extends
to a closed 1-form onX generating the first cohomologyH1(X; R), which we will
continue to denotedm. In this section we will compute Ker(j∗) and Im(j∗), where
j∗ : Hi(X; u(3)α) → Hi(∂X; u(3)j∗α), α : π1(X) → S(U(2)×U(1)) is a representation,
andS(U(2)× U(1)) acts onsu(3) via the adjoint representation.

If we identify S(U(2)× U(1)) with U(2) via

(6–1)

(
tA 0
0 t−2

)
7→ tA,

where|t| = 1 andA ∈ SU(2), thensu(3) decomposes invariantly with respect to the
adjoint action ofS(U(2)× U(1)) as

su(3) = u(2)⊕ C2,

wheretA ∈ U(2) acts onu(2) via the adjoint representation and onC2 via multiplica-
tion by t3A. If F is the covering from theU(2) representation space ofπ1(X) to itself
given byF(α)(w) := t3A whereα(w) = tA with |t| = 1 andA ∈ SU(2), the twisted
cohomology splits as

Hi(X; su(3)α) = Hi(X; u(2)α)⊕ Hi(X; C2
F(α)),

whereα acts by the adjoint representation onu(2) and F(α) acts by the defining
representation onC2. In this section, we concentrate on the case ofu(2) coefficients.
There are analogous computations for the cohomology groups withC2 coefficients,
see [5, Section 6.1] and [4, Section 3.1] for instance, but these computations are not
needed here.

Proposition 6.1 Let α be an U(2) representation of π1(X), where U(2) acts on u(2)
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via the adjoint representation. Then

dimH0(X; u(2)α) =


4 if α is central,

2 if α is abelian, but not central,

1 otherwise.

(6–2)

dimH1(X; u(2)α) =

{
4 if α is abelian and α(xp) is central,

2 otherwise.
(6–3)

Proof The knot groupπ1(X) of the (p,q) torus knotK ⊂ S3 admits the presentation

π1(X) ∼= 〈x, y | xp = yq〉.

Since everyU(2) matrix is diagonalizable, any representationα : π1(X) → U(2) can
be conjugated so that

α(x) = s

(
a 0
0 ā

)
.

We will use the bar resolution to compute the cohomology. Let

(
ui z
−z̄ vi

)
∈ u(2).

Then

s

(
a 0
0 ā

)(
ui z
−z̄ vi

)(
s

(
a 0
0 ā

))−1

=
(

ui 0
0 vi

)
+
(

a2 0
0 ā2

)(
0 z
−z̄ 0

)
yields

(6–4) δ0
(

ui z
−z̄ vi

)
(x) =

(
Id−

(
a2 0
0 ā2

))(
0 z
−z̄ 0

)
.

If α is central, then Ker(δ0) = u(2). If α is abelian and non-central, thenα(y) is also
diagonal, and

Ker(δ0) = Ker(δ0(·)(x)) = Ker(δ0(·)(y))

is the 2–dimensional space of diagonalu(2) matrices. Ifα is not abelian, thenα(y) is
not diagonal, and Ker(δ0(·)(x)) and Ker(δ0(·)(y)) are not equal. Then

Ker(δ0) = Ker(δ0(·)(x)) ∩ Ker(δ0(·)(y))

is 1–dimensional, because

(
ui 0
0 ui

)
commutes with conjugation. This shows (6–2).

Let ζ be a 1-cocycle. Thenζ(x) = X and ζ(y) = Y for X,Y ∈ u(2) satisfying the
equation

p−1∑
i=0

xi · X =
q−1∑
i=0

yi · Y.
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If α is central, the above equation simplifies topX = qY and the space of 1-cocycles
is 4–dimensional. Ifα is non-central, we compute

p−1∑
i=0

xi · X =
p−1∑
i=0

(
ai 0
0 āi

)
· X = p

(
ui 0
0 vi

)
+

p−1∑
i=0

(
a2i 0
0 ā2i

)(
0 z
−z̄ 0

)

= p

(
ui 0
0 vi

)
+

(
a2p−1
a2−1 0

0 ā2p−1
ā2−1

)(
0 z
−z̄ 0

)
.

(6–5)

If α is abelian and non-central, note thatα(x)p = α(y)q need not be central. A statement
for y analogous to (6–5) then shows that the space of 1-cocycles is 4–dimensional if
α(x)p is non-central, and is 6–dimensional ifα(x)p is central. Ifα is irreducible, then
α(x)2p = α(y)2q = 1. Then, just like for the 0-cocycles, Ker(δ1) does not contain
all diagonal matrices ofu(2), but only those with equal entries. Therefore, in view of
(6–5), the space of 1-cocycles is 5–dimensional forα irreducible. Since by (6–4) the
space of 1-coboundaries is 0–dimensional forα central, 2–dimensional forα abelian
and non-central, and 3–dimensional otherwise, (6–3) follows.

Proposition 6.2 Let α be an U(2) representation of π1(T), where U(2) acts on u(2)
via the adjoint representation. Then

dimH0(T; u(2)α) =

{
4 if α is central,

2 otherwise,
(6–6)

dimH1(T; u(2)α) =

{
8 if α is central,

4 otherwise.
(6–7)

Proof The computation of (6–6) works just like the computation for (6–2), keeping
in mind that all representations are abelian and we may assume that they are diagonal.
For (6–7) note that a 1-cocycleζ satisfiesζ(λ) − µ · ζ(λ) = ζ(µ) − λ · ζ(µ). For α
non-centralζ is therefore uniquely determined up to coboundary (compare with (6–4))
by its values in the diagonal matrices.

Together with the computations fromProposition 6.1andProposition 6.2we can prove
the following result. In the following, we decomposeu(2) = U⊕W into diagonal and
off-diagonal matrices, and further decomposeU = U′ ⊕ U′′ , where

U =
{(

ia 0
0 ib

)}
, U′ =

{(
ia 0
0 ia

)}
and U′′ =

{(
ia 0
0 −ia

)}
.

Define Qα,β = Q12
α,β ⊆ Ω0(T; W) to be theu(2)-analogue of the subspace described

for su(n) in (2–2) and (2–4), and recall the representationϕα,β of π1(T) given just
afterDefinition 2.1.
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Theorem 6.3 Suppose A is a U(2) connection on X with hol(A) = ρ and ρ|T = ϕα,β .
Then

(6–8) LA =


U ⊕Qα,β ⊕ U dm⊕Qα,β dm if ρ is central,

U ⊕ U dm if ρ is abelian, but not central,

U′ ⊕ U (dm− pq d̀ )⊕ U′′ dm∧ d` otherwise,

and for WA := Ker(H1(X; u(2)ρ) → H1(∂X; u(2)ρ))

(6–9) dim(WA) =

{
2 if ρ is non-central and ρ(xp) is central,

0 otherwise.

Note that the non-central abelian representations with ρ(xp) central are twisted bifur-
cation points of the SU(2) representation variety of the knot complement, that is, the
‘T’-type intersections in the SU(2) representation variety of the knot complement (see
Figure 2), twisted in the sense of Definition 4.2.

Proof First observe thatρ is central if and only if its pull-back toπ1(T) is central, be-
cause the meridian normally generates the fundamental group of the knot complement.
Let us compute the limiting values of extendedL2-solutions. Notice that

Im(H1(X; u(2)ρ) → H1(∂X; u(2)ρ))

is the differential of the restriction mapR(X,U(2)) → R(T,U(2)) for ρ non-central.
For ρ central orρ abelian withρ(xp) non-central the computations are simple, and
the result is obvious. Ifρ is non-central and abelian withρ(xp) central, we make
use of the fact that Im(H1(X; u(2)ρ) → H1(∂X; u(2)ρ)) is 2–dimensional and that it
containsU dm. Let ρ be irreducible. We know thatρ(µ) = ϕα,β(µ) is diagonal. Then
ζ(µ) = M is diagonal andρ(xp) is central. Therefore,ζ(λ) = −pqM. Again, we
make use of the fact that Im(H1(X; u(2)ρ) → H1(∂X; u(2)ρ)) is 2–dimensional. Then
we employ the de Rham theorem to prove (6–8).

Equation (6–9) follows directly fromProposition 6.1andProposition 6.2.

7 TheSU(3)Casson invariant of spliced sums

SupposeK1 andK2 are (2,q1) and (2,q2) torus knots with complementsX1 andX2

in S3, respectively, and letM = X1 ∪T X2 denote their spliced sum. We shall relate
the SU(3) Casson invariant ofM to the SU(2) Casson invariants of+1 surgeries on
K1 andK2, which are equal to the Casson knot invariantsλ′SU(2)(K1) andλ′SU(2)(K2),
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using the approach of Taubes [16] to make the connection. This involves comparing
various spectral flows, and in applying the results from the previous sections toX2, we
have to be careful with our parametrizations of the boundary: The parameters`1 and
m1 of ∂X1 are identified withm2 and `2. Let X2 be with a metric and orientation as
in Section 6. We orientX1 such that∂X1 = −T and place a metric onX1, such that
a collar of X1 is isometric to [−1,0] × T . It will be convenient to use the notation
P1 = P+ andP2 = P− .

Let B(t) be a path ofSU(3) connections onM with B(0) = Θ andB(1) irreducible, such
thatB(1) is reducible on either knot complement. ByLemma 3.1andTheorem 2.10, it
suffices to consider the spectral flow along a path ofS(U(2)×U(1)) andS(U(1)×U(2))
connections onX1 and X2. Whenever convenient, identifyS(U(2) × U(1)) (and
similarly S(U(1)× U(2))) with U(2) as in (6–1) with the induced action onsu(3) =
u(2)⊕ C2 as before. We can assume that each path is the composition of a path of
SU(2) connections with a path of twists of a fixedSU(2) connection. The following
definition makes this more precise.

Definition 7.1 Arrange pathsÃ1(t) and Ã2(t) of SU(2) connections,t ∈ [0, 1
2], as

well as pathsA1(t) andA2(t) of SU(3) connections,t ∈ [0,1], on the knot complement
X1 andX2 respectively, satisfying

(1) A1(0) = Θ, A2(0) = Θ, A1(1) = B(1)|X1 , A2(1) = B(1)|X2 ,

(2) Ã1(t) andÃ2(t) are paths of flatSU(2) connections, and we denote byA1(t) and
A2(t) the corresponding paths ofSU(2)× {1} and {1} × SU(2) connections,
and

(3) ρ1(t) := hol(A1(t)) is a �1-twist of hol(Ã1(1
2)) for t ∈ [ 1

2,1], and ρ2(t) :=
hol(A2(t)) is a�2-twist of hol(Ã2(1

2)) for t ∈ [ 1
2,1].

(4) %̃1 and%̃2 are paths iñΛ2 with Ai(t)|T = a%i (t) as inDefinition 2.1, %̃1(0) = %̃2(0)

and %̃1(1) = %̃2(1), whereπ ◦ %̃i = %i andπ : Λ̃2 → Λ2 ∼= R4 the projection.

Figure 3describes the situation in the case of a spliced sum of two trefoil complements.
It shows theirSU(2) representation varieties immersed in theSU(2) pillow case and
the holonomy ofÃi(t), which is the untwisted part of the pathsAi(t). The grey line is
on the back of the pillowcase and the black line is on the front of the pillowcase. Let
β1,j : π1(X1) → SU(2) andβ2,j : π1(X2) → SU(2) be representations forj = 1, . . . ,4
such that

(χθ1,j �1 β1,j) ∪ (χθ2,j �2 β2,j)
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are SU(3) representations ofπ1(M). As in the proof ofTheorem 5.1, we find four
of the isolatedSU(3) representations ofπ1(M), and the others (there are 16 total) are
obtained by applying the discrete gluing parameters.

β1,4

β1,1

θ1

θ2

Ã1

Ã2

β2,4

β1,3

β2,2

β2,1

β2,3
β1,2

Figure 3: TheSU(2) representation varieties of two trefoils

By Theorem 2.10we have

SF(B(t)) = SF(A1(t); P+
%̃1(t)) + SF(A2(t); P−

%̃2(t)) + SF(%̃1(1− t) ∗ %̃2(t))

+ τµ(JLX1,0,K
+
%̃1(0) ⊕ L̂ +,LX2,0)− τµ(JLX1,1,K

+
%̃1(0) ⊕ L̂ +,LX2,1).

In order to compute the above summands, we can break up thesu(3) spectral flow
into u(2) and C2 spectral flow. Note that the boundary conditions also respect the
decomposition ofsu(3). In particular, we will see in this section that theC2 spectral
flow is even, and that theu(2) spectral flow vanishes fort ∈ [ 1

2,1] and equals thesu(2)
spectral flow along̃A1(t) or Ã2(t) for t ∈ [0, 1

2]. Let us start with the easier case.

Proposition 7.2 Let A(t) be a path of U(2) connections on Xi with A(t)|T = a%(t) ,
% = π ◦ %̃ and hol(A(t)) acting on C2 via multiplication. Then SFC2(A(t); P i

%̃(t)) is
even.
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Proof Since DA(t) and Sa%(t) are C-linear, P i
%̃(t) ∩ L2(Ω0+1+2(T; C2)) is a vec-

tor space overC and the eigenspaces ofDA(t) with boundary conditionsP i
%̃(t) ∩

L2(Ω0+1+2(T; C2)) are complex subspaces. Therefore, the eigenvectors come in pairs
and the (real) spectral flow is even as claimed.

We will need the following lemma for various computations.

Lemma 7.3 Let A(t) be any path of irreducible U(2) connections on Xi with A(t)|T =
a%(t) and % = π ◦ %̃. Then

SFu(2)(A(t); P i
%̃(t)) = 0

Proof Consider the casei = 1. The computation of the limiting values of extended
L2-solutions inTheorem 6.3and the definition ofL̂ in Definition 2.4show that for
hol(A) = aα,β , θ arbitrary, andu(2) coefficients,

Λ∞A ∩P+
α,β,θ = LA ∩ L̂ + = U′′ dm∧ d`,

and hence by [12, Lemma 8.10]

dim Ker(DA; P+
α,β,θ) = dim(Λ∞A ∩P+

α,β,θ) = 1.

Therefore, there is nou(2) spectral flow along a path of irreducibles. A similar
computation fori = 2 completes the proof.

TheSU(3) Casson invariant ofM is a signed count of irreducibleSU(3) representations
of π1(M). By Theorem 2.10, this sign is determined by thesu(3) spectral flow onXi ,
i = 1,2, to these representations. The following proposition motivates the appearance
of the SU(2) Casson invariant: thissu(3) spectral flow is equal to thesu(2) spectral
flow to certain irreducibleSU(2) connections onXi . It turns out that there is a fixed
number of such irreducibleSU(2) connections associated to each irreducibleSU(2)
representation, the signed count of which is theSU(2) Casson invariant.

Proposition 7.4 For the path Ai(t) given in Definition 7.1, we have

SFu(2)(Ai(t); P
i
%̃i (t)) = SFsu(2)(Ai(t); P

i
%̃i (t)), t ∈ [0, 1

2],(7–1)

SFu(2)(Ai(t); P
i
%̃i (t)) = 0, t ∈ [ 1

2,1].(7–2)

Proof By Theorem 6.3we get for hol(A) = aα,β andθ arbitrary

Keru(2)(DA; P+
α,β,θ) = U′ ⊕ Kersu(2)(DA; P+

α,β,θ)

Keru(2)(DA; P−
α,β,θ) = Kersu(2)(DA; P−

α,β,θ)⊕ U′′ dm∧ d`.and

Sincesu(2) eigenfunctions are alsou(2) eigenfunctions, we get (7–1). Lemma 7.3and
the Remark inSection 5yield (7–2).



Splitting spectral flow and the SU(3) Casson invariant 35

Let X+
1 andX+

2 be +1 surgery on the corresponding knots. LetSi = X+
i \Xi , which

is a solid torus, whoseSU(2) representation variety maps into the pillow case as
the diagonal. A simple computation analogous toTheorem 6.3gives the limiting
values of extendedL2-solutionsLSi with su(n) coefficients forSi keeping in mind the
parametrization induced by surgery.

Lemma 7.5 Let A be an SU(n) connection on Si with hol(A) = ρ and ρ|T = ϕα,β .
Decompose su(n) = Un ⊕ Wn into diagonal and off-diagonal matrices as before and
let Qα,β be as defined in equation (2–4). Then

LSi ,α,β =

{
Un ⊕Qα,β ⊕ Un(dm+ d`)⊕Qα,β(dm+ d`) if ρ is central,

Un ⊕ Un (dm+ d`) otherwise.

By Lemma 7.3we can elongatẽAi(t), t ∈ [0, 1
2], by a path of irreducibleSU(2)

connections to a path̃Ai(t) of flat connections onXi such thatÃi(1) can be extended
flatly to Ã′i(t) on X+

i . We assume thataσi (t) := Ai(t)|T , π ◦ σ̃i(t) = σi(t) for some path
σ̃i which agrees with ˜%i for t ∈ [0, 1

2]. Working modulo 2, we applyTheorem 2.10,
Lemma 7.3, Proposition 7.2, Proposition 7.4, andProposition 2.9to see that

SFsu(3)(B(t)) ≡ SFsu(2)(Ã1(t); P+
σ̃1(t)) + SFsu(2)(Ã2(t); P−

σ̃2(t))

+ τµ(JLX1,%1(0),K
+
%̃1(0) ⊕ L̂ +,LX2,%1(0))− τµ(JLX1,%1(1),K

+
%̃1(1) ⊕ L̂ +,LX2,%1(1))

− τµ(JLX1,σ1(0),K
+
σ̃1(0) ⊕ L̂ +,LS2,σ1(0)) + τµ(JLX1,σ1(1),K

+
σ̃1(1) ⊕ L̂ +,LS2,σ1(1))

− τµ(JLS1,σ2(0),K
+
σ̃2(0) ⊕ L̂ +,LX2,σ2(0)) + τµ(JLS1,σ2(1),K

+
σ̃2(1) ⊕ L̂ +,LX2,σ2(1)).

Note that the Maslov triple indices in the last two lines are with respect tosu(2) coef-
ficients, while the first two Maslov triple indices are with respect tosu(3) coefficients.
It remains to show that these Maslov triple indices add up to an even number.

Recall that in generalSa and DA preserve the decompositionsu(n) = Un ⊕ Wn into
diagonal and off-diagonal parts and are complex linear on the forms with values in the
off-diagonal matrices. Therefore, we only need to consider the triple Maslov indices on
the forms with values in the diagonalsu(n) matrices, because the contribution from the
off-diagonalsu(n) matrices is always even. Furthermore, the remaining Lagrangians
are direct sums of Lagrangian subspaces ofL2(Ω0+2(T; Un)) and L2(Ω1(T; Un)). As
before, we identifysu(3) with u(2) ⊕ C2 and alsoU3 with U in order to apply
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Theorem 6.3to see that, modulo 2, we have

τµ(JLX1,%1(0),K
+
%̃1(0) ⊕ L̂ +, LX2,%1(0)) ≡ τµ(U dm∧ d`,U dm∧ d`,U)

+ τµ(U dm,U dm,U dm),
(7–3)

τµ(JLX1,%1(1),K
+
%̃1(1) ⊕ L̂ +, LX2,%1(1)) ≡ τµ(U′ dm∧ d`,U′ dm∧ d`,U′)

+ τµ(U′′,U′′ dm∧ d`,U′′ dm∧ d`)

+ τµ(U (dm+ pq d̀ ),U dm,U (dm− pq d̀ )).

(7–4)

Clearly the Maslov triple indices on the right side of (7–3) and the first two on the right
side of (7–4) vanish byLemma 2.5. For the third Maslov triple index on the right side
of (7–4), note thatU is 2–dimensional. Therefore, (7–3) and (7–4) are congruent to 0
mod 2.
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J(U(dm+ d`))

Figure 4: Path for (7–7)
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J(U(dm− pq d̀ ))

Figure 5: Path for (7–8)

For the Maslov triple indices concerning thesu(2) coefficients, we letU = U2 and see
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that, modulo two, we have

τµ(JLX1,σ1(0),K
+
σ̃1(0) ⊕ L̂ +, LS2,σ1(0)) ≡ τµ(U dm∧ d`,U dm∧ d`,U)

+ τµ(U dm,U dm,U (dm+ d`)),
(7–5)

τµ(JLS1,σ2(0),K
+
σ̃2(0) ⊕ L̂ +, LX2,σ2(0)) ≡ τµ(U dm∧ d`,U dm∧ d`,U)

+ τµ(U (d`− dm),U dm,U dm),
(7–6)

τµ(JLX1,σ1(1),K
+
σ̃1(1) ⊕ L̂ +, LS2,σ1(1)) ≡ τµ(U,U dm∧ d`,U dm∧ d`)

+ τµ(U (dm+ pq d̀ ),U dm,U (dm+ d`)),
(7–7)

τµ(JLS1,σ2(1),K
+
σ̃2(1) ⊕ L̂ +, LX2,σ2(1)) ≡

τµ(U dm∧ d`,U dm∧ d`,U dm∧ d`)

+ τµ(U (d`− dm),U dm,U (dm− pq d̀ )).

(7–8)

Again, the Maslov triple indices on the right side of (7–5) and (7–6) vanish by
Lemma 2.5. One can see that the Maslov triple indices on the right side of equa-
tions (7–7) and (7–8) vanish as follows. Choose the shortest path fromU dm to
U (dm+pq d̀ ) by a rotation as indicated inFigure 4and notice that this path intersects
neitherU d` = J(U dm) nor J(U (dm+d`)). SimilarlyFigure 5describes the situation
for a path fromU dm to U (d` − dm) by a rotation, which intersects neitherJ(U dm)
nor J(U (dm− pq d̀ )). In summary, all Maslov triple indices in our formula are even
as claimed.

Recall that every contribution to theSU(2) Casson invariant is positive. Then we get
the following result directly fromTheorem 5.1.

Theorem 7.6 Suppose K1 and K2 are torus knots of type (2,q1) and (2,q2), respec-
tively, and M is their spliced sum. Then

λSU(3)(M) = 16λ′SU(2)(K1) λ′SU(2)(K2),

where λ′SU(2)(K) is the SU(2) Casson knot invariant normalized to be 1 for the trefoil.
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