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Abstract. We describe analytical aspects of the theory of spectral and bound-
ary value problems for the odd signature operator twisted by a flat connection
and outline how these are used to compute gauge-theoretic topological invari-
ants of 3-manifolds.

1. Introduction

The Calderón projector and its range, the Cauchy data space, are well known
and important tools in the study of boundary value problems and in the application
of cut-and-paste techniques for Dirac operators. In the applications of the theory
of Dirac operators to geometric topology, the odd signature operator as defined in
the fundamental article of Atiyah, Patodi, and Singer [2] plays a prominent role.
On a closed manifold, its kernel can be identified with cohomology and hence is
independent of the choice of Riemannian metric. More subtly, spectral invariants
such as spectral flow and η invariants also have topological properties for which
no general analysis free definitions exist. One of the purposes of this article is to
catalog some of the analytical properties of the Calderón projector which are special
to the odd signature operator developed in the articles by Daniel and Kirk [14] and
Kirk and Lesch [24].

The other purpose is to indicate the analytical aspects of the spectral flow calcu-
lations needed to compute SU(3) Casson invariants defined by Boden and Herald
in [5]. In a ground breaking article, Taubes [30] interpreted Casson’s SU(2) in-
variant of homology 3-spheres in gauge theory terms. The spectral flow of the odd
signature operator entered into the formulation as a means to orient moduli spaces.
Taubes’ article has had a lasting impact on the study of analysis on 3-manifolds
and forms the blueprint on which many constructions of topological invariants of
3-manifolds are based. This includes the work of the authors on SU(3) generaliza-
tions of Casson’s SU(2) invariant, reported on in the articles [5, 6, 7, 8].

It is typical in geometric topology to carry out calculations of topological invari-
ants using cut-and-paste constructions. The articles [7] and [8] contain calculations
of the SU(3) Casson invariant for Seifert-fibered homology 3-spheres. These calcula-
tions necessarily involve cut-and-paste problems for spectral flow, using techniques
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originating in articles by Yoshida [31], Nicolaescu [27], Cappell, Lee, and Miller
[12], Kirk and Klassen [22], and Daniel and Kirk [14].

The calculations in [7, 8] also involve many other techniques, including the anal-
ysis of SU(2) and SU(3) flat moduli spaces on homology spheres and knot comple-
ments using algebraic-geometric techniques, analysis of perturbations of the flat-
ness equations, calculations of Chern-Simons invariants, and enumeration of lattice
points in convex polytopes. Consequently, the cut-and-paste analysis of the odd
signature operator is treated only tersely there, and the present article gives an
expanded and somewhat simplified exposition of the analytical methods used in
those articles. The interested reader may wish to read [8] and [7] in conjunction
with the present article.

We now outline the contents of this article. In Section 2 we recall the definition of
the odd signature operator twisted by a connection and its tangential operator, the
de Rham operator. We explain how the kernels of these operators and the scattering
Lagrangian are determined topologically when the connection is flat. We discuss the
spectral decomposition of the tangential operator and the corresponding Atiyah-
Patodi-Singer (APS) boundary conditions. One of the main technical difficulties
which is addressed in our work is the fact that the APS boundary conditions do
not vary continuously as the twisting connection is varied.

In Section 3 we recall the definition of the Calderón projector and the Cauchy
data space for the odd signature operator acting on a manifold with boundary.
(We find it more intuitive to work with the Cauchy data spaces rather than the
Calderón projector.) In Section 4 we state and outline a proof of a theorem which
identifies the adiabatic limit of the Cauchy data space, using a theorem of Nicolaescu
[27]. The adiabatic limit of the Cauchy data space for the odd signature operator
twisted by a flat connection is described as the graded vector space associated to
a filtration determined by the eigenspace decomposition of the tangential operator
and the Cauchy data space. A precise description of the adiabatic limit is the key to
the proofs of Theorem 5.1 and Theorem 5.2 concerning the behavior of Cauchy data
spaces for the two parts in a decomposition of a closed manifold along a separating
hypersurface. Theorems 5.1 and 5.2 illuminate the essential analytical property of
the odd signature operator which distinguishes it from Dirac operators of general
type. Roughly speaking it says that if one replaces a closed manifold with the
two pieces in a decomposition along a separating hypersurface with infinite collars
attached, then the L2-solutions to DAφ = 0 on each piece do not interact. The
precise statement is key to the proof of a splitting theorem for η and ρα invariants
in [24] and simplifies the spectral flow calculations of [8].

Section 6 describes Taubes’ approach to Casson’s SU(2) invariant and SU(3)
generalizations. We also discuss perturbations, which are needed to define gen-
eralized Casson invariants, but which lead to non-Dirac operators, indeed non-
pseudodifferential operators. We discuss the results of an article by Kirk, Himpel,
and Lesch [21] which show how to extend the construction of the Calderón projector
to this generalized class of operators.

Sections 7, 8, and 9 contain a description of the cut-and-paste methods to com-
pute the spectral flow terms which occur in the definitions of the SU(3) Casson
invariant, using the technology of Cauchy data spaces.
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2. The odd signature operator

The odd signature operator takes as input a Hermitian C
n bundle E → X over

a compact, Riemannian manifold X with or without boundary of dimension 2k+1,
and a unitary connection A on E . The connection A induces a covariant derivative

dA : C∞(X ; E ) → C∞(X,E ⊗ T ∗X),

which extends to a generalized exterior derivative

dA : Ωp(X ; E ) → Ωp+1(X ; E )

by the Leibniz rule

dA(ω ∧ τ) = dA(ω) ∧ τ + (−1)|ω|ω ∧ dA(τ).

The Riemannian metric on X induces a (fiberwise) Hodge ∗ operator

∗ : Ex ⊗ Λp(T ∗
xX) → Ex ⊗ Λ2k+1−p(T ∗

xX).

The Hermitian metric on E and Riemannian metric on X induce inner products
〈 , 〉x on the vector spaces Ex ⊗ Λp(T ∗

xX). These structures extend to sections,
yielding the L2-inner product on Ωp(X ; E ):

(ω, τ) =

∫

X

〈ωx, τx〉x,

and the Hodge ∗ isometry

∗ : Ωp(X ; E ) → Ω2k+1−p(X ; E ).

We use the notation Ωev(X ; E ) = ⊕pΩ
2p(X ; E ) and Ω∗(X ; E ) = ⊕pΩ

p(X ; E ). If
Y ⊂ X is a submanifold then we denote forms on Y with values in the restriction
E |Y by Ωp(Y ; E ). Similar notation will be used for cohomology groups.

With this notation in place, the odd signature operator coupled to the connection
A

DA : Ωev(X ; E ) → Ωev(X ; E ),

is a formally self adjoint operator acting on sections of the bundle of even degree
differential forms on X with values in E , defined by

(2.1) DA(β) = in+1(−1)p−1(∗dA − dA∗)(β) for β ∈ Ω2p(X ; E ).

The odd signature operator DA is a generalized Dirac operator, and as such
enjoys several nice properties including the unique continuation property. (See the
book [10] by Booss-Bavnbek and Wojciechowski for a comprehensive treatment of
generalized Dirac operators and boundary value problems.) For the purpose of this
article, the most important feature that distinguishes the odd signature operator
from a general Dirac operator is the following consequence of the de Rham theorem.

Suppose that the connection A is flat (i.e. dA ◦ dA = 0) and that X is closed.
Then DA(ω) = 0 if and only if dAω = 0 and d∗A(ω) = 0, where d∗A denotes the

L2-adjoint of dA and is given by the formula d∗A(ω) = (−1)|ω| ∗ dA ∗ ω. In other
words, DA(ω) = 0 if and only if ω is a harmonic form in the elliptic complex

(2.2) · · · dA−−→ Ωp−1(X ; E )
dA−−→ Ωp(X ; E )

dA−−→ Ωp+1(X ; E )
dA−−→ · · · .

The Hodge and de Rham theorems identify the space of harmonic forms of the
complex (2.2) with the singular cohomology H∗(X ; Cn

α) of X with local coefficients
determined by the holonomy representation α = holA : π1X → U(n) of the flat
connection A. In particular, the dimension of the kernel of DA is independent of the
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choice of Riemannian metric on X . This property gives us the flexibility to deform
the metric to one suited to cut-and-paste operations without losing information.
When A is not flat (2.2) is not a complex and the kernel of DA is generally metric
dependent.

The assumption that X be closed in the previous paragraph can be removed
by imposing suitable boundary conditions. Classically this would be done using
Dirichlet (i∗(ω) = 0) or Neumann (i∗(∗ω) = 0) boundary conditions, where i :
∂X ⊂ X denotes the inclusion of the boundary. This works well on the level of
the elliptic complex (2.2); the space of harmonic forms of the resulting Dirichlet
complex is isomorphic to H∗(X, ∂X ; Cn

α) and the space of harmonic forms of the
resulting Neumann complex is isomorphic toH∗(X ; Cn

α) (see e.g. Duff and Spencer’s
article [15]). However, these local boundary conditions are not self adjoint. More
precisely, the operator DA with domain {ω | i∗(ω) = 0} has as adjoint DA with
domain {ω | i∗(∗ω) = 0}. In other words, the Neumann and Dirichlet boundary
conditions are adjoint. Since our focus is on spectral properties of self adjoint
realizations of DA we are forced to consider non-local self adjoint elliptic boundary
conditions, and this leads us to apply the corresponding Calderón-Seeley theory.

Suppose that ∂X is nonempty. Give X a Riemannian metric so that a collar of
∂X is isometric to [0, ǫ) × ∂X . Let A be a connection on X . We assume that A is
in cylindrical form on the collar. This means that there is a U(n) connection a on
E |∂X so that the restriction of A to the collar [0, ǫ) × ∂X is of the form

A[0,ǫ)×∂X = q∗(a),

where q : [0, ǫ) × ∂X → ∂X is the projection to the second factor. Let da :
Ωp(∂X ; E ) → Ωp+1(∂X ; E ) denote the associated coupled de Rham operator on
∂X , thus dA = da + dt∧ ∂

∂t . Any connection which is flat in a neighborhood of the
boundary can be gauge transformed into cylindrical form.

Define a restriction map

r : Ωev(X ; E ) → Ω∗(∂X ; E )

by the formula

(2.3) r(β) = i∗(β) + i∗(∗β)

where i : ∂X →֒ X denotes the inclusion of the boundary.
To avoid confusion we denote the Hodge ∗ operator on the boundary by ∗̂, thus

∗̂ : Ωp(∂X ; E ) → Ω2k−p(∂X ; E ).

We use ∗̂ to define

J : Ω∗(∂X ; E ) → Ω∗(∂X ; E )

by

(2.4) J(β) =

{
ik−1(−1)p∗̂ β if β ∈ Ω2p(∂X ; E ),

i1−k(−1)q∗̂ β if β ∈ Ω2q+1(∂X ; E ).

We define the de Rham operator coupled to the connection a,

Ta : Ω∗(∂X ; E ) → Ω∗(∂X ; E )

by

Ta(β) = (−1)p+1(da∗̂ + ∗̂da)β for β ∈ Ωp(∂X ; E ).
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The operator Ta is a self adjoint generalized Dirac operator with respect to the L2

inner product on the vector space of E |∂X -valued differential forms on ∂X :

(2.5) (φ, τ)∂X =

∫

∂X

〈φ, τ〉x, φ, τ ∈ L2
(
Ω∗(∂X; E )

)
.

Since ∂X is closed, Ta has discrete spectrum with each eigenvalue of finite multi-
plicity.

The following lemma is well known and routine to verify (see [24] for a proof).

Lemma 2.1. The restriction map r of Equation (2.3) induces an identification

Φ : Ωev([0, ǫ) × ∂X ; E ) → C∞([0, ǫ),Ω∗(∂X ; E )),

which extends to a unitary operator on the L2 completions. Moreover,

(2.6) ΦDAΦ−1 = J( ∂
∂x + Ta),

where x denotes the collar coordinate. Ta reverses the parity of forms, and the
formulas

(2.7) JTa = −TaJ, J
2 = −I

hold.
Suppose furthermore that a is a flat connection on ∂X. Then Tada = −daTa and

Tad
∗
a = −d∗aTa, where d∗a = −∗̂da∗̂ is the L2 adjoint of da. Moreover, T 2

a preserves
the subspace Ωp(∂X ; E ) for each p, and the kernel of Ta is identified using the Hodge
theorem with the cohomology of the complex

(2.8) · · · da−→ Ωp−1(∂X; E )
da−→ Ωp(∂X; E )

da−→ Ωp+1(∂X; E ) → · · · .
The de Rham isomorphism identifies this cohomology with the singular cohomology
H∗(∂X ; Cn

α) with local coefficients determined by the holonomy α : π1(∂X) → U(n)
of the flat connection a. �

Equation (2.6) says that DA is of Atiyah-Patodi-Singer type near the boundary
of X , with tangential operator Ta. Equation (2.7) implies that the spectrum of
Ta is symmetric, and J takes the subspace of λ eigenvectors isometrically to the
subspace of −λ eigenvectors. In particular J preserves kerTa.

Remark 2.2. Since the vector bundle E is to be fixed throughout, to simplify no-
tation we abbreviate L2

(
Ωev(X ; E )

)
by L2(X) and L2

(
Ω∗(∂X; E )

)
by L2(∂X).

Definition 2.3. A Hermitian symplectic space is a complex Hilbert space (H, 〈 , 〉)
with an isometry J : H → H satisfying J2 = −I such that the i and −i eigenspaces
of J have the same dimension. Thus, if H is infinite dimensional, the i and −i
eigenspaces of J should be infinite dimensional.

A subspace L ⊂ H is called isotropic if JL ⊂ L⊥ and Lagrangian if JL = L⊥.
Note that a Lagrangian subspace is closed. A subspace K ⊂ H is a symplectic
subspace provided JK = K and the i and −i eigenspaces of J |K have the same
dimension.

The symplectic space we will use is L2(∂X) with L2-inner product (2.5) and
J defined by (2.4). We will often have to refer to subspaces of L2(∂X) spanned
by various eigenvectors of Ta. If λ is an eigenvalue of Ta, we let Eλ denote the
corresponding eigenspace. If γ ⊂ R is a subset, we denote by Eγ the span of all
eigenvectors of Ta with eigenvalue λ ∈ γ. Because the spectrum of Ta is discrete,
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Eγ is a finite dimensional subspace of L2(∂X) whenever γ is bounded. When γ
is not bounded, we take Eγ to be the span in the L2 sense, meaning we take the
L2 closure. For example, the positive eigenspan of Ta is denoted by E(0,∞), and
E(−ν,ν] denotes the span of eigenvectors with eigenvalue λ satisfying −ν < λ ≤ ν.

By Equation (2.7), the positive (resp. negative) eigenspan of Ta is isotropic in
L2(∂X). It is Lagrangian if and only if kerTa = 0.

If λ > 0 is an eigenvalue of Ta then E−λ ⊕Eλ is a finite dimensional symplectic
subspace of L2(∂X), and the subspaces E−λ and Eλ are Lagrangian in E−λ ⊕ Eλ.
Other useful symplectic subspaces of L2(∂X) are E[−µ,µ] and E(−∞,−µ] ⊕ E[µ,∞).
That these subspaces are preserved by J follows from Equation (2.7).

Since kerTa is preserved by J it is also a symplectic subspace. (The fact that
the i and −i eigenspaces are equidimensional relies on the assumption that (∂X, a)
bounds (X,A).) The geometry of ∂X does not by itself specify a Lagrangian
subspace of kerTa, but in our situation there is a natural Lagrangian subspace
SA ⊂ kerTa, called the scattering Lagrangian, defined in [2] as the limiting values
of extended L2-solutions to DA(φ) = 0. We will give another definition of the scat-
tering Lagrangian in terms of the Cauchy data space below, but we mention the
following folklore result. Associated to the flat connection A is its holonomy repre-
sentation α : π1(X) → U(n) ⊂ GL(Cn) and the corresponding twisted cohomology
groups H∗(X ; Cn

α).

Theorem 2.4. (Corollary 8.4 of [24]) With respect to the identification of kerTa

with the cohomology group H∗(∂X ; Cn
α) given by the Hodge theorem, the scattering

Lagrangian SA equals the image of the restriction map

H∗(X ; Cn
α) → H∗(∂X ; Cn

α).

Given any Lagrangian subspace V ⊂ H∗(∂X ; Cn
α) ∼= kerTa (e.g. V = SA),

the subspaces V ⊕ E(0,∞) and E(−∞,0) ⊕ V are Lagrangian subspaces of L2(∂X).
The Lagrangian E(−∞,0) ⊕ V provides a well posed boundary value problem for
DA acting on X in the sense of Seeley [29]. This is formalized in the following
definition.

Definition 2.5. Denote by L2
s(X) the Sobolev completion of Ωev(X ; E ) to sections

with s derivatives in L2. Recall that restriction to the boundary defines a bounded
linear map L2

t (X) → L2
s(∂X) provided t ≥ s + 1/2 and s > 0 (see e.g. [10]). This

implies that the map r of Equation (2.3) extends to a bounded map r : L2
1(X) →

L2(∂X). The operator obtained by imposing Atiyah-Patodi-Singer (APS) boundary
conditions E(−∞,0) ⊕ V on DA means the operator DA with domain restricted to
the subspace

{φ ∈ L2(X) | φ ∈ L2
1(X) ⊂ L2(X) and r(φ) ∈ E(−∞,0) ⊕ V }

of L2(X), with the restriction map r defined in Equation (2.3).
We call E(−∞,0) ⊕ V and V ⊕ E(0,∞) APS Lagrangians.

The operator DA with APS boundary conditions is an elliptic self adjoint oper-
ator with compact resolvent, and hence has discrete spectrum. When A is flat, the
kernel of DA with APS boundary conditions E(−∞,0) ⊕V is related to cohomology
by the following proposition. (See the last paragraph in the next section for its
justification.)



THE CALDERÓN PROJECTOR FOR THE ODD SIGNATURE OPERATOR... 7

Proposition 2.6. Suppose that A is a flat U(n) connection on X with holonomy
α : π1(X) → U(n) yielding local coefficients Cn

α. Write ker(DA, V ) for the kernel
of DA with APS boundary conditions E(−∞,0)⊕V . Then there is an exact sequence

0 → image
(
Hev(X, ∂X ; Cn

α) → Hev(X ; Cn
α)

)
→ ker(DA, V ) → V ∩ SA → 0. �

Remark 2.7. If a collar of the boundary of X is parameterized as (−ǫ, 0] × ∂X ,
then the role of the positive and negative eigenspan of Ta are exchanged, and so in
that case the Atiyah-Patodi-Singer boundary conditions which lead to a well posed
problem are those of the form V ⊕ E(0,∞).

A useful homotopy theoretic invariant for Lagrangian subspaces of a (for the
moment) finite dimensional symplectic space is the Maslov index. Its existence is
based on the fact that the Grassmannian of Lagrangian subspaces has fundamental
group isomorphic to Z. We use the following manifestation of this fact. If Lt and
Mt, t ∈ [0, 1] are two continuous paths of Lagrangians, then Mas(L,M) ∈ Z is the
count, with sign, of how many times Lt and Mt pass through each other along the
path. Some conventions must be set to deal with the situation when L and M are
not transverse at t = 0 or t = 1 (see below). We refer the reader to Cappell, Lee,
and Miller’s article [11] for a comprehensive exposition of the Maslov index.

The Maslov index extends to infinite dimensional Lagrangians provided one is
careful to choose (Lt,Mt) to be a path of Fredholm pairs of Lagrangian subspaces,
i.e. so that Lt ∩ Mt is finite dimensional and Lt + Mt has finite codimension.
Intuitively one wants Lt and Mt to be sufficiently complementary (or equivalently
Lt and JMt to be sufficiently close) so that the finite dimensional constructions
extend. This was explained in [27] and in detail in [24]. One can topologize the
Grassmannian of (appropriate) Lagrangian subspaces of L2(∂X) so that if Lt and
JMt are continuous paths in this Grassmannian, then the Maslov index gives a well
defined integer Mas(Lt,Mt) ∈ Z. We omit the details here but mention that any
time we refer to continuous paths of infinite dimensional Lagrangians, continuity is
taken with respect to this topology. Furthermore, in any reference to the Maslov
index in this infinite dimensional context, the Lagrangian subspaces will (for each
parameter) be a Fredholm pair, so that the Maslov index makes sense. As usual
with the Maslov index, some conventions must be set to deal with the situation
when the Lagrangians are not transverse at t = 0 or t = 1.

Setting conventions is based on the observation that if L,M are Lagrangian
subspaces of a Hermitian symplectic space, then for all small enough ǫ 6= 0 the
Lagrangians eǫJL and M are transverse. The convention we choose is to replace
the path L(t) by the composite L̂(t) of the three paths e(1−t)ǫJL(0), L(t), and

etǫJL(1) for ǫ > 0 very small. Then L̂(i) is transverse to M(i) for i = 0, 1 and

Mas(L̂,M) = Mas(L,M) whenever L(i) and M(i) are transverse at i = 0, 1. Hence

we define Mas(L,M) to be Mas(L̂,M) whenever L and M are not transverse at
both endpoints. This convention has the virtue that it is additive with respect to
composition of paths.

We take a moment to remind the reader of the notion of spectral flow. Given a
(suitably continuous) path of (suitably nice) self adjoint operators Dt, the spectral
flow SF(Dt) ∈ Z is the net number of eigenvalues that change from negative to
positive. Intuitively one defines the spectral flow to be the algebraic intersection
number of the graph of the spectrum of Dt, Γ = {(t, λ) | ker(Dt −λ) 6= 0} with the
segment S = [0, 1] × {0} in [0, 1] × R. To make this precise requires some work; a
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very careful construction is carried out by Booss-Bavnbek, Lesch, and Phillips in
[9]. As in the case of the Maslov index, conventions must be set to deal with the
situation when 0 is an eigenvalue of D0 or D1. A convenient choice is to take the
intersection of Γ with [0, 1]× {−ǫ} for some small ǫ > 0 (this is called the (−ǫ,−ǫ)
convention). This convention has the advantage that SF is additive with respect to
composition of paths of operators.

We also briefly remind the reader of the η invariant of a Dirac operator D, as
introduced in [2]. The sum

(2.9) η(D, s) :=
∑

λ∈SpecD,λ6=0

Signλ|λ|−s

converges for Re(s) ≫ 0. For appropriate operators (including the twisted odd
signature operator) the function η(D, s) has a meromorphic continuation to C with
no pole at 0. Then η(D) ∈ R is defined to be the value of η(D, s) at s = 0. We
shall also use the notation

η̃(D) :=
(
η(D) + dimker

)
/2 .

The spectral invariants SF(DAt
) and η(DA)−η(Dθ) (where θ denotes the trivial

connection and At is a path from the trivial connection to a flat connection A1)
have no general analysis free definitions, despite the fact that they are independent
of the choice of Riemannian metric and are basically topological invariants. The
motivation for the authors’ work with these invariants is to strip away as much
analysis as possible from the formulas which compute these invariants. Our guiding
principle is that computations of cohomology and representation varieties are quite
reasonable, but direct calculation of the spectrum of the Dirac operator is difficult or
impossible. To use topological methods to avoid direct calculations of the spectrum,
however, requires cut-and-paste machinery. This leads directly to the study of
boundary value problems for the Dirac operator.

3. The Cauchy data space

The Calderón projector for the operator DA is a pseudodifferential projection
in L2(∂X) onto a distinguished Lagrangian subspace called the Cauchy data space
for DA. The Calderón projector is fundamental in the study of boundary value
problems for Dirac operators, as evidenced by its prominent role in the lectures of
this conference. In the context of the odd signature operator, it is a (very) close
relative of the image of the cohomology restriction map H∗(X) → H∗(∂X), a space
of fundamental importance in geometric topology.

First, the definition of the Cauchy data space. Informally, the Cauchy data
space for DA is the subspace of L2(∂X) consisting of restrictions to the boundary
of solutions φ to the equation DAφ = 0. We give a more formal definition; the
statements and proofs of facts invoked in this definition can be found in [10, Part
II].

Definition 3.1. Define the null space N(DA,
1
2 ) to be

N(DA,
1
2 ) := {φ ∈ L2

1/2(X) | DAφ = 0 in X − ∂X}.

The restriction map on smooth sections r : Ωev(X ; E ) → Ω∗(∂X ; E ) of Equation
(2.3) does not in general extend to L2

1/2(X). However, it is defined on N(DA,
1
2 )
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yielding a bounded operator

(3.1) r : N(DA,
1
2 ) → L2(∂X)

(see [10, Theorem 12.4]). One can construct a bounded left inverse K : L2(∂X) →
N(DA,

1
2 ) called the Poisson operator using an invertible extension of DA to a

closed manifold. The composite P = r ◦ K : L2(∂X) → L2(∂X) is a projection
(P 2 = P ) called the Calderón projector. Its image, denoted by Λ(DA), is a closed
subspace of L2(∂X) called the Cauchy data space.

The Calderón projector is a pseudodifferential operator of order 0 which has
the same principal symbol as the projection to the subspace E(0,∞) (in fact Scott
[28] and Grubb [17] proved that the difference of these projections is a smoothing
operator). This implies (Λ(DA), E(−∞,0]) is a Fredholm pair.

The scattering Lagrangian SA ⊂ kerTa satisfies

(3.2) SA = Projker Ta
(Λ(DA) ∩E(−∞,0]).

Indeed, this can be taken as the definition of SA.
The unique continuation property for generalized Dirac operators implies that

the map of Equation (3.1) is injective. This implies that ker(DA, V ) is isomorphic to
Λ(DA)∩(E(−∞,0)⊕V ). Combining this observation, Equation (3.2), and [2, Propo-
sition 4.9] (which corresponds to the case V = 0) yields the proof of Proposition
2.6.

4. The adiabatic limit of the Cauchy data space

Having set up our definitions and notation, we can now turn to a study of the
analytical properties of the odd signature operator on a manifold with boundary.
We begin with a structure theorem for the adiabatic limit of the Cauchy data space
for DA as the collar neighborhood of the boundary is stretched.

Let

XR = X ∪∂X

(
[−R, 0]× ∂X

)

so that ∂XR = {−R} × ∂X . The equation (2.6) shows how to extend DA to XR.
Let ΛR(DA) denote the Cauchy data space for this extension of DA to XR. For
simplicity we write ΛR instead of ΛR(DA), and Λ for Λ(DA) = Λ0(DA).

In [27], Nicolaescu shows that the limit

Λ∞ = lim
R→∞

ΛR

exists and gives a description of it. Moreover, the appendix to [14] shows that the
path of Lagrangians

t 7→
{

Λ1/(1−t) 0 ≤ t < 1,

Λ∞ t = 1

is a continuous map (into the appropriate Grassmannian).
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Fix ν ≥ 0. One has the following increasingly fine decompositions of L2(∂X)
into orthogonal direct sums of symplectic subspaces:

L2(∂X) =
(
E(−∞,0) ⊕ E(0,∞)

)
⊕ kerTa(4.1)

=
(
E(−∞,−ν) ⊕ E(ν,∞)

)
⊕

(
E[−ν,0) ⊕ E(0,ν]

)
⊕ kerTa

=
(
E(−∞,−ν) ⊕ E(ν,∞)

)

⊕
(
da(E(0,ν]) ⊕ d∗a(E[−ν,0))

)
⊕

(
d∗a(E(0,ν]) ⊕ da(E[−ν,0))

)

⊕ kerTa.

The last equality follows from the orthogonal decomposition Eλ = da(E−λ) ⊕
d∗a(E−λ) for λ 6= 0. Notice that in these decompositions, only the first symplectic
subspace is infinite dimensional.

The following theorem was proven in [24] as a refinement of Nicolaescu’s theorem
in the special case of the odd signature operator.

Theorem 4.1. Let ν ≥ 0 be any number large enough so that Λ ∩ E(−∞,−ν) = 0.
Then there exists a subspace W ⊂ da(E(0,ν]) isomorphic to the image of the map

Hev(X, ∂X ; Cn
α) → Hev(X ; Cn

α)

so that, letting W⊥ denote the orthogonal complement of W in da(E(0,ν]), with
respect to the orthogonal symplectic decomposition (4.1) the adiabatic limit Λ∞
decomposes as a direct sum of Lagrangian subspaces:

(4.2) Λ∞ = E(ν,∞) ⊕
(
W ⊕ JW⊥)

⊕ da(E[−ν,0)) ⊕ SA

where SA is the scattering Lagrangian of DA (see Theorem 2.4).
If W = 0 then ν can be taken to be zero and Λ∞ = E(0,∞) ⊕ SA.

Sketch of proof. The starting point for the proof is Nicolaescu’s theorem ([27,
Theorem 4.9]) which asserts that

Λ∞ = E(0,∞) ⊕ lim
R→∞

eRTaLν ,

where Lν is the orthogonal projection to E[−ν,ν] of Λ ∩ E(−∞,ν]:

Lν = ProjE[−ν,ν]

(
Λ ∩ E(−∞,ν]

)
.

Since Λ ∩ E(−∞,−ν) = 0, the (restriction of the) projection

Λ ∩ E(−∞,ν] → E[−ν,ν]

is injective, and hence the projection

Λ ∩ E(−∞,µ] → E[−ν,ν]

is also injective for µ ≤ ν.
Denote by L∞ ⊂ E[−ν,ν] the Lagrangian subspace limR→∞ eRTaLν . Thus

Λ∞ = E(ν,∞) ⊕ L∞.

Hence the problem is reduced to the finite dimensional problem of identifying
the dynamics of the family eRTa acting on the Lagrangian subspace Lν of E[−ν,ν].
The key point is that the largest eigenvalue dominates.

To make this precise, let µ1 < µ2 < · · · < µq denote the complete list of
eigenvalues of Ta in the range [−ν, ν] (thus µi = −µq−i). Given ℓ ∈ Lν , write
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ℓ = ℓ1 + ℓ2 + · · · + ℓq where ℓi lies in the µi eigenspace Eµi
. Define m(ℓ) to be the

largest i so that ℓi is nonzero. Thus

ℓ = ℓ1 + · · · + ℓm(ℓ).

Then

(4.3) lim
R→∞

eRTα
(

1

e
Rµm(ℓ)

ℓ
)

= ℓm(ℓ)

and so ℓm(ℓ) ∈ L∞.
This observation can be reinterpreted as follows. Intersecting Lν with the filtra-

tion
0 ⊂ E[−ν,µ1] ⊂ E[−ν,µ2] ⊂ · · · ⊂ E[−ν,µq ]

gives a filtration

0 ⊂ Lν(µ1) ⊂ Lν(µ2) ⊂ · · · ⊂ Lν(µq) = Lν

of Lν . One can view the quotient L∞(k) := Lν(µk)/Lν(µk−1) as a subspace of
Eµk

. Equation (4.3) implies

L∞ = L∞(1) ⊕ · · · ⊕ L∞(q).

The space Λ ∩ E(−∞,0) consists exactly of solutions to Dφ = 0 which extend to

exponentially decaying (and hence L2) solutions on X∞. These are L2 harmonic
even forms on X∞. Proposition 4.9 of [2] shows that the space of L2 harmonic even
degree forms is isomorphic to the image of Hev(X, ∂X ; Cn

α) → Hev(X ; Cn
α).

Notice that if k is the largest index so that µk < 0, then Λ∩E(−∞,0) is isomorphic
to Lν(µk), since Λ ∩ E(−∞,−ν) = 0. Thus Lν(µk) is isomorphic to the image of
Hev(X, ∂X ; Cn

α) → Hev(X ; Cn
α). It is also clearly isomorphic to L∞(1) ⊕ · · · ⊕

L∞(k). We write
W = L∞(1) ⊕ · · · ⊕ L∞(k).

Similarly, if the kernel of Ta is non-trivial, then µk+1 = 0 and it follows from
the definition and the fact that Λ∩E(−∞,−ν) = 0 that L∞(k + 1) is the scattering
Lagrangian SA. Denoting the sum of rest of the L∞(i) by V we conclude

(4.4) L∞ = W ⊕ SA ⊕ V.

The proof is completed by showing that since W corresponds to harmonic forms
which exponentially decay on X∞, W lies in da(E(0,ν]). The space V is a subspace
of E(0,ν] = d∗a(E[−ν,0))⊕ da(E[−ν,0)). Since L∞ is a Lagrangian subspace of E[−ν,ν]

this forces
V = JW⊥ ⊕ da(E[−ν,0)).

�

5. Adiabatic limits and manifold decompositions

Theorem 4.1 is very useful when computing spectral flow and η invariants of the
odd signature operator over split manifolds. Consider the decomposition

M = X ∪Σ Y

of a closed manifold M2k+1 along a separating hypersurface Σ with the collar
neighborhood parameterized as (−ǫ, ǫ)×Σ and with {−ǫ}×Σ ⊂ X and {ǫ}×Σ ⊂ Y .
Let A be a flat connection on M in cylindrical form on the collar. Replacing the
collar (−ǫ, ǫ)×Σ by (−ǫ−R, ǫ+R)×Σ yields manifolds MR, XR, and YR. Denote
by ΛR(X) and ΛR(Y ) the corresponding Cauchy data spaces of the twisted odd
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signature operators acting on XR and YR, and denote by Λ∞(X) and Λ∞(Y ) their
adiabatic limits, identified in Theorem 4.1.

The paths of Cauchy data spaces obtained by stretching ΛR(X) and ΛR(Y ) to in-
finity are continuous paths in the Lagrangian Grassmannian [14]. The dimension of
the kernel of DA acting on MR is, on the one hand, independent of R ∈ [0,∞) since
it can be identified with the metric independent cohomology group Hev(M ; Cn

α),
where α : π1M → U(n) is the holonomy representation of the flat connection A.
On the other hand, the kernel of DA on MR is identified with ΛR(X) ∩ ΛR(Y ).
Thus dim

(
ΛR(X) ∩ ΛR(Y )

)
is independent of R. In fact, the next theorem states

that this dimension does not jump up even at R = ∞.

Theorem 5.1. Let WX , WY be the spaces of Theorem 4.1 for X and Y , and let
SA(X), SA(Y ) be the scattering Lagrangians, as in Theorem 2.4. Then, for any
R ≥ 0,

ΛR(X) ∩ ΛR(Y ) ∼= Λ∞(X) ∩ Λ∞(Y ) ∼= Λ∞(X) ∩ ΛR(Y ) ∼= ΛR(X) ∩ Λ∞(Y )

and these intersections are isomorphic to

Hev(M ; Cn
α)

and also to
WX ⊕WY ⊕

(
SA(X) ∩ SA(Y )

)
.

The proof follows from Theorem 4.1 and the consequences of Remark 2.7. For a
complete argument, see [24, Lemmas 8.9 and 8.10].

In the following theorem, let R(t) be a continuous, monotonic function [0, 1
2 ] →

[0,∞], e.g. R(t) = t/(1 − 2t).

Theorem 5.2. Consider the path of Lagrangian subspaces obtained by stretching
ΛR(DA, X) to its adiabatic limit and then rotating WX to JWX in da(E(0,ν]) ⊕
d∗a(E[−ν,0)):
(5.1)

L(X)(t) =

{
ΛR(t)(DA, X) t ∈ [0, 1

2 ]

E(ν,∞) ⊕
(
e(2t−1)JWX ⊕ JW⊥

X

)
⊕ da(E[−ν,0)) ⊕ SA(X) t ∈ [12 , 1]

Thus L(X)(0) is the Cauchy data space Λ(DA, X) for DA and L(X)(1) is the APS
Lagrangian E(0,∞) ⊕ SA(X).

Similarly define L(Y )(t) by following the stretching of ΛR(DA, Y ) to its adiabatic
limit and then rotating WY to JWY in da(E[−ν,0)) ⊕ d∗a(E(0,ν]). Hence L(Y )(0) =
Λ(DA, Y ) and L(Y )(1) = E(−∞,0) ⊕ SA(Y ).

Then, (with appropriate conventions for the Maslov index)

Mas(L(X), L(Y )) = 0.

Proof. First, Theorem 5.1 shows that stretching does not change the dimension of
the kernel, and hence the Maslov index for the first half of the path is zero. As for
the second path, there is a technical matter of conventions for the Maslov index
when the Lagrangians are not transverse at the endpoints, but the crucial point
is that in the decomposition (4.1), the rotations on the X and Y sides occur in
different symplectic summands of L2(∂X), and hence do not run into each other.

More precisely, the Maslov index is additive under direct sum of symplectic
spaces and Lagrangian subspaces. Thus the Maslov index Mas(L(X), L(Y )) equals

(5.2) Mas(etJWX ⊕ JW⊥
X , da(E(0,ν])) + Mas(da(E[−ν,0)), e

tJWY ⊕ JW⊥
Y ),
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where the first term in Equation (5.2) is the Maslov index in the finite dimensional
symplectic space da(E(0,ν]) ⊕ d∗a(E[−ν,0)) and the second term is the Maslov index
in d∗a(E(0,ν]) ⊕ da(E[−ν,0)) (see the decomposition (4.1)) and t ∈ [0, 1].

The first term of Equation (5.2) can be simplified further; in fact using additivity
of the Maslov index and the symplectic decomposition

da(E(0,ν]) ⊕ d∗a(E[−ν,0)) = (WX ⊕ JWX) ⊕ (W⊥
X ⊕ JW⊥

X ),

one sees that

Mas(etJWX ⊕ JW⊥
X , da(E(0,ν])) = Mas(etJWX ,WX),

where the Maslov index on the right is taken in WX ⊕ JWX . Our conventions
are chosen so that this Maslov index is zero. Similarly the other term in (5.2)
vanishes. �

Remark 5.3. Any other convention for defining the Maslov index will differ from
ours by the dimensions of the intersection of the Lagrangians at the endpoints.
Thus, no matter what convention is chosen, the conclusion of Theorem 5.2 reads

Mas(L(X), L(Y )) = ǫ1 dimWX + ǫ2 dimWY

where ǫi ∈ {−1, 0, 1}. This causes no computational difficulties since the WX are
identified with cohomology groups in Theorem 4.1.

This is a very satisfying result. It enables one to stretch with impunity and then
to rotate to the APS Lagrangians E(0,∞) ⊕ SA(X) and E(−∞,0) ⊕ SA(Y ), without
worrying about introducing any Maslov index.

In practice this allows one to pretend that Λ(DA, X) and Λ(DA, Y ) are the APS
Lagrangians E(0,∞) ⊕ SA(X) and E(−∞,0) ⊕ SA(Y ) determined by the scattering
Lagrangians. Thus a simple cohomological invariant, the scattering Lagrangian,
has been substituted for a complicated analytic invariant, the Cauchy data space.
This greatly simplifies spectral flow and η invariant computations. For example the
splitting formula for η invariants

η̃(D,M) = η̃(X,Λ(D,X)) + η̃(Y ; JΛ(D,X))

(valid for any generalized Dirac operator) established in [24] reduces to

η̃(D,M) = η̃(X,E(−∞,0) + SA(X)) + η̃(Y ;E(0,∞) + JSA(X))

in the special case of the odd signature operator DA twisted by a flat connection.
One must take care when working with the adiabatic limits of Cauchy data

spaces in a parameterized context. The convergence ΛR → Λ∞ is not uniform with
respect to a parameter. In fact there exist continuous (even analytic) paths of flat
connections for which Λ∞(DAt

) is not continuous in t (see e.g. [8]).
We refer the interested reader to the articles of the authors and their collabora-

tors for applications of this machinery [24, 25, 8, 7, 21]. Theorem 5.2 is crucial to
carrying out spectral flow computations for paths of connections on split manifolds
when the dimension of the kernel of Ta jumps up along a path as in [8] and B.
Himpel’s thesis [20].
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6. Casson’s SU(2) invariant and its generalizations.

Casson’s SU(2) invariant and its generalizations have two contrasting interpre-
tations, one topological and the other analytical. That these interpretations are
equivalent is based on the correspondence between the space R(π1X,SU(2)) of
conjugacy classes of SU(2) representations of π1X and the moduli space M (X,P )
of flat connections on a principal SU(2) bundle P over X .

Roughly speaking, a Casson-type invariant is one that can be defined in the
following way. First fix a compact Lie group G. The space R(π1X,G) of repre-
sentations modulo conjugation is compact and generically zero dimensional. By
defining an orientation on R(π1X,G), the Casson-type invariant is obtained by
counting these points with sign.

In general, there are serious challenges to constructing an invariant according
to this recipe. Before discussing these difficulties, we first describe the simplest
nontrivial example. Namely, we recall the definition of Casson’s SU(2) invariant
for 3-manifolds X with H∗(X ; Z) = H∗(S3; Z) (we say “X is a ZHS,” meaning X
is a Z-homology sphere).

As mentioned above, there are both topological and analytic descriptions of the
invariant, by Casson and Taubes, respectively. The relative benefits of the two
approaches are the following. The topological approach fits immediately with cut-
and-paste constructions, such as Heegaard decompositions and surgery descriptions
of the 3-manifolds. But since it relies on a Heegaard decomposition (to define the
orientations of the points in R(π1X,SU(2))), the topological method requires more
work to show it is a topological invariant. (See Akbulut and McCarthy’s book [1]
for an exposition of Casson’s construction.) In the analytical approach, topological
invariance is fairly straightforward, but the definitions of the orientations involves
spectral data of linear operators associated to flat connections. In as much as efforts
to generalize Casson’s invariant to higher rank groups (SU(n), n > 2) have only
succeeded using the analytic approach, the only known means of calculating these
generalized Casson invariants is via spectral flow calculations. This paper provides
a survey of the techniques that have been used to produce these calculations.

Taubes’ analytic approach to the SU(2) Casson invariant involves the space A

of all connections on the trivial principal SU(2) bundle X × SU(2) over a ZHS
X . Notice that since SU(n) is simply connected, every principal SU(n) bundle
P over a 3-manifold X is trivial and so if E is an associated C

n vector bundle,
Ωp(X ; E ) ∼= Ωp(X)⊗Cn. Moreover, M (X,P ) is homeomorphic to R(π1X,SU(n)).
The gauge group G of bundle automorphisms acts on connections by pulling back
horizontal subspaces. The trivial connection (denoted by θ) gives A a distinguished
base point.

There is a metric independent function, the Chern-Simons function

cs : A → R,

which is defined by transgressing the second Chern class, i.e. given a connection
A1, choose a path At from the trivial connection A0 = θ to A1, and view the path
as a connection A on X × [0, 1]. Then

cs(A1) =

∫

X×I

c2(A) =
1

4π2

∫

X×I

Tr(F (A) ∧ F (A)) ∈ R
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where F (A) denotes the curvature of A. Then cs descends to a R/Z-valued function
on B := A /G . Taubes’ approach is to adapt finite dimensional manifold topology
to B. He uses the L2-gradient vector field of the Chern-Simons function to define
an Euler characteristic, i.e. to define Casson’s invariant as the signed sum over the
zeros of the gradient vector field. The gradient vector field (suitably interpreted)
is given by B ∋ [A] 7→ ∗F (A) ∈ T[A]B ⊂ Ω1(X ; su(2)). Thus the set of zeros is
exactly the moduli space of flat connections. A first technical problem arises in
that B is not a (Banach or Hilbert) manifold (even after suitably completing in a
Sobolev norm), due to the fact that the gauge group G does not act freely on A .
To examine this point more closely, consider more generally a principal G-bundle P
for some compact Lie group G. Let AP denote the space of connections on P , GP

the gauge group of bundle automorphisms, and BP = AP /GP its orbit space. The
stabilizer StabA ⊂ GP of a connection A ∈ AP is isomorphic to a subgroup of G,
namely the centralizer in G of the holonomy subgroup of A. Compactness of G can
be used to show that a slice theorem holds in this case, so that a neighborhood of [A]
in BP is homeomorphic to a neighborhood of 0 in a linear quotient Slice/ StabA.
Gauge equivalent connections have conjugate stabilizers. A connection is called
irreducible if its stabilizer is as small as possible, namely the center of G, and the
subspace B∗

P of gauge equivalence classes of irreducible connections is a Banach
manifold and an open dense subset of BP .

In the case of G = SU(2), there are three possible conjugacy classes of stabilizers
of subgroups of SU(2), the center ±I, the maximal torus S1, and the entire group
SU(2). For flat connections on a ZHSX , there is a single, isolated gauge equivalence
class of reducible connections, namely the class containing the trivial connection.
By ignoring it, Taubes considers cs as a function on the manifold B∗, and its critical
points form a compact space, since it is homeomorphic to R(π1X,SU(2)) − {θ}.

A second technical problem arises, namely that the critical points of cs might not
be a finite set of isolated points, more precisely, cs : B∗ → R/Z may not be Morse.
Taubes addresses this problem by introducing a class of holonomy perturbations
h : B → R. These perturbations have three important properties:

(1) For generic h, cs+ h is Morse in the sense that its critical points are finite,
isolated and the Hessian of cs+ h at each critical point is nondegenerate.

(2) The L2-adjoint of the Hessian of cs+h is a relatively compact perturbation
of the L2-adjoint of the Hessian of cs at each connection.

(3) The holonomy perturbations achieve the kind of perturbations required in
Casson’s construction, so that the two invariants (Taubes’ and Casson’s)
can be compared.

The holonomy perturbations can be constructed for any principal G bundle.
They are roughly defined as follows: Given a solid torus D2 × S1 embedded in
X , one gets a function hol : D2 × A → G which sends (x,A) to the holonomy of
A around the loop {x} × S1. Then, given a cut-off function c : D2 → R and a
conjugation invariant function f : G→ R, define h : A → R by

h(A) =

∫

D2

f(hol (x,A))c(x)dx.

Since f is ad-invariant, h descends to h : B → R. More generally, one chooses
embeddings of n solid tori in X and an invariant function f : Gn → R to define a
perturbation h.
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The last hurdle is to define the sign at each critical point. On a finite dimensional
manifold, the Poincaré-Hopf theorem identifies the Euler characterstic as the signed
sum of zeros of a gradient vector field grad(f), i.e. the critical points of f . The sign
of a critical point p is taken to be (−1)i(p), with i(p) the dimension of the negative
eigenspace of the Hessian of f at p. In the present setting, however, even if A is
a nondegenerate critical point of cs, the Hessian of cs, HA, has infinitely many
negative and positive eigenvalues. However, Taubes showed that HA is a closed self
adjoint operator with discrete spectrum. The spectral flow of HAt

along a path
At joining two critical connections defines a sign difference, or relative orientation
between two critical connections [A0] and [A1]:

Sign([A0], [A1]) = (−1)SF(HAt ).

Here, one uses the affine structure of A to define the Hessian at non-critical points;
this is a continuous path of self adjoint operators provided At is irreducible for all
t.

To circumvent the lack of continuity of HA as A passes through reducible con-
nections (where B is not even a manifold), Taubes observed that stabilizing HA

by adding an operator with symmetric spectrum yields the odd signature operator
DA. (To fit the operator in the context of the present article, it is also necessary
to complexify since the Hessian acts on the real vector space of su(2)-valued forms.
The induced action on C3 ∼= su(2) ⊗ C is unitary. Complexifying does not change
the spectral flow provided one counts complex eigenvalues.) Thus

Sign([A0], [A1]) = (−1)SF(DAt ).

In the case when the Chern-Simons function is not Morse, a suitable perturbation
h is chosen, and the Hessian of cs is replaced by the Hessian of cs+h. This has the
effect of changing DA to an operator DA,h := DA + VA,h, where the perturbation
VA,h is a bounded (in L2) self adjoint operator, which has a pseudolocality property:
letting S ⊂ X denote the union of the solid tori along which the various holonomy
perturbations are defined,

(6.1) ϕVA,h = 0 for all ϕ ∈ C∞
0 (X \ S).

This property says that VA,hf depends only on the restriction of f to S and vanishes
outside S.

If A0 and A1 are critical points of cs+ h, then define

(6.2) Sign([A0], [A1]) = (−1)SF(DAt,h).

To obtain an absolute sign, use the trivial connection as a base point, i.e. set

Sign(A) = (−1)SF(DAt,ht
), A0 = θ,A1 = A, h0 = 0, h1 = h.

An application of the Atiyah-Patodi-Singer theorem shows that if g is a gauge
transformation, then Sign(A)−Sign(g ·A) = 0. Thus Sign(A) is well defined on B.
With these hurdles cleared, Taubes defines an invariant by

(6.3) λ(X) =
∑

[A]∈M∗

h

Sign(A),

where M ∗
h denotes the compact 0-dimensional manifold of perturbed flat connec-

tions, i.e. the space of critical points of cs+ h modulo gauge transformations. The
assumption that X is a ZHS implies that M ∗ is compact (as is M ∗

h for fixed h),
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and under variation of h along a generic path M ∗
h changes by a cobordism, so the

sum (6.3) is independent of h.
We next indicate how Casson’s SU(2) invariant is generalized to SU(3). The

important difference between the set up considered by Taubes in the SU(2) case and
the situation for other Lie groups is that the moduli space M of flat G connections
has a more complicated stratification because the collection of orbit types is larger.
This leads to equivariant transversality problems and complicates the search for
a topological invariant generalizing Casson’s. For SU(3) the local analysis was
worked out by Boden and Herald in [5] (see also [19]).

For G = SU(3) and X an integer homology 3-sphere there are three relevant
strata: the stratum of irreducible flat connections M ∗(X), the stratum of reducible,
nontrivial flat connections M red(X), and the stratum containing the trivial connec-
tion. As in the SU(2) case, the trivial connection is isolated (since X is a homology
sphere) but, in contrast to the SU(2) case, the closure of M ∗ in M can intersect
M red. This complicates the construction of a well defined invariant. At this time
there are three competing versions of the SU(3) Casson invariant [5, 6, 13], each
one different from the others but all defined using the same basic approach, which
we now explain.

First, a small holonomy perturbation h (adapted to the SU(3) setting) is chosen
so that the moduli spaces M ∗

h and M red
h are discrete and regular. (The existence

of an appropriate h is a delicate matter, see [5, 19].) Ideally, one would like an
SU(3) Casson invariant to be a signed count of points in the irreducible perturbed
flat moduli space, so that its nonvanishing would imply the existence of irreducible
SU(3) representations of π1(X). Thus one sets

λ′(X,h) =
∑

[A]∈M∗

h
(X)

(−1)SF(θ,A).

In this formula SF(θ,A) denotes the spectral flow of the path of perturbed odd
signature operators

DAt,ht
: Ωev(X) ⊗ su(3) → Ωev(X) ⊗ su(3)

where At is a path from the trivial connection θ to the connection A, and ht is a
path of perturbations from 0 to h.

The fact that the closure of the irreducible flat connections can contain reducible
connections has the unhappy consequence that the integer λ′(X,h) is not in general
independent of the choice of h. One must correct for the ambiguity arising from
this choice. The three invariants differ only by the choice of correction term.

In [5] the correction term

(6.4) λ′′1 (X,h) = 1
2

∑

[A]∈M red
h

(−1)SF(θ,A)(SFC2(θ,A) − 4cs(Â) + 2)

is shown to have the desired property: namely that λ1(X) := λ′(X,h) + λ′′1(X,h)
is a well defined topological invariant. In Equation (6.4), since A is a reducible
connection, there is a path of reducible connections from the trivial connection θ
to A. This path can be gauge transformed to preserve the decomposition su(3) ∼=
su(2) ⊕ C

2 ⊕ R. Thus SFC2(θ,A) refers to the spectral flow of the path DAt,ht

restricted to Ωev(X) ⊗ C
2. Also, Â refers to an (honest) flat connection near A,

and cs(Â) is its Chern-Simons invariant, a real number. Thus λ1(X) is a real
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number. The term 4cs(Â) was added to restore gauge invariance to λ′′1 : the term
SFC2(θ,A) eliminates the dependence on the perturbation but unfortunately is
not gauge invariant. The formulas SFC2(θ, g · A) = SFC2(θ,A) + 4 deg(g) and

cs(g · Â) = cs(Â) + deg(g) explain why this combination works.
Another construction for a correction term was presented in [6], yielding an

integer valued invariant with many nice properties. One sets

(6.5) λ′′2 (X,h) = 1
4

∑

[A]∈M red
h

(−1)SF(θ,A)
(
SFC2(Â+, A) + SFC2(Â−, A) + h1

bA−

)
.

In this formula Â± are flat connections in the unique path component of the space

of flat connections closest to A. They are specified by the condition that Â+ (resp.

Â−) maximizes (resp. minimizes) the C2 spectral flow from A.
Informally speaking, a perturbed flat connection emerges from a path compo-

nent of flat connections as the perturbation is turned on. Thus, for small enough
perturbations, to each perturbed flat connection one can associate the component

of flat connections from which it originated. This implies that if Â is a flat connec-

tion very close to A, then for any gauge transformation g, g · Â is a flat connection
very close to g · A. This ensures that the correction term λ′′2 is gauge invariant. It
follows from an examination of how the moduli space changes under perturbations
that the sum λ2(X) := λ′(X,h) + λ′′2 (X,h) ∈ Z is a well defined smooth invariant
of the homology sphere X , independent of the choice of perturbation h.

A third version of a correction term is defined by Cappell, Lee, and Miller in
[13]. We refer the reader to their article for a definition of their correction term,
which also involves spectral flow.

Having defined SU(3) generalizations of Casson’s invariant, a basic question
which remains is: What topological information do these invariants measure? To
answer this, one needs to carry out computations and develop cut-and-paste tech-
niques. These invariants are very difficult to compute because spectral flow is
difficult to compute, and because analyzing carefully how the flat moduli space
changes under perturbations is a delicate problem.

In [8], λ1 is computed for Brieskorn spheres of the form Σ(2, q, r), and in [7],
λ2 is computed for all Brieskorn spheres Σ(p, q, r). In the following two sections,
we outline the crucial role played by the Calderón projector and Maslov index in
carrying out the spectral flow portion of these computations.

7. Splitting the spectral flow of the odd signature operator

In [31] Yoshida introduced a useful strategy for computing the spectral flow
of the odd signature operator by decomposing the manifold along a separating
hypersurface. For this to work, one needs to establish a splitting formula for the
spectral flow, which involves developing the theory for manifolds with boundary
and requires sufficient knowledge of the representation varieties of both parts of the
decomposition. A general method to obtain such splitting formulas was derived in
[14], and we outline how it works for the odd signature operator.

Let X = Y ∪T Z be a decomposition of a closed manifold along a separating
hypersurface T . Let At be a path of connections on X in cylindrical form on a
neighborhood of T , with A0, A1 flat, and the restriction of At to Z flat. Let Dt be
the corresponding path of odd signature operators. Nicolaescu’s theorem states that
SF(Dt) = Mas(Λ(Dt, Y ),Λ(Dt, Z)). To simplify notation let M1(t) = Λ(Dt, Z)
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and N1(t) = Λ(Dt, Y ). Thus (M1, N1) is a path of Fredholm pairs of Lagrangian
subspaces of L2(T ).

(1) Let M2 be the reverse of the path given in Theorem 5.2 for Z. Thus M2 is
a path from E(0,∞)(0)⊕ SA0(Z) to M1(0) = Λ(D0, Z). Similarly let N2 be
the corresponding path for Y , starting at E(−∞,0)(0)⊕ SA0(Y ) and ending
at Λ(D0, Y ).

Similarly, at t = 1, one obtains paths M3 from Λ(D1, Z) to E(0,∞)(1) ⊕
SA1(Z) andN3 from Λ(D1, Y ) to E(−∞,0)(1)⊕SA1(Y ). Theorem 5.2 implies
that

SF(Dt) = Mas(M2 ∗M1 ∗M3, N2 ∗N1 ∗N3).

(2) Note that M2(0), M3(1), N2(0), and N3(1) are APS Lagrangians. The
next step is to find continuous paths of APS Lagrangians M4 from M2(0)
to M3(1) and N4 from N2(0) to N3(1). This step is easy to carry out if the
kernel of the tangential operator is constant along the path. In the general
case, the existence of such a path is established in [25, Lemma 7.3]. To
compute spectral flow one needs precise control over this path.

(3) Now replace the path M2 ∗M1 ∗M3 by the homotopic path M4 ∗M4 ∗ (M2 ∗
M1 ∗M3) and replace N2 ∗N1 ∗N3 by the homotopic path (N2 ∗N1 ∗N3) ∗
N4 ∗ N4. (Here M4 means the reverse of M4.) Homotopy invariance and
path additivity of the Maslov index imply that

SF(Dt) = Mas(M4, N2 ∗N1 ∗N3) + Mas(M4, N4) + Mas(M2 ∗M1 ∗M3, N4).

The first term is essentially the spectral flow of the restriction of Dt to Y
with APS boundary conditions. The second term is a finite dimensional
Maslov index since the APS Lagrangians are orthogonal away from the
kernel of the tangential operator. The last term is essentially the spectral
flow of the restriction of Dt to Z. In summary we have a splitting formula

(7.1) SF(Dt, X) = SF(Dt, Y ;M4) + SF(Dt, Z;N4) + τ

where τ is a (hopefully explictly computable) finite dimensional Maslov
index taking place in the kernel of the tangential operator, a symplectic
space identified with the cohomology of the separating hypersurface T , and
the spectral flow terms are with respect to the well behaved APS boundary
conditions.

We will illustrate this in the next section for the special case which is needed
to calculate the term SFC2(θ,A) in Equation (6.4). In that case the kernel of the
tangential operator is trivial except at t = 0 when A0 is the trivial connection.
Thus finding the paths M4, N4 as above is only tricky at t = 0. For t > 0 one can
take M4(t) = E(0,∞)(t) and N4(t) = E(−∞,0)(t). The problem that arises is that
one must compute limt→0+ M4(t) and adjust for the fact that this limit might not
equal M2(0). See the comment preceding the proof of Lemma 8.1 below.

Recent work of Himpel [20] uses this approach in a more complicated setting to
prove a conjecture in topological quantum field theory. The basic problem is to
understand the limit of the APS Lagrangians as a path approaches a point where
the kernel of the tangential operator jumps up in dimension.
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8. The spectral flow from the trivial connection: calculations

when the tangential operator jump up in dimension

In [8] the invariant λ1(Σ) = λ′(Σ, h) + λ′′1(Σ, h) is computed for Σ a Brieskorn
sphere of the form Σ(2, q, r). (Recall that for p, q, r relatively prime, Σ(p, q, r) is the
homology 3-sphere constructed by intersecting the hypersurface xp + yq + zr = 0 in
C3 with S5.) For Σ(2, q, r) it turns out that the unperturbed flat moduli space is
regular, i.e. one can take h = 0, and this motivated looking at these examples first.

To compute λ1(Σ(2, q, r)), several types of spectral flow calculations are neces-
sary. The most challenging of these is the quantity SFC2(θ,A) in Equation (6.4),
which must be calculated for each reducible flat connection A. The greatest diffi-
culty here is at the beginning of the path, where it leaves the trivial connection.

Let K be the r-fiber in the Seifert-fibered homology sphere Σ(2, q, r). Let Y
denote the closed tubular neighborhood of K; fix a homeomorphism of Y with the
solid torus D2 × S1. Let Z denote the closure of Σ − Y , so Σ is the union of Y
and Z along a torus T . Pulling back the volume form of S1 via the two coordinate
projections T → S1 defines forms dx and dy on T . These are chosen so that the 1-
form dx extends to a closed form on Z which generatesH1(Z), which we continue to
denote by dx. We fix a Riemannian metric on Σ so that {dx, dy} is an orthonormal
basis for the restriction of this metric to T , and so that a neighborhood of T in Σ
is isometric to a product [−1, 1]× T .

Given a flat reducible SU(2)×{1} ⊂ SU(3) connection, the twisted odd signature
operator on su(3)-valued forms decomposes as described in Section 6. The problem
of computing the C2 component of the spectral flow reduces to one concerning
SU(2) connections on a trivial C2 bundle and the spectral flow of the associated
twisted odd signature operator.

For each irreducible flat SU(2) connection A on Σ = Σ(2, q, r), one can find a
path At of SU(2) connections such that:

(1) A0 = θ and A = A1.
(2) The restriction of At to Z is flat.
(3) The restriction, at, of At to the separating torus has connection 1-form

p(t)Mdx+ q(t)Mdy, where M is the matrix
(
i 0
0 −i

)

and p, q are real valued functions on [0, 1] so that p(t) = t and q(t) = 0 for
t ∈ [0, ǫ] for some small ǫ > 0; and in general (p(t), q(t)) 6∈ Z2 for t > 0.
Moreover, At is in cylindrical form in a neighborhood [−1, 1]× T of T .

(4) The restriction of At to Z is of the form tMdx for t ∈ [0, ǫ].

The term SFC2(θ,A) in Equation (6.4) refers to the spectral flow of the family
Dt of odd signature operators obtained by coupling the odd signature operator to
the path At of connections. We denote by Tt the path of tangential operators on
the torus:

Tt : Ω∗(T ) ⊗ C
2 → Ω∗(T ) ⊗ C

2

Tt(α, β, γ) = (∗̂dat
β,−dat

∗̂γ − ∗̂dat
α, dat

∗̂β).

Since the restriction at of At to the separating torus T is flat, Lemma 2.1 implies
that the kernel of the tangential operator Tt is isomorphic to the cohomology group
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H∗(T ; C2
αt

) where αt : π1(T ) → SU(2) denotes the holonomy representation of the
flat connection at.

A simple calculation shows that

kerTt =

{
0 if t > 0,

H∗(T ) ⊗ C
2 ∼= C

8 if t = 0.

We will show in the next lemma that as t approaches zero, four positive eigenvalues
become zero and four negative eigenvalues become zero. Since we are looking
for a continuous family M4(t) of APS Lagrangians, we choose M4(t) to be the
positive eigenspan E(0,∞)(t) of Tt for t = 0, and at t = 0 we must choose M4(0)
to be K ⊕ E(0,∞)(0), where K ⊂ kerT0 is the span of those four eigenvectors that
correspond to the positive eigenvalues which become zero at t = 0. This will ensure
that the path M4(t) is continuous at t = 0. We will prove the following lemma
below:

Lemma 8.1. The kernel of T0 is the space of harmonic C2 valued forms on the
torus,

kerT0 = {a+ bdx+ cdy + edxdy | a, b, c, e ∈ C
2}

Let K ⊂ kerT0 be the span of the 4 positive eigenvectors which become zero at
t = 0, i.e.

K = span{ψi(0) | Tt(ψi(t)) = µi(t)ψi(t), µi(0) = 0, µi(t) > 0 for small t > 0}4
i=1.

Then

K = span

{(
1 − i dy

0

)
,

(
0

1 + i dy

)
,

(
−i dx+ dxdy

0

)
,

(
0

idx+ dxdy

)}

Before we prove this lemma, we expand on a technical point which was glossed
over in the previous section. Note that M4 should be a path of APS Lagrangians
starting at limR→∞ ΛR(D0, Z) = SA0(Z) ⊕ E(0,∞). In general there is no reason
why the subspaces K (of Lemma 8.1) and

(8.1) SA0(Z) = imH∗(Z; C2) → H∗(T ; C2) = {a+ bdx | a, b ∈ C
2}

of H∗(T,C2) coincide. In fact Lemma 8.1 shows that they do not, and this leads to
the need for a correction term: the term Mas(V (t), SA0(Y )), where V (t) is a path
of Lagrangians in H∗(T ; C2) from SA0(Z) to K. We justify our sloppiness in the
previous section by observing that this is a finite dimensional Maslov index which
can be computed by hand (see [8] where this is done) and which we absorb in the
term τ in the splitting formula (7.1).

In any case, our method is now fully exposed:

• Stretch to replace the Cauchy data space Λ(D0, Z) by its adiabatic limit
SA0(Z) ⊕ E(0,∞).

• Rotate the finite dimensional scattering Lagrangian SA0(Z) in the kernel
of T0 to line it up with K.

• Proceed along the path using the positive eigenspan of Tt for t > 0.

In light of Lemma 8.1 this gives a continuous path of Lagrangians which starts at
the Cauchy data space ofDA0 acting on Z and proceeds using the APS Lagrangians.
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Proof of Lemma 8.1. The operator T 2
t is the twisted Laplacian acting on the torus

T 2
t (α, β, γ) = (d∗at

dat
α, (d∗at

dat
+ dat

d∗at
)β, dat

d∗at
γ) = (∆at

α,∆at
β,∆at

γ).

For small t, at = itMdx, and a simple calculation reveals that

T 2
t (α, β, γ) = (∆α,∆β,∆γ) + t2(α, β, γ),

where ∆ denotes the ordinary (untwisted) Laplacian acting on C2-valued forms.
The eigenvalues of ∆ acting on p-forms are m2 + n2 for m,n ∈ Z. Thus if

∆w = (m2 + n2)w for w ∈ Ωp(T ),

∆at

(
w
0

)
= (m2 + n2 + t2)

(
w
0

)
and ∆at

(
0
w

)
= (m2 + n2 + t2)

(
0
w

)
.

Since the C
2 valued p-forms are spanned (over C) by

(
w
0

)
and

(
0
w

)
if w spans

the ordinary C-valued p-forms, it follows that the set {m2 + n2 + t2 | m,n ∈ Z} is
the entire spectrum of ∆at

. In particular, kerTt = kerT 2
t is trivial for small t 6= 0.

Let t be small and positive. Let w be a C valued function on the torus with
∆w = (m2 + n2)w (i.e. w = ei(mx+ny)). Let µ = m2 + n2 + t2. Then, for

(8.2) α =

(
w
0

)
or α =

(
0
w

)

we have

(8.3) Tt

(
α,± 1√

µ ∗̂dat
α, 0

)
=

(
∓ 1√

µ∆at
α,−∗̂dat

α, 0
)

= ∓√
µ

(
α,± 1√

µ ∗̂dat
α, 0

)

and similarly

(8.4) Tt

(
0,± 1√

µdat
α, ∗̂α

)
= ∓√

µ
(
0,± 1√

µdat
α, ∗̂α

)
.

This shows that the eigenvalues of Tt are ±
√
m2 + n2 + t2 and computes the cor-

responding 4-dimensional µ eigenspace when µ 6= 0, e.g. for t > 0 small enough.
For t = 0 the formulas apply except when µ = 0, i.e. m = n = 0. In that case, if
c1 : T → C2 (resp. c2 : T → C2) denotes the constant function on the torus with

value

(
1
0

)
(resp.

(
0
1

)
), then the kernel of T0 is spanned (over C) by the 8 vectors

of the form

(ci, 0, 0), (0, 0, ci dx dy), (0, ci dx, 0), and (0, ci dy, 0), i = 1, 2.

Notice that

dat
cj = it dx Mcj = (−1)j+1it dx cj .

Taking m = n = 0 and t > 0 small in Equation (8.3) (so
√
µ = t) one sees that the

vector v = (cj , (−1)ji dy cj , 0) satisfies Ttv = tv for all t > 0. But it also satisfies
this equation for t = 0, and so v is a positive eigenvector of Tt for t > 0 and a zero
eigenvector for t = 0. Thus v lies in the space K. A similar computation using
Equation (8.4) shows that K is spanned by the four vectors

(c1,−i dy c1, 0), (c2, i dy c2, 0), (0,−i dx c1, c1 dxdy), (0, i dx c2, c2 dxdy).
This implies Lemma 8.1.

�
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Thus the paths of Lagrangian subspaces that enter in the splitting formula (7.1)
can be constructed, and all three terms can be computed. The term SF(Dt, Y ;M4)
can be calculated because Y is a solid torus and so using homotopy invariance
and path additivity of spectral flow one can reduce the calculation to three simple
calculations on lens spaces.

The term SF(Dt, Z;N4) can be computed because the connections At restrict to
flat connections on Z. Since N4 is a path of APS Lagrangians the kernel of Dt on Z
with N4 boundary conditions can be computed cohomologically using Proposition
2.6. Thus one knows exactly when the kernel jumps up in dimension and topological
arguments can be invoked to decide which way the eigenvalues cross zero at each
such parameter.

Finally, the term τ corresponds to a sum of finite dimensional Maslov indices
constructed from the Lagrangian subspaces SA0(Y ), SA0(Z), and K in H∗(T ; C2) =
kerT0. These can be computed explictly from the definition using Lemma 8.1 and
Equation (8.1).

9. The spectral flow from a flat connection to a perturbed flat

connection

We now turn to a description of the most interesting spectral flow calculations in
[7]. In that article we consider Brieskorn spheres Σ = Σ(p, q, r) with p, q, r > 2. For
these 3-manifolds, the flat SU(3) moduli space is degenerate, and so perturbations

are necessary. According to Formula (6.5), the quantity SFC2(Â±, A) must be
calculated for each perturbed flat reducible connection A. Here, the reducible flat

connections Â± are basepoints in the component of the flat moduli space closest to
[A] which maximize/minimize the spectral flow.

In the present context, the reducible flat moduli space consists of isolated points,

so that Â+ = Â−, and we henceforth denote this flat connection by Â. In the
interesting cases, the kernel ofD bA acting on C2 valued forms has (real) dimension 4.
One can show that, for small perturbations, the perturbed flat reducible connections
vary smoothly with the perturbation, so in particular there is one perturbed flat

reducible connection near each reducible flat connection Â.
One must first solve the transversality problem, i.e. find a pertubation for which

the perturbed moduli space is nondegenerate. For this perturbation, one must

then calculate the spectral flow SFC2(Â, A) for each flat reducible connection Â
and nearby perturbed flat reducible A.

The basic property of holonomy perturbations that makes computations possible
is the fact that perturbed flat connections are flat on the complement of a tubular
neighborhood of the curves along which the perturbations are defined and the
perturbed flat connection on one of the solid tori can be described concretely.

Viewing Σ(p, q, r) as a Seifert-fibered space with three singular fibers, it turns
out that a perturbation in a neighborhood of one of the singular fibers suffices to
make the reducible perturbed flat moduli space nondegenerate. The data one ends
up with after a careful analysis of the perturbation and the flat moduli space of the
knot complement are:

(1) A path ht, t ∈ [0, ǫ] of perturbations.
(2) A path At, t ∈ [0, ǫ] of U(2) connections on Σ with A0 flat and At ht-

perturbed flat.
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(3) The restriction of At to the complement Z of a tubular neighborhood Y of
a singular fiber is flat for all t ∈ [0, ǫ].

(4) The holonomy αt : π1(T ) → U(2) of the restriction at of At to the separat-
ing torus satisfies:

αt(µ) = t
3 (cos(c) − 1)I, αt(λ) =

(
c 0
0 c

)

for some constant c. Here µ, λ ∈ π1(T ) are the meridian and longitude
(hence µ ∈ kerπ1(T ) → π1(Z)).

The action of U(2) on C2 is not the canonical one, but rather the tensor product
of the canonical representation and the square of the determinant. The reason for
this comes from the way one passes from reducible SU(3) to U(2) connections,
and we refer to [7] for details. The following proposition is proven by computing
various cohomology groups using topological methods. We omit the calculations,
but emphasize that it is precisely because these cohomology calculations are routine
(for topologists, in any case) that the spectral flow can be calculated with the
techniques described in this paper. Indeed, this is the main point we wish to
impart on the reader.

Proposition 9.1. Let ρt : π1(Z) → U(2) denote the holonomy representation of
the flat connection At for t ∈ [0, ǫ]. Note that ρ0 extends to π1(Σ).

(1) The cohomology group H∗(T ; C2
αt

) = 0 for all t ∈ [0, ǫ]. Thus the kernel of
the tangential operator Tt is zero for all t ∈ [0, ǫ].

(2) The cohomology group H1(Z; C2
ρt

) is isomorphic to H1(Z, ∂Z; C2
ρt

) and has
(real) dimension 4 for t = 0 and is zero for t > 0. Thus the operator DAt

:
Ω0+1(Z) ⊗ C2 → Ω0+1(Z) ⊗ C2 with APS boundary condition E(−∞,0)(t)
is self adjoint and by Proposition 2.6 has trivial kernel for t > 0, and its
kernel has dimension 4 for t = 0.

Since the connections At are not flat for t > 0 but rather are perturbed flat,
the dimension of the kernel of the Hessian of the Chern-Simons function at these
points is not determined by cohomology. It is still, however, the cohomology of a
perturbed version of the de Rham complex (2.2). This perturbed cohomology still
satisfies a Mayer-Vietoris sequence for the decomposition X = Y ∪T Z. Therefore,
the information in Proposition 9.1 can be combined with the following perturbed
cohomological information for the Y side of the decomposition.

Proposition 9.2. The perturbed flat cohomology H1
At,ht

(Y ; C2) is trivial for all
small t.

Propositions 9.1 and 9.2 allow us to apply the splitting formula (7.1). Things
are much easier than in the previous section since the kernel of the tangential
operator is trivial along the entire path; one does not need Lemma 8.1, and the
finite dimensional term τ vanishes. The term SF(Dt, Y,N4) vanishes because of
Proposition 9.2. Thus

(9.1) SF(DAt
,Σ) = SF(DAt

, Z;E(−∞,0)).

This is certainly a promising formula since the path of connections At restricts to
a path of flat connections on Z. In particular, SF(DAt

, Z;E(−∞,0)) is a homotopy
invariant (Theorem 7.4 of [25]) and so should be calculable by the methods of
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algebraic topology. There are various approaches to carrying out such calculations,
e.g. via cup products as in [22].

We took a more elementary route to computing SF(Dt, Z;E(−∞,0)) in [7]. The
structure of the space of U(2) representations of the space Z is completely under-
stood. This is because Z is Seifert-fibered with 2 singular fibers, U(2) representa-
tions are obtained by twisting SU(2) representations, and the structure of the space
of SU(2) representations of π1(Z) is known (see Klassen [26]). Using the correspon-
dence between flat connections and representations one easily finds a 2-parameter
family of flat connections At,s on Z (with holonomies ρt,s) so that:

(1) At,0 = At.
(2) Hev(Z; C2

ρt,s
) is 4-dimensional for t = 0, 0-dimensional for t > 0.

(3) ρt,1 is diagonal (and hence abelian).

Thus SF(DAt
, Z;E(−∞,0)) is equal to SF(DAt,1 , Z;E(−∞,0)). But computing spec-

tral flow along a path of abelian U(2) flat connections is simple. One can use the
index theorem as in [23]. By this approach one shows, finally, that two of the eigen-
modes become negative and two become positive. Hence, with our conventions we
conclude that

Theorem 9.3.

SF(DAt
,Σ) = SF(DAt

, Z;E(−∞,0)) = −2.

Armed with this theorem the calculation of the SU(3) Casson invariant can
proceed. An index theory calculation computes the signs in the term λ′(Σ, h) (this
was done by Boden in [4]). The irreducible SU(3) moduli space is identified using
algebraic-geometric methods, and finally the path components are counted using
enumeration methods for lattice points in polyhedra. We refer the interested reader
to the article [7].
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