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On the integer valued SU(3) Casson invariant

Hans U. Boden, Christopher M. Herald, and Paul Kirk

In 1986, Andrew Casson constructed a new invariant λSU(2)(X) for oriented,
integral homology 3-spheres X by counting conjugacy classes of irreducible SU(2)
representations α : π1X → SU(2) with sign. The homology restriction on the
3-manifold X guarantees that the set of conjugacy classes of irreducible SU(2)
representations is compact, and Casson described a method for perturbing the
representation variety to obtain an oriented manifold of dimension zero and used
compactness of the irreducible stratum to prove that the resulting algebraic count
of points is independent of perturbation.

This article is a survey of the results in [8, 9] generalizing the Casson invariant
to the SU(3) setting. The main challenge is that the irreducible stratum is no
longer compact, and consequently a naive count of conjugacy classes of irreducible
representations α : π1X → SU(3) does not produce a well defined invariant of
integral homology 3-spheres.

A similar problem was encountered by Walker in generalizing Casson’s original
invariant from integral to rational homology 3-spheres [24]. The homology condi-
tion on a rational homology 3-sphere X does not guarantee compactness of the set
of irreducible representations α : π1X → SU(2). As a consequence a direct count
(with sign) of the conjugacy classes of irreducible SU(2) representations ends up
depending on the choice of perturbation. Walker solved this problem by introduc-
ing a correction term defined entirely in terms of the stratum of reducible (abelian)
representations.

In generalizing the Casson invariant from SU(2) to SU(3), the direct count
of conjugacy classes of irreducible representations α : π1X → SU(3) depends on
the choice of perturbation, and so again one needs to introduce a correction term
defined in terms of the stratum of reducible representations. Correction terms of
several different types have been proposed (cf. [5, 8, 13]). All three proposals
adopt a gauge theoretic point of view, treating the Chern-Simons function or a
perturbation of it as a Morse function on the space of connections and viewing the
Casson invariant as an Euler characteristic for the space of connections modulo
gauge, a framework first developed for SU(2) by Floer and Taubes (cf. [16, 23]).

In this article, we describe the complications involved in defining an invariant
in the SU(3) gauge theory setting. We discuss several alternatives for resolving
the difficulties, following [5, 8]. We also present some calculations of the resulting
invariant τSU(3), following [9]. Our approach to the integer valued SU(3) Casson
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invariant differs from that given in [8] in that here, τSU(3)(X) is defined as the
average of two SU(3) invariants, τ+(X) and τ−(X). Both of these invariants are
a priori integer valued, and they differ only in the choice of basepoints used to
determine the correction term.

1. The Casson invariant as an intersection number

We begin with a review of Casson’s approach to the transversality and pertur-
bation issues. First, we establish some notation. Given a space X and a Lie group
G, let

R(X, G) = Hom(π1X, G)/conjugation

denote the (real-algebraic) variety of conjugacy classes of representations α : π1X →
G. Let R∗(X, G) ⊂ R(X, G) denote the subset of conjugacy classes of representa-
tions α : π1X → G whose stabilizer {g ∈ G | gα(x)g−1 = α(x) for all x ∈ π1X}
coincides with the center of G. Such representations are called irreducible repre-

sentations, and the complement R(X, G) − R∗(X, G) is the subvariety of reducible

representations.
If G is a subgroup of the general linear group GL(n, C) (resp. GL(n, R)), then

a representation α : π1X → G induces a representation of π1X on the vector space
Cn (resp. Rn). The above definition of reducibility is equivalent to the existence of
a proper invariant complex (real) subspace.

A continuous map f : X → Y induces an algebraic map f∗ : R(Y, G) → R(X, G).
This map is injective if f∗ : π1X → π1Y is surjective. Notice that if α is a reducible
representation, then f∗(α) is also reducible.

Suppose X is a closed 3-manifold, and choose a Heegaard splitting (H1, H2, Σ)
for X ; i.e. H1 and H2 are solid handlebodies of genus g with boundary a closed
surface Σ and

X = H1 ∪Σ H2.

The inclusions π1Σ → π1H1 and π1Σ → π1H2 are surjective, and so the Seifert-Van
Kampen theorem implies that π1H1 → π1X and π1H2 → π1X are surjective. Thus
every morphism in the diagram

R(H1, SU(2))

R(X, SU(2)) R(Σ, SU(2))

R(H2, SU(2))

PPPq���1

PPPq ���1

is injective. This identifies R(X, SU(2)) as the intersection of R(H1, SU(2)) with
R(H2, SU(2)) in R(Σ, SU(2)).

The representation varieties R(H1, SU(2)), R(H2, SU(2)) and R(Σ, SU(2)) are
singular along the reducible representations (those conjugacy classes whose sta-
bilizer is larger than the center Z2 ⊂ SU(2)), and if g ≥ 2 the irreducible points
R∗(Σ, SU(2)), R∗(H1, SU(2)), and R∗(H2, SU(2)) are smooth (non-compact) man-
ifolds of dimension 6g − 6, 3g − 3, 3g − 3, respectively.

When X is an integral homology 3-sphere, every intersection point except for
the trivial representation lies in the intersection of the irreducible strata

R∗(X, SU(2)) = R∗(H1, SU(2)) ∩ R∗(H2, SU(2)).
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This is because a reducible SU(2) representation has abelian image, but π1X has no
nontrivial abelian representations if H1(X ; Z) = 0. (There are nontrivial reducible
representations if one replaces SU(2) by SU(3), or if H1(X ; Z) is non-zero; this is
the source of the difficulty in extending Casson’s invariant to SU(3) or to rational
homology 3-spheres.)

An orientation on X induces orientations on each of the three representation
varieties R∗(H1, SU(2)), R∗(H2, SU(2)) and R∗(Σ, SU(2)) in a natural way, and
Casson defined λSU(2)(X) to be one half times the algebraic intersection number
of these two (3g − 3)-dimensional submanifolds of R∗(Σ, SU(2)):

λSU(2)(X) := 1
2R∗(H1, SU(2)) · R∗(H2, SU(2)).

To make sense of this intersection number Casson proved that one can make
R∗(H1, SU(2)) and R∗(H2, SU(2)) transverse using a compactly supported isotopy
of R∗(H2, SU(2)) in R∗(Σ, SU(2)).

That one can choose the isotopy to be compactly supported in this context is
a crucial point. Even though neither R∗(H1, SU(2)) nor R∗(H2, SU(2)) are them-
selves compact, their intersection R∗(X, SU(2)) = R∗(H1, SU(2))∩R∗(H2, SU(2))
is compact. This follows from the fact that, up to conjugacy, there is one only
reducible representation (the trivial representation), and its conjugacy class is an
isolated point in R(X, SU(2)).

If X is not a homology 3-sphere, then R∗(X, SU(2)) is not generally com-
pact. This leads to problems in trying to use the algebraic intersection number of
R∗(H1, SU(2)) and R∗(H2, SU(2)) to produce a well defined invariant. For exam-
ple, if X is a rational homology 3-sphere but not an integral homology 3-sphere
(so H1(X ; Z) is nontrivial and finite), Walker observed that as one perturbs the
representation variety R(H1, SU(2)) relative to R(H2, SU(2)) in R(Σ, SU(2)), an
intersection point of R∗(H1, SU(2)) and R∗(H2, SU(2)) can suddenly appear out of
(or disappear into) the stratum of reducible representations. Coincident with such
a birth (or death) is a simultaneous change in a certain Maslov index determined by
the varieties R(H1, U(1)) and R(H2, U(1)) in R(Σ, U(1)) and the normal bundles
of these strata in the full representation space.

Using these Maslov indices, Walker derived a correction term involving the
reducible representations which cancels out the effect of these births and deaths
when X is a rational homology 3-sphere. Thus Walker was able to extend Casson’s
invariant to rational homology 3-spheres by adding this correction term to the
intersection number of R∗(H1, SU(2)) and R∗(H2, SU(2)) [24].

The behavior of Casson’s invariant and Walker’s extension under various cut-
and-paste operations is well understood. The most important such result is the
Dehn surgery formula for the Casson-Walker invariant. Motivated by the surgery
formula, Lescop gave a combinatorial definition of an invariant for all 3-manifolds
which agrees with the Casson-Walker invariant on rational homology 3-spheres [22].

We now briefly review the behavior of the Casson-Walker-Lescop invariant
λSU(2) under change of orientation, connected sum, and Dehn surgery operations
(cf. §1.5, [22]). If −X denotes the 3-manifold X with the opposite orientation,
then

λSU(2)(−X) = (−1)b1(X)+1λSU(2)(X),

where b1(X) = rankH1(X ; Z). Furthermore,

λSU(2)(X1#X2) = |H1(X2; Z)|λSU(2)(X1) + |H1(X1; Z)|λSU(2)(X2),
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where

|H1(X ; Z)| =

{
the order of H1(X ; Z) if b1(X) = 0,

0 if b1(X) > 0.

Finally, Walker and Lescop have generalized Casson’s original surgery formula,
which states: Given a knot K ⊂ X in an integral homology 3-sphere X , if ∆K(t)
is the (symmetric) Alexander polynomial of K and Xn is the integral homology
3-sphere obtained by performing 1/n-Dehn surgery on K, then

λSU(2)(Xn) = λSU(2)(X) +
n

2
∆′′

K(1).

There is a similar formula for surgeries on a link which effectively computes the
Casson-Walker-Lescop invariant for all 3-manifolds, since every 3-manifold is surgery
on some link L in S3.

In the next section, we describe Taubes’ reinterpretation of the Casson invariant
as an Euler characteristic [23], using gauge theory. This is the approach we take
in generalizing the Casson invariant to the SU(3) context.

2. The Casson invariant as an Euler characteristic

Throughout the remainder of the paper, we assume that X is an oriented
integral homology 3-sphere. We now recall the gauge theoretic description of the
Casson invariant provided by Taubes [23]. For the purposes of expediency, we
develop notation in the general SU(n) context here even though a treatment of the
SU(2) case would suffice for this section.

Let Pn = X × SU(n) be the trivial(ized) principal SU(n) bundle over X ,
and denote by An and Gn the space of connections and gauge transformations on
Pn. Since Pn is trivialized, any smooth SU(n) connection can be described as a
differential operator dA : C∞(X, Cn) → C∞(T ∗X ⊗ C

n) of the form dA = d + A,
where d denotes the de Rham exterior derivative and A ∈ Γ(T ∗X ⊗ su(n)), i.e. A
is a 1-form with values in the Lie algebra su(n) (where we view an su(n) element
as an endomorphism of Cn). The group Gn is C∞(X, SU(n)), the set of functions
from X to SU(n). There is a group action of Gn on An defined by

dg·A = g ◦ dA ◦ g−1.

A connection is called irreducible if its stabilizer is just the center of Gn (which con-
sists precisely of constant functions on X into the center of SU(n)). If a connection
has a larger stabilizer, it is called reducible.

For analytical reasons, one must use the completions of the space of connections
and gauge transformations with respect to certain Sobolev norms: An is the Banach
manifold obtained by completing the space of smooth connections on Pn in the L2

1

norm, and Gn is the Banach Lie group obtained by completing the group of smooth
bundle automorphisms of Pn in the L2

2 norm. We will not stress this point here.
We adopt the usual notational convention dA ↔ A which identifies connec-

tions with their associated connection 1-form and denote by θ the canonical trivial
connection (i.e. d ↔ θ). In this notation the Gn action on 1-forms is written

g · A = gAg−1 − (dg)g−1.

We say A and g · A are gauge equivalent.
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Lett Ω(X, x0) denote the monoid of piecewise smooth loops in X based at x0.
Associated to each smooth connection A is its holonomy representation

holA : Ω(X, x0) −→ SU(n)

obtained from parallel translation with respect to A. The connection is called flat if
its curvature 2-form F (A) = dA+A∧A vanishes. By an elliptic regularity argument,
flat connections are (up to gauge) smooth, and for a flat smooth connection the
holonomy depends only on the homotopy class of a loop. Thus the holonomy
representation of a flat connection A factors through the fundamental group π1(X).
Gauge equivalent flat connections have conjugate holonomy representations. This
establishes a homeomorphism between the space of gauge equivalence classes of flat
SU(n) connections on X and conjugacy classes of SU(n) representations of π1X .
This correspondence preserves the notions of reducibility.

The Chern-Simons function cs : An −→ R is given by the formula (viewing a
connection as a matrix valued 1-form):

cs(A) =
1

8π2

∫

X

tr
(
A ∧ dA + 2

3A ∧ A ∧ A
)
.

This is a smooth function with critical point set equal to the set of flat connections
in An. As we next explain, this suggests that the Casson invariant, which is an
algebraic count of flat connections up to gauge, is the analogue of the Euler char-
acteristic (for the quotient An/Gn), assuming that cs satisfies a Morse condition
adapted to this equivariant, infinite dimensional setting.

To explain this properly, we first recall the analogous results in finite dimen-
sions, namely the Poincaré-Hopf theorem. Suppose M is a smooth compact mani-
fold and f : M → R a smooth function. A point p ∈ M is called a critical point of
f if dfp = 0.

The Hessian of f at a critical point p is the symmetric bilinear form

Hess fp : TpM × TpM → R

defined by Hess fp(X, Y )) = X̃(Ỹ (f)), where X̃ and Ỹ are vector fields which
extend X and Y , and vector fields act on functions in the usual way, i.e. X(f) =
df(X). A function is called Morse if its Hessian is nondegenerate at each critical
point.

If we endow M with a Riemannian metric, the gradient vector field of f is
defined by the condition

X(f) = 〈grad fp, X〉p

for all tangent vectors X ∈ TpM. In other words gradf is dual to the differential
df with respect to the Riemannian metric. A point p ∈ M is a critical point of f if
gradfp = 0, and the function f is Morse if grad f is transverse to the zero section.

At a critical point p ∈ M of f , the Morse index µ(p) is defined to be the dimen-
sion of the negative eigenspace of the Hessian of f at p. Then the Poincaré-Hopf
theorem states that the number of critical points, counted with sign determined by
the Morse index, equals the Euler characteristic:

(2.1)
∑

p∈Crit(f)

(−1)µ(p) = χ(M).

There is a very useful way to describe the difference in Morse indices at crit-
ical points which will be used to extend the discussion to the infinite dimensional
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case. In general the Hessian of f is only defined at a critical point. The following
construction provides a suitable extension of the Hessian to all points in M .

Let ∇ : C∞(TM) × C∞(TM) → C∞(TM) denote the Levi-Civita connection
on M . Then for any point p ∈ M , the linear map

(2.2) Hp : TpM → TpM

defined by Hp(X) = ∇X(grad f)p satisfies

〈Hp(X), Y 〉 = 〈X, Hp(Y )〉

for X, Y ∈ TpM , hence is self-adjoint with respect to the Riemannian metric.
Moreover, at a critical point p, Hp is related to the Hessian by the equation

Hess(f)p(X, Y ) = 〈Hp(X), Y 〉p.

Thus, if p0 and p1 are two critical points of f , the difference µ(p1)−µ(p0) equals
the spectral flow of the family −Hpt

for any path pt in M from p0 to p1. (Given
a continuous path Dt, t ∈ [0, 1] of self-adjoint matrices, or more generally of self-
adjoint Fredholm operators, the spectral flow of the path SF (Dt) is the difference
between the number of eigenvalues that change from negative to non-negative minus
the number that change from non-negative to negative for the path of operators Dt.
This is the so-called (−ε,−ε) convention. Spectral flow is a homotopy invariant of
the path of operators, rel endpoints; in addition, with this convention, spectral flow
is additive under composition of paths. A careful construction of the spectral flow
can be found in [11].)

Thus the symmetric linear map Hp extends the notion of the Hessian to all
points in M . We remark that the preceding discussion applies with no change to
circle valued functions f : M → S1.

We now explain how Taubes adapted these ideas to the infinite dimensional
setting of the Chern-Simons function cs : An → R. The infinite dimensional mani-
fold An is an affine space modeled on Ω1

X ⊗ su(n). We choose a Riemannian metric
on X , and then this space of forms inherits an L2 inner product defined by

〈a, b〉L2 = −

∫

X

tr(a ∧ ∗b)

for a, b ∈ TAAn = Ω1
X ⊗ su(n), where ∗ : Ωp → Ω3−p denotes the Hodge star

operator. This gives an inner product on the tangent space TAAn = L2
1(Ω

1
X⊗su(n))

for each A ∈ An. Alternatively, we can view it as a Riemannian metric on An.
Computing the derivative of the Chern-Simons function, we see that if A ∈ An and
a ∈ Ω1(X ; su(n)), then

d

dt

∣∣∣∣
t=0

cs(A + ta) =
1

8π2

∫

X

tr(A ∧ da + a ∧ dA + 2a ∧ A ∧ A)

=
1

8π2

∫

X

tr(−dA ∧ a + a ∧ dA + 2a ∧ A ∧ A)

=
1

4π2

∫

X

tr(a ∧ (dA + A ∧ A))

= −
1

4π2
〈a, ∗F (A)〉L2 ,
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where F (A) = dA + A ∧ A ∈ Ω2 ⊗ su(n) denotes the curvature of the connection
A. Hence, the gradient of the Chern-Simons function is given by

grad csA = −
1

4π2
∗ F (A),

and the critical set of the Chern-Simons function consists of all flat connections,
namely all A ∈ An for which F (A) ≡ 0.

In order to extend the constructions described above in the finite-dimensional
case to this new setting, one must deal with several issues. First, the critical set
of the Chern-Simons function is infinite dimensional. This is because F (g · A) =
adg(F (A)). Hence if A is a critical point so is g · A for any g in the infinite
dimensional group Gn.

This difficulty is resolved by passing to the quotient

Bn := An/Gn.

As is typical in the context of group actions, one describes the tangent space of an
orbit space using the slice theorem. In the present context, the tangent space to Gn

at the identity is just Ω0
X ⊗ su(n). For fixed A ∈ An, the differential of the action

map

Gn → An, g 7→ g · A

at the identity is given by the covariant derivative:

dA : Ω0
X ⊗ su(n) = T1Gn → Ω1

X ⊗ su(n) = TAAn.

The action of Gn is not free, but as long as one restricts to the open subset A ∗
n

of irreducible connections, Gn acts freely (up to its center) and so B∗
n = A ∗

n /Gn is
a (Banach) manifold. The slice theorem then identifies the tangent space of B∗

n at
[A] with the cokernel of dA : Ω0

X ⊗ su(n) → Ω1
X ⊗ su(n). The L2 inner product

then identifies this cokernel with the kernel of d∗A : Ω1
X ⊗ su(n) → Ω0

X ⊗ su(n).
The gauge invariance property of cs (invariance under the action of the identity

component of G ) implies that grad cs is orthogonal to the orbit tangent space, and
may be viewed either as a G equivariant vector field on A or as a tangent vector
field on the quotient (at least on B∗, where this makes sense).

In particular, let Vn → A ∗
n be the subbundle of the tangent bundle TA ∗

n whose
fiber at A ∈ A ∗

n is ker d∗A. Using the trivial connection on TA ∗
n → A ∗

n and the
fiberwise L2 projection onto the subbundle Vn, we construct a connection ∇ on
TB∗

n → B∗
n defined for vector fields X, Y : B∗

n → TB∗
n as follows. First lift X and

Y to equivariant sections X̃, Ỹ : A ∗
n → Vn. Then let ∇X(Y ) be the vector field on

B∗
n whose lift to Vn at A equals projker d∗

A
(dX(Y )), where dX denotes the trivial

connection in the product bundle TA ∗
n → A ∗

n . It is typical to (and we will) abuse
notation and blur the distinction between sections of TB∗

n → B∗
n and equivariant

sections of Vn → A ∗
n .

Having described the tangent space to B∗
n, we continue our discussion of the

Morse theory of the Chern-Simons function. The Chern-Simons function is not
invariant under the action of Gn. In fact, cs(g · A) = cs(A) + deg g. (The de-

gree deg g of a gauge transformation g : X → SU(n) is defined by the equation
g∗([X ]) = deg g · [SU(2)], where [X ] ∈ H3(X ; Z) denotes the fundamental class of
X , and [SU(2)] ∈ H3(SU(n); Z) ∼= Z denotes the class represented by the inclusion
SU(2) ⊂ SU(n).) Since deg : π0Gn → Z is an isomorphism, the Chern-Simons
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function descends to a circle valued function:

cs : Bn → R/Z.

The gradient of the Chern-Simons function on B∗
n (or rather, its lift to Vn) again

satisfies grad csA = − 1
4π2 ∗F (A). Thus the critical set is the set of flat connections

modulo gauge transformations, a space homeomorphic (via the holonomy map) to
R(X, SU(n)), the finite dimensional real-analytic variety of conjugation classes of
SU(n) representations of π1X .

The second issue concerns the Morse index µ(p). Mimicking the construction
in the finite dimensional case, we define the Hessian, or rather its substitute H (as
in equation (2.2)), using the connection ∇ on TB∗

n. (For convenience, we adjust
by a factor of 4π2.) Thus we define

HA : TAB
∗
n → TAB

∗
n, b 7→ 4π2∇b(grad cs)A,

which we compute using the definition of ∇:

HA(b) = 4π2∇b(grad cs)A

= − projkerd∗

A

(
d
dt

∣∣
t=0

∗ F (A + tb)
)

= − projkerd∗

A
(∗dA(b)).

(2.3)

The operator HA is closed, unbounded, and self-adjoint. It has infinitely many
positive and negative eigenvalues and so the traditional definition of the Morse index
µ(A) at a critical (i.e. flat) connection does not make sense. Taubes overcame this
obstacle by using the spectral flow in place of the Morse index (as we described
above in the finite dimensional context). This gives a relative sign to all critical
points, and, assuming cs is Morse, determines an invariant up to an overall sign.
Specifying the sign then amounts to deciding on a basepoint from which to measure
spectral flow. We will return to the basepoint question shortly.

An interesting wrinkle that appears is that the spectral flow of −HAt
changes

by a multiple of 4n if we replace A0 or A1 by gauge equivalent connections, but in
any case the parity of SF (−HAt

) is well defined, and this is enough to make sense
of equation (2.1) in this context assuming the Chern-Simons function is Morse. We
will sometimes be sloppy and write SF (A0, A1) for SF (−HAt

).
If cs : B∗

n → R/Z is not Morse, we wish to perturb it by adding a gauge
invariant function h : An → R so that cs + h has only isolated nondegenerate
critical points. For the remainder of the section, we restrict to the case n = 2.
Taubes and Floer described a class of functions F satisfying:

(i) grad(cs + h) is a compact perturbation of grad(cs) for all h ∈ F , and
(ii) cs + h is a Morse function for generic h ∈ F .

Let M ∗
h ⊂ B∗

2 denote the irreducible gauge orbits in the critical set of the perturbed
Chern-Simons function cs + h.

The main result in [23] states that for a generic small perturbation h,

(2.4) λSU(2)(X) = 1
2

∑

[A]∈M∗

h

(−1)SF (θ,A).

This is the infinite dimensional analogue of the Poincaré-Hopf Theorem (2.1) for
the manifold B∗

2 and the Chern-Simons function.
The right hand side of equation (2.4) has the virtue that it gives an invariant of

homology 3-spheres without making use of a Heegaard splitting. Indeed, Taubes’s
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proof that the right hand side of equation (2.4) is well defined avoids a sticky
issue that comes up in Casson’s original proof, namely stablilization of Heegaard
diagrams. Thus in trying to define an SU(3) version of Casson’s invariant one is
motivated to generalize Taubes’s construction, rather than Casson’s, and this is
what has been done in the articles [5, 8, 13].

We end this section with a more detailed discussion of exactly what is meant
by “SF (θ, A), [A] ∈ Mh” in equation (2.4). There are two issues: The first is that
we described HA above as the Hessian of the Chern-Simons function, but one must
extend this to the perturbed Chern-Simons function cs+h. The second issue is that
the base point θ (the trivial connection) is not irreducible and therefore its gauge
orbit [θ] is a singular point of B2. So Hθ is not well-defined. We will replace the self-
adjoint operator HA with an operator that makes sense over reducible connections
as well as irreducibles.

We first describe the space F of admissible perturbations. This space consists
of gauge invariant functions h : A2 → R constructed as follows. Fix a collection
of thickened loops {γi : S1 × D2 → X | i = 1, . . . , n} whose cores generate π1X
and with a common normal disk at one point, i.e. γi(s0, x) = γj(s0, x) for all i, j.
For any connection A, denote by hol i(x, A) the holonomy of A around the ith loop
γi(S

1 × {x}) from some fixed basepoint. Choose η(x) to be a bump function on
the 2-disk and define the space F of admissible perturbations h : A2 → R to be
functions of the form

h(A) =

∫

D2

f(hol1(x, A), . . . , holn(x, A))η(x)d2x,

where f : SU(2)n → R is a C3 function invariant under the adjoint action. For ex-
ample, for every word ω = ω(g1, . . . , gn) in the free group, one obtains an admissible
perturbation by taking f = tr(ω).

The gradient grad(cs+h)A = − 1
4π2 ∗F (A)+gradhA can be viewed either as an

equivariant vector field on A ∗ or as a vector field on B∗. A connection A is called
h-perturbed flat if [A] is a critical point of cs+h (i.e. if

(
∗F (A)−4π2 grad(h)A

)
= 0).

Arguing as before we define the self-adjoint operator HA,h : ker d∗A → ker d∗A
for any A and h by

HA,h(b) = 4π2∇b(grad(cs + h)) = projker d∗

A

(
− ∗ dA(b) + 4π2d grad(h)A(b)

)
.

Abusing notation slightly, write

Hess hA(b) = d grad(h)A(b).

If A0, A1 are two h-perturbed flat irreducible connections, SF (A0, A1) means
the spectral flow of the path of operators −HAt,h, where At is a path of irreducible
connections joining A0 to A1.

In order to simplify and extend the definition of SF (A0, A1) to reducible con-
nections, Taubes introduced the following trick. For notational convenience write
Ωi for Ωi

X ⊗ su(2). Given an arbitrary connection A ∈ A2 and an admissible
perturbation h, write

dA,h = dA − ∗4π2(Hess h)A : Ω1 → Ω2

and consider the operator

KA,h : Ω0 ⊕ Ω1 → Ω0 ⊕ Ω1

9



defined by KA,h(ξ, a) = (d∗Aa, dAξ + ∗dA,h(a)). Then KA,h is self-adjoint (with
respect to the L2 inner product). Using the Hodge decomposition

Ω0 ⊕ Ω1 = Ω0 ⊕ image dA ⊕ ker d∗A,

one can check that if A is an irreducible connection, the difference

KA,h −




0 d∗A 0
dA 0 0
0 0 −HA,h




is a compact operator. (The compactness properties of the perturbation enter at
this point.)

Moreover, if A is h-perturbed flat then the two maps dA ◦ dA,h : Ω1 → Ω3

and dA,h ◦ dA : Ω0 → Ω2 are both zero. It follows that for A an h-perturbed flat
connection,

KA,h =




0 d∗A 0
dA 0 0
0 0 −HA,h


 .

Thus at an h-perturbed flat connection A, the KA,h is obtained from −HA,h by
adding an operator with symmetric spectrum.

These facts, together with the invariance of spectral flow with respect to ho-
motopy of paths of self-adjoint operators rel endpoints, imply that if A0, A1 are
any two h-perturbed irreducible flat connections, and At is any path of irreducible
connections joining them, the spectral flow of the family KAt,h equals the spectral
flow of the family −HAt,h.

The advantage is that KA,h is a smooth family of self-adjoint operators for

any perturbation h and any connection A. Thus we can define the spectral flow
SF ((A0, h0), (A1, h1)) for any pair of connections and admissible perturbations to
be the spectral flow of the family KAt,ht

for any path At joining A0 to A1 and any
path ht joining h0 to h1. This is well defined since the space of connections and
the space of perturbations is contractible. It agrees with the previous definition
of SF (A0, A1) in terms of the Hessian HA,h when A0 and A1 are irreducible h-
perturbed flat connections for a fixed perturbation h.

If A is an h-perturbed flat connection, we use the shorthand SF (θ, A) for
SF ((θ, 0), (A, h)). This, finally, is the meaning of this term in equation (2.4). We
call the operator KA,h the perturbed odd signature operator, since when A is a flat
connection, KA,0 is exactly the odd signature operator coupled to A as described
in [3]. The reader will note that this discussion applies equally well to SU(n)
connections. In this general case we have SF (A0, g ·A1) = SF (A0, A1) + 4n deg g.

3. Reducible connections, singularities and bifurcations

As explained in the previous section, Taubes interpreted the Casson invariant
as an infinite dimensional Morse theoretic Euler characteristic for the space B∗

2

of SU(2) connections modulo gauge. This quotient space is singular along the
reducible connections, but since X is a homology 3-sphere the critical set of the
function cs avoids the singularities (except for the orbit of the trivial connection,
which is isolated from other critical orbits), and so the singularities do not cause
any serious difficulties.

In the setting of SU(3) gauge theory, a reducible flat connection need not be
gauge equivalent to the trivial connection, even on a homology 3-sphere. Restricting
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a gauge transformation to a fiber of the principal bundle determines an isomorphism
from the stabilizer subgroup of a connection A to a subgroup of SU(3). Up to
conjugation, there are five possibilities for this subgroup:

(1) The center Z3 (so A is irreducible),
(2) The 1-dimensional torus {diag(λ, λ, λ−2) | λ ∈ U(1)},
(3) The maximal torus {diag(λ1, λ2, (λ1λ2)

−1) | λi ∈ U(1)},

(4) S(U(2) × U(1)) =

{(
A 0
0 detA−1

) ∣∣∣∣ A ∈ U(2)

}
, and

(5) SU(3).

Since H1(X ; Z) = 0, all abelian representations of π1X are trivial, so the third
and fourth possibilities do not occur as stabilizers of representations (or of flat
connections). The three types of flat connections on a homology 3-sphere, then,
are the following:

(1) Irreducible connections A, with stab(A) = Z3.
(2) Connections A with stab(A) equal to a 1-dimensional torus. For these con-

nections, the image of the holonomy representation holA : π1X → SU(3)
lies in SU(2) ⊂ S(U(2) × U(1)) up to conjugation.

(3) Connections which are gauge equivalent to the trivial connection. For
these connections, stab(A) ∼= SU(3).

The presence of S(U(2)×U(1)) flat connections means that, unlike the SU(2)
case, the SU(3) situation requires analysis of reducible connections to define a
perturbation independent quantity, because the singular stratum is not disjoint
from the critical set of the Chern-Simons function. (This is similar to what Walker
faced in extending the SU(2) invariant to rational homology 3-spheres; in that
case there were also three strata to consider.) As in the SU(2) setting, the gauge
orbit of the trivial connection is isolated in the space of flat connections modulo
gauge. Thus the difficulties are focused on the singular stratum in the quotient
B3 = A3/G3 consisting of connections whose stabilizer is a 1-dimensional torus.
Notice that the reducible flat SU(3) connections may be viewed as irreducible flat
SU(2) connections, i.e. those considered by Taubes.

The irreducible portion B∗
3 ⊂ B3 is a manifold. In addition, the stratum

B
r
3 = {A ∈ A3 | stab(A) ∼= U(1)}/G3

is also smooth (and in fact has a cone bundle neighborhood in B3). The strata of
B3 corresponding to the third and fourth orbit type listed above are disjoint from
the critical set of of the Chern-Simons function, so we will not dwell on them.

Again, grad cs and grad(cs + h) may be viewed as either equivariant vector
fields on A3 or as tangent vector fields on each stratum. (Invariance implies that
at a reducible connection A, the gradient is tangent to the space of reducible con-
nections.) Before describing the SU(3) invariants, we illustrate the difficulties in
defining an invariant by counting critical points (zeros of a gradient vector field) in
such a stratified context.

For the purpose of illustration, we consider a finite dimensional manifold M
with a semifree U(1) action. Recall that an action of a group G on a space M is
called semifree if the stabilizer subgroup of every point in M is either the trivial
subgroup or G.

Let L ⊂ M denote the set of fixed points of the group action. Like B∗∪Br , the
quotient space M/U(1) consists of two strata, L/U(1) ∼= L and (M −L)/U(1), and
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the fixed point stratum has a normal bundle similar to that of Br in B. Namely, the
normal bundle of L/U(1) has fiber homeomorphic to c(CP k), whereas the normal
bundle of Br has fiber c(CP∞). In other words, in this illustration, the non-fixed
points play the role of the irreducible SU(3) connections, and the fixed points play
the role of the (nontrivial) reducible connections.

Let f : M → R be a U(1) invariant smooth function. If m ∈ M is a critical
point for f , then so is every point in the orbit of m. Thus the critical set of
f consists of a collection of fixed points together with a union of circle orbits of
critical points in M − L. Fix an invariant Riemannian metric on M so that we
can identify the critical set of f with the zero set of the U(1)-equivariant gradient
vector field grad f . Because U(1) acts with no nonzero fixed vectors on the normal
bundle to L, if p ∈ L then grad f(p) ∈ TpL. It follows that the critical fixed points
are exactly the critical points of f |L.

On a compact manifold M without group actions, standard techniques in dif-
ferential topology show that generic functions are Morse (i.e. have gradient vector
fields transverse to the zero section of TM). This nondegeneracy condition implies
that the critical set of the function (the set of zeros of the vector field) is compact.
Moreover, for a generic path of functions connecting two Morse functions, the only
topological changes in the critical set are births and deaths of pairs of critical points
of Morse indices differing by one. This fact can be used to give a Cerf theoretic
proof that the signed count of critical points is independent of the Morse function,
for the algebraic contribution from such a pair will be zero. (In fact, as mentioned
in Section 2, the signed count can be identified with the Euler characteristic, so
there are other ways of seeing that it is an invariant, too.)

Things are more complicated in the equivariant setting. We may view M/U(1)
as a union of two manifolds, (M − L)/U(1) and L/U(1) ∼= L. The singular nature
of the quotient space has to do with the normal bundle structure of the second
in the first. A theorem of Wasserman [25] asserts in this setting that a generic
invariant function on M will give a Morse function with finite critical set on each of
these strata. Since (M −L)/U(1) is not compact, finiteness here is less straightfor-
ward. But Wasserman’s theorem is stronger than the statement that the function
restricted to each stratum is Morse. In addition, at a critical point p ∈ L, Hess(f)p

is also nondegenerate on the normal bundle fiber to NpL. This prevents critical
orbits in M − L from accumulating at p.

For a generic path of invariant functions on M connecting two such generic
functions, three types of bifurcations can occur in the critical set. The first two
correspond to standard Morse births and deaths of cancelling pairs of critical points,
in L, and in the (smooth) quotient space (M − L)/U(1). In other words, a pair of
critical points in L of Morse index difference one can be born or can annihilate one
another, and similarly for a pair of circle orbits of critical points of index difference
one.

The third type of bifurcation involves a critical circle orbit popping out of a
critical fixed point (or this process in reverse). That is to say, there is a critical
point in L, with no other critical points nearby for t ≤ t0, and then for t > t0 there
is in addition a circle orbit of critical points nearby. Figure 1 illustrates the topology
of the critical set (in a neighborhood nearby). This phenomenon is illustrated with
the path of functions ft : C → R, ft(z) = −t|z|2 + |z|4.

12



Figure 1. A picture of the parameterized critical set
near t0. For t ≤ t0, the critical set consists of only one fixed
point, but for t > t0, it also includes a circle orbit.

As a consequence, for a generic path ft of functions joining two generic func-
tions, the parameterized critical set

{([m], t) ∈ M/U(1) × [0, 1] | m is a critical point of ft }

has a description as a compact 1-dimensional singular bordism with ‘T’-intersections
from the critical set of f0 to the critical set of f1. More precisely, it is the union of

Cfixed := {([p], t) ∈ L/U(1)× [0, 1] | p ∈ L is a critical fixed point of ft }

and

Cfree := {([m], t) ∈ M/U(1)× [0, 1] | m ∈ M − L is a critical point of ft }.

Cfixed is a compact 1-dimensional manifold with boundary, and the boundary lies
in the “ends” L/U(1)× {0, 1}. On the other hand, Cfree is a 1-manifold (generally
not compact). All of its endpoints lie in M/U(1)×{0, 1}, but its noncompact ends
limit to points in the interior of Cfixed. An example of a possible parameterized
critical set is illustrated in Figure 2.

To obtain an analogue of the Euler characteristic in this U(1) manifold setting,
we must modify the usual signed count of critical points (or critical orbits) to obtain
a formula which is invariant under all three types of bifurcations. The crucial
observation is that, simultaneous with a bifurcation of the third type described
above, there is a change in the normal Morse index of the function at the critical
fixed point.

To describe the change in detail, we must refine our notion of Morse index at
the critical points in L. The fact that the Hessian of an invariant function at a

Figure 2. A cobordism with ‘T’-intersections. The dashed
curves represent the varying critical set in L, and the solid curves
represent the varying critical set (modulo U(1)) in M − L.
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critical point p ∈ L is invariant under the (linearized) group action on the tangent
space TpM implies that the Hessian decomposes into a direct sum of operators
on the two summands TpL ⊕ NpL ∼= TpM . We define the tangential and normal
components of the Morse index to be the number of negative eigenvalues of these
summands, and denote them by µt(p) and µn(p). On NpL, the Hessian commutes
with the U(1) action, so its eigenspaces are U(1) invariant subspaces. The U(1)
action on NpL has no trivial subrepresentations, therefore µn(p) is always even.

A close examination of the relationship between the Morse indices of the critical
points involved in the bifurcations demonstrates that the quantity

(3.1)
∑

q∈((M−L)∩crit(f))/U(1)

(−1)µ(q) −
∑

p∈L∩crit(f)

(−1)µt(p)

(
µn(p)

2

)

is invariant under all three bifurcations and hence is independent of the invariant
Morse function. In fact, one can see by choosing the function appropriately that
this invariant of the U(1) manifold M is the relative Euler characteristic of the
quotient space relative to the singular set (i.e. the Euler characteristic of the relative
cohomology).

4. Correction terms in the SU(3) setting

In this section, we consider the SU(3) gauge theory setting (and so we now drop
the subscript on A ). There is a classification of the types of bifurcations that occur
in the critical set for a generic one parameter family of admissible perturbations of
the Chern-Simons function analogous to that given in the previous section. That
is to say, the bifurcations involve standard Morse births/deaths in the irreducible
stratum of B, standard Morse births/deaths in the reducible (i.e. S(U(2)×U(1)))
stratum of B, and irreducible orbits of critical points popping out of reducible
critical points.

Motivated by the finite dimensional model discussed in the previous section
and Taubes’ gauge theoretic description of the Casson invariant, it is natural to try
to define an SU(3) Casson invariant by replacing the Morse indices in (3.1) with
the spectral flow analogues. We begin by describing the spectral flow analogue of
the decomposition of Morse index µ(p) = µt(p)+µn(p) at critical points with circle
stabilizer.

We first identify the tangent space of the space A of SU(3) connections with
Ω1(X)⊗su(3), the space of differential 1-forms on X with values in the Lie algebra
su(3). Every reducible connection is gauge equivalent to an S(U(2) × U(1)) con-
nection. Under the adjoint action of S(U(2) × U(1)) on the Lie algebra su(3), we
have the decomposition

(4.1) su(3) = s(u(2) × u(1)) ⊕ C
2,

where an element A ⊕ (det A)−1 ∈ S(U(2) × U(1)) acts by the adjoint action on
the first factor and by matrix multiplication by the U(2) matrix det(A)A on the
second factor. Any reducible SU(3) connection can be gauge transformed into the
path connected space of S(U(2) × U(1)) connections. Thus one can decompose
the spectral flow of the odd signature operator KAt

along a path At of reducible
connections into s(u(2)×u(1)) and C2 components according to the decomposition
of equation (4.1). We denote the spectral flow in the s(u(2) × u(1)) (resp. C

2)
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subspace suggestively by SFt (resp. SFn), where ‘t’ stands for tangential and ‘n’
for normal.

The observation which underlies the construction of the SU(3) Casson invariant
is the following: At a bifurcation where a new irreducible critical point pops out of

a reducible one, an eigenvalue of multiplicity two in the C
2 component crosses

zero. More precisely, if (At, ht)t∈(−ε,ε) is a generic path of reducible connections
such that At is ht-perturbed flat, and so that a bifurcation occurs at t = 0, then
SFn(At) = ±2.

Let Mh ⊂ A /G be the h-perturbed flat moduli space, which consists of the
gauge orbits of critical points of cs + h for an admissible perturbation h. We can
split Mh = M ∗

h ∪M red
h ∪{[θ]} as a disjoint union of irreducible and reducible orbits

and the trivial orbit.
Replacing the Morse indices of formula (3.1) with the corresponding spectral

flows, we obtain, when Mh is generic,

(4.2)
∑

[A]∈M∗

h

(−1)SF (θ,A) −
∑

[B]∈Mred
h

(−1)SFt(θ,B)

(
SFn(θ, B)

2

)
.

Equation (4.2) is the expression which generalizes to the gauge theory setting the
discussion we carried out above in the finite-dimensional setting, and which presents
the natural candidate for the definition of an SU(3) Casson invariant following the
approach of Taubes.

But there is a hitch, arising from the fact that the spectral flow is not well
defined on gauge orbits. For the exponents of (−1), this is not a problem, since
SF (θ, [A]) is well defined modulo 12 and SFt(θ, [B]) is well defined modulo 8.
But the gauge ambiguity of the normal spectral flow, which is only well defined
modulo 4, makes formula (4.2) dependent on the gauge representatives chosen for
the reducible perturbed flat orbits.

Several approaches have been proposed to correct this gauge ambiguity. In
[5], the perturbation h is taken to be small and the correction term is defined by

replacing 1
2SFn(θ, B) with 1

2 (SFn(θ, B) − 4cs(B̂) + 2) in the second sum of (4.2).

Here, B̂ is a genuine flat connection near B. This quantity does not depend on the
choice of gauge representative B for the orbit [B] because

SFn(θ, gB) − 4cs(gB̂) = SFn(θ, B) − 4cs(B̂).

This choice for the SU(3) correction term is motivated by Walker’s correction term
for rational homology 3-spheres.

The resulting real valued invariant,

λSU(3) :=
∑

[A]∈M∗

h

(−1)SF (θ,A) − 1
2

∑

[B]∈Mred
h

(−1)SFt(θ,B)
(
SFn(θ, B) − 4cs(B̂) + 2

)
,

was shown in [6] to satisfy:

λSU(3)(−X) = λSU(3)(X)

λSU(3)(X#Y ) = λSU(3)(X) + λSU(3)(Y ) + 16λSU(2)(X)λSU(2)(Y ).
(4.3)

The behavior of λSU(3) under Dehn surgery appears to be very complicated. A
rather delicate analysis was used to compute the values of λSU(3) for surgeries on
(2, q)-torus knots in [7], using analytical surgery methods to compute spectral flow.
The data obtained from these calculations did not suggest any obvious surgery
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formula for λSU(3). Moreover, the calculations show that λSU(3) is not a finite-type
invariant.

The value of λSU(3) for Seifert fibered homology spheres is rational since the
Chern-Simons invariant of flat connections on Seifert fibered spaces are known to
be rational. But it is not generally known whether the value of λSU(3) on homology
3-spheres is always a rational number. This is closely related to the conjectured
rationality of the Chern-Simons invariants, which remains an open problem.

Cappell, Lee, and Miller presented an alternative method for correcting the
gauge ambiguities and derived a new SU(3) Casson invariant [13]. Their result is
based on the observation that one can correct for the gauge ambiguities of (4.2)
using the tangential spectral flow instead of the Chern-Simons invariant: the quan-
tity SFn(θ, B) − SFt(θ, B)/2 is independent of the choice of gauge representative
of [B]. Thus Cappell, Lee, and Miller solved the problem of gauge ambiguities by
replacing SFn(θ, B) in the second sum in (4.2) by SFn(θ, B) − SFt(θ, B)/2 + 5/4.
This restores gauge invariance but destroys the independence of perturbation: one
still needs to correct for births and deaths of pairs of reducible critical orbits. To
handle this phenomenon, they add to

∑

[A]∈M∗

h

(−1)SF (θ,A) − 1
2

∑

[B]∈Mred
h

(−1)SFt(θ,B) (SFn(θ, B) − SFt(θ, B)/2 + 5/4)

a third correction term involving the ranks of the boundary operators for the Floer
instanton homology complex (on S(U(2) × U(1)) connections). That the resulting
expression is an invariant follows from the fact that Floer homology is itself inde-
pendent of the perturbation, and hence a birth and death of a pair of reducibles
coincides with a change (of ±1) in the rank of some boundary operator.

The Cappell-Lee-Miller invariant λCLM takes values in 1
4Z and also satisfies

λCLM (−X) = λCLM (X), but its behavior under connected sum is obscured by com-
plications arising from the third correction term. These complications are closely
related to the subtle problem of determining the Floer homology for connected
sums.

In [8], the present authors developed a different method for defining a correction
term, which we now describe in detail. Let G0 denote the identity component of
G , which consists of degree zero gauge transformations. Then A /G0 −→ A /G is a
nontrivial Z covering and is classified by the Chern-Simons function. Thus spectral
flow is well defined on A /G0. This has the consequence that if [A] and [B] are close
enough in A /G then they have close lifts in A /G0 and the spectral flow between
these two lifts is well defined and independent of the lift (provided they are close).
If [A] and [B] happen to be reducible and close, then we can also define the normal
spectral flow between them and it is also independent of the choice of close lifts.

In fact, for any connected subset U ⊂ A red/G over which Ũ −→ U is the trivial
Z cover, we define the normal spectral flow SFn([A], [B]) between any two gauge
orbits [A], [B] ∈ U by simply choosing lifts of [A] and [B] and a path between

them in the same connected component of Ũ . For the remainder of this article,
we adopt this convention for defining the normal spectral flow between reducible
gauge orbits.

We apply this to the path components of M red. Let M̃ red ⊂ A /G0 be the lift
(i.e. inverse image) of the moduli space M red of reducible flat SU(3) connections.
Then since
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(i) cs(g · A) = cs(A) + deg(g), and
(ii) cs : A −→ R is constant on components of flat connections,

the cover M̃ red −→ M red is trivial and so the normal spectral flow is well defined

between gauge orbits lying in the same connected component of M̃ red and, more
generally, the normal spectral flow is defined between gauge orbits lying in a small
enough neighborhood of a path component of M red.

The new correction term is defined in terms of SFn([B±
i ], [A]) for fixed base-

points [B±
i ] chosen as follows. Let X be a homology 3-sphere and index the compo-

nents of the reducible flat moduli space C1, . . . , Cn. Each component Ci is compact,
hence the normal spectral flow is bounded and one can choose orbits [B−

i ] and [B+
i ]

in Ci for which the normal spectral flow SFn([B−
i ], [B+

i ]) is maximal. If h is a small
perturbation, then every reducible h-perturbed flat connection [B] is close to one
of the components Ci, and so there is an unambiguous notion of normal spectral
flow from the basepoints [B±

i ] to [B]. Although the basepoints need not be unique,

the normal spectral flows are well defined since different choices [B̂±
i ] satisfy

SFn([B−
i ], [B̂−

i ]) = 0 = SFn([B+
i ], [B̂+

i ]).

Given a small, nondegenerate perturbation h, we define τ±(X) by

τ+(X) =
∑

[A]

(−1)SF (θ,A) − 1
2

n∑

i=1

∑

[B]

(−1)SFt(θ,B)SFn([B+
i ], [B])

τ−(X) =
∑

[A]

(−1)SF (θ,A) − 1
2

n∑

i=1

∑

[B]

(−1)SFt(θ,B)
(
SFn([B−

i ], [B]) + dimH1
B−

i

(X ; C2)
)

,

where the first and second sums in τ±(X) are over [A] ∈ M ∗
h and [B] ∈ M red

h ∩ Ui,
and Ui ⊂ Bred is a small open neighborhood of Ci.

Note that the normal spectral flow SFn([B±
i ], [B]) is always even because it

counts the (real) eigenvalues of a complex operator. This observation shows that
both τ+(X) and τ−(X) are integer valued. Under change in orientations, one can
easily verify that τ+(−X) = τ−(X). (The appearance of the dimH1 term in the
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Figure 3. A set U with trivial cover. Given [A], [B] ∈ U ,
compute the spectral flow by choosing lifts in the same component

of Ũ .
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definition of τ− comes from our choice of convention for spectral flow.) Hence it
is natural to define an orientation-independent invariant by averaging them. Thus
we set

τSU(3)(X) = 1
2 (τ+(X) + τ−(X))

=
∑

[A]

(−1)SF (θ,A) − 1
4

n∑

i=1

∑

[B]

(−1)SFt(θ,B)
(
SFn([B+

i ], [B])

+SFn([B−
i ], [B]) + dimH1

B−

i

(X ; C2)
)

,

where the sums are defined as before.
We claim that τSU(3)(X) is integer valued. To prove this claim, it is sufficient

to show that, for any B ∈ M r
h , the quantity

SFn([B+
i ], [B]) + SFn([B−

i ], [B]) + dimH1
B−

i

(X ; C2)

is divisible by 4.
Identifying C

2 with the quaternions and SU(2) with the unit quaternions, the
natural action of SU(2) on C2 becomes left quaternionic multiplication. Since B−

i is
a flat SU(2) connection, right quaternionic multiplication endows the cohomology
group H1

B−

i

(X ; C2) with a quaternionic structure, which implies that the dimension

of this cohomology is a multiple of 4. Furthermore, for any SU(2) connection, the
twisted signature operator on C2 valued forms commutes with this right multipli-
cation, so its eigenspaces are all quaternionic.

This leaves the two normal spectral flow terms. Additivity of the spectral flow
under composition of paths gives that

SFn([B+
i ], [B]) + SFn([B−

i ], [B]) = 2SFn([B+
i ], [B]) + SFn([B−

i ], [B+
i ]).

The complex structure shows that SFn([B+
i ], [B]) is even. Furthermore, since both

B+
i and B−

i are flat SU(2) connections, they can be connected by a path of SU(2)
connections. As noted above, the corresponding path of twisted signature operators
will have quaternionic eigenspaces, which implies that SFn([B−

i ], [B+
i ]) is divisible

by 4. This completes the proof of the integrality claim.
Thus τSU(3) is integer valued, invariant under change of orientation, and more-

over Theorem 4 of [8] shows that

τSU(3)(X#Y ) = τSU(3)(X) + τSU(3)(Y ) + 16λSU(2)(X)λSU(2)(Y ).

(The difference in coefficients here and in [8] is the result of our normalizing
λSU(2)(X) as Casson originally did here, whereas it was normalized according to
Walker’s convention [24] in [8].)

The invariant τSU(3) is vastly easier to compute than either λSU(3) or λCLM . To

see why, consider a homology 3-sphere X whose cohomology H1
α(X ; C2) vanishes for

every SU(2) representation α : X → SU(2). Since the twisted signature operator
at each reducible flat connection has no zero modes on C2 valued forms, all normal
spectral flows SFn(B±

i , B) vanish for all sufficiently small perturbations. This
implies that the correction term for τSU(3)(X) vanishes for small perturbations,
and thus τSU(3)(X) simply equals the quantity

∑

[A]∈M∗

h

(−1)SF (θ,A)
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obtained by perturbing the SU(3) moduli space and counting only irreducible,
perturbed flat gauge orbits. In this sense, the advantage of τSU(3) over λSU(3)

and λCLM is that the correction term for τSU(3) is nontrivial only when absolutely
necessary. For example, the correction term vanishes for Brieskorn spheres of the
form Σ(2, p, q). This was used in the computations of τSU(3)(Σ(2, p, q)) in [8]. In
Section 5, we present computations of τSU(3) in cases where the correction term
does not vanish.

5. Computations for Brieskorn spheres Σ(p, q, r)

In this section, we outline a method for computing τSU(3) on Brieskorn homol-
ogy 3-spheres [9].

5.1. SU(3) representations of Brieskorn 3-spheres. Fix pairwise rela-
tively prime numbers p, q, r and consider the Brieskorn homology 3-sphere

Σ(p, q, r) = {(x, y, z) ∈ C
3 | xp + yq + zr = 0} ∩ S5

ǫ .

Taking a, b, c with
aqr + bpr + cpq = 1,

the fundamental group of Σ(p, q, r) has a presentation

π1(Σ(p, q, r)) = 〈x, y, z, h | h central, xp = ha, yq = hb, zr = hc, xyz = 1〉.

The next result is not difficult to prove; details can be found in [9].

Proposition 5.1. If α : π1Σ(p, q, r) → SU(3) is irreducible, then α(h) =
e2πik/3I is central. If α : π1Σ(p, q, r) → SU(3) is reducible, then up to conjuga-

tion image(α) ⊂ SU(2) × {1} and

α(h) =




±1 0 0
0 ±1 0
0 0 1


 .

Path components of R(Σ(p, q, r), SU(3)) are indexed by fixing α(h) and choos-
ing α(x), α(y) and α(z) to be p-th, q-th and r-th roots of α(ha), α(hb) and α(hc),
respectively.

Using the Seifert fibration Σ(p, q, r) → S2, one can interpret R(Σ(p, q, r), SU(3))
in terms of moduli spaces of parabolic bundles over S2 with 3 marked points. This

q/b

p/a

r/cy

0

h

x

z

Figure 4. The Brieskorn sphere Σ(p, q, r) as surgery on a link.
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III IV

Figure 5. Components of types III and IV in R(Σ, SU(3)).

allows us to make use of the description of these moduli spaces given in [4] and
[19]. In these articles it is shown that each path component of R(Σ(p, q, r), SU(3))
is homeomorphic to either an isolated point or a 2-sphere. These can be further
broken down into 4 types:

(1) Type I consist of isolated irreducible SU(3) representations,
(2) Type II are isolated reducible SU(3) representations,
(3) Type III are smooth 2-spheres consisting entirely of irreducible SU(3)

representations, and
(4) Type IV are 2-spheres which have one non-smooth point: the smooth

points are irreducible SU(3) representations and the non-smooth point is
a reducible representation. These components cause the most trouble: we
call them pointed 2-spheres.

When p = 2, there are no 2-sphere components. In this case, τSU(3)(Σ(p, q, r))
is simply a count of the Type I points; the Type II points do not contribute to
τSU(3) since H1

α(Σ; C2) = 0 at these points (see the last paragraph of Section 4).
The count of the Type I points is carried out in [4], where it is shown that each
Type I point contributes positively to τSU(3). Table 1 gives some calculations of
τSU(3)(Σ(2, q, r)) for various q and r.

Σ τSU(3)(Σ)

Σ(2, 3, 6k ± 1) 3k2 ± k

Σ(2, 5, 10k ± 1) 33k2 ± 9k

Σ(2, 5, 10k ± 3) 33k2 ± 19k + 2

Σ(2, 7, 14k ± 1) 138k2 ± 26k

Σ(2, 7, 14k ± 3) 138k2 ± 62k + 4

Σ(2, 7, 14k ± 5) 138k2 ± 102k + 16

Σ(2, 9, 18k ± 1) 390k2 ± 58k

Σ(2, 9, 18k ± 5) 390k2 ± 210k + 24

Σ(2, 9, 18k ± 7) 390k2 ± 298k + 52

Table 1. Calculations of the integer valued SU(3) Cas-
son invariant for Brieskorn spheres Σ(2, q, r).

5.2. Twisting perturbations. If p, q, r > 2, then R(Σ(p, q, r), SU(3)) always
contains pointed 2-spheres. Thus perturbations are needed to resolve them. In [9]
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we use a preliminary step to improve the moduli space M : we show that a certain
class of twisting perturbations resolve each Type IV component into the union of
one Type II point and one Type III smooth 2-sphere. Rather than to introduce the
twisting perturbations explicitly here, we describe their effect.

The starting point is that pertubations alter the flatness equations in the neigh-
borhood of a knot. A perturbation function h : A → R takes a connection A to
a number determined by the holonomies of the A along curves S1 × {z} in a solid
torus S1 × D2 contained in the homology 3-sphere. Floer proved that for such a
perturbation h, an h-perturbed flat connection is in fact flat outside the solid torus
[16].

Let Y = S1 × D2 be a neighborhood of the singular r-fiber in Σ = Σ(p, q, r)
and set Z = Σ − Y . Then

Σ = Y ∪T Z.

We perturb the flatness equations in the solid torus Y and study the effect on a
pointed 2-sphere. To better visualize this situation, we regard M (Σ) and Mh(Σ)
as the pullback of an intersection in the 4-dimensional representation space of the
torus

M (T ) = T 2 × T 2/S3,

where S3 acts diagonally. Let h denote the twisting perturbation and let ht be a
path from 0 to h. Consider the diagram

Mht
(Y )

Mht
(Σ) M (T )

M (Z)

Q
Q

Qs

i∗

�
�

�3

Q
Q

Qs �
�

�3j∗

The flat moduli space of Z near an intersection giving rise to a Type IV compo-
nent has the form of a union of a 2-dimensional reducible stratum and a 2-parameter
family of 2-spheres. This second piece consists of all irreducible points except for
a single point on each of the spheres along a curve in the 2-parameter family, and
this arc of reducible points is identified with a curve in the 2-dimensional reducible
stratum. The restriction map j∗ : M (Z) → M (T ) collapses 2-spheres to points.
See Figure 6.

When t = 0, M0(Σ) contains a pointed 2-sphere, corresponding to an inter-
section point of i∗M0(Y ) and j∗M (Z). The important property of the twisting
perturbation is that as t increases, this intersection point moves transversely to the
image of M ∗(Z) under j∗. Thus, for t > 0, j∗|M∗(Z) is a submersion with nonde-
generate 2-sphere fibers over the intersection point of i∗Mht

(Y ) and j∗M (Z).
Suppose [B0] is the reducible flat connection on the pointed 2-sphere. We claim

that this point persists under the twisting perturbation. To see why, consider the
intersection of Mht

(Y ) and M red(Z) in M (T ). At t = 0, M0(Y ) ∩ M red(Z) =
{[B0]}, but the map M red(Z) → M (T ) is transverse to M0(Y ) at [B0] along the
reducible stratum. The situation is illustrated in Figure 6. Thus, after pertubing,
the intersection Mh(Σ) = M (Z) ∩ Mh(Y ) near the pointed sphere consists of one
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sphere

*j

bundle

Figure 6. The effect of a twisting perturbation. The
two intersecting 2-planes here represent the images of M red(Z)
and M ∗(Z) in M (T ). The two vertical lines, from left to right, rep-
resent the images of Mh(Y ) and M (Y ), which are 2-dimensional.
Also depicted is the 2-sphere bundle M ∗(Z) being mapped under
j∗ to the slanted 2-plane.

isolated reducible orbit and a smooth nondegenerate 2-sphere of irreducible orbits
(see Figure 7).

Note that the perturbed Chern-Simons function is not generic, since there are
critical 2-spheres. However, the 2-sphere is a Bott-Morse critical submanifold, and
it is a general fact that such submanifolds contribute their Euler characteristic to
the SU(3) Casson invariant, up to sign. Precisely, a Bott-Morse smooth critical
submanifold M ⊂ M ∗

h contributes χ(M) · (−1)SF (θ,A) where A is any connection
whose gauge orbit lies on M . In the present case, χ(S2) = 2 and SF (θ, A) was
shown to be even in [4]. Thus this 2-sphere contributes 2 to τSU(3)(Σ). A similar
comment applies to compute the contribution from the Type III smooth 2-sphere
components, which remain smooth 2-spheres for small enough perturbations. The
Type I isolated irreducible points remain isolated irreducible for sufficiently small
perturbations.

The results of [4] then apply to calculate the contribution of the Type I, Type
III, and the resolved smooth 2-spheres coming from the Type IV components. The
Type II components do not contribute to τSU(3)(Σ). To complete the calculation it
remains to compute the contribution of the reducible point in Mh(Σ) to the second
term of τSU(3)(Σ) coming from the resolution of the Type IV components.

5.3. Normal spectral flow along the path of twisted perturbed flat
reducible connections. For 0 ≤ t ≤ ε, let Bt be the path of ht-perturbed flat
reducible connections near a pointed 2-sphere, i.e. Bt corresponds to the intersection
of Mht

(Y ) with M (Z) in M (T ) near the singular point of the pointed 2-sphere. In
light of the definition of the second term of τSU(3), we need to calculate the normal
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0

ε

A

B

εA

+
0

B   = B   = B

Figure 7. A pointed 2-sphere resolves into a smooth 2-
sphere and a reducible point.

spectral flow SFn(B±, Bε). Notice that B0 is isolated in the reducible flat moduli
space, and so we take B+ = B− = B0.

To calculate SFn(B0, Bǫ), we split the spectral flow according to the manifold
decomposition

Σ = Y ∪T Z.

We use Atiyah-Patodi-Singer boundary conditions on Y and Z to get self-
adjoint operators. Consider first a connection A on Y whose restriction to a collar
of the boundary is flat, and let a = A|T . The tangential operator Sa of the odd
signature operator KA is

Sa : Ω0+1+2(T ; C2) → Ω0+1+2(T ; C2)

Sa(α, β, γ) = (∗daβ,− ∗ daα − da ∗ γ, da ∗ β) .

(In this formula, da : Ωi(T ; C2) → Ωi+1(T ; C2) is the exterior derivative associated
to the connection a.) After a gauge transformation, if needed, the formula KA =
σ(du)(Sa + ∂

∂u ) holds in a collar T ×I of the boundary, where σ denotes the symbol
of KA and u is the inward normal coordinate.

In this context Atiyah, Patodi and Singer in [2] showed that the operator KA

acting on those forms in Ω0+1(Y ; C2) whose restriction to the boundary lie in the
positive eigenspan P+

a of Sa is Fredholm, and self-adjoint if in addition kerSa = 0.
When a is flat, kerSa is isomorphic via the Hodge theorem to H0+1+2

a (T ; C2). This
cohomology group vanishes for nontrivial flat connections a.

Applying this to the path Bt restricted to Y gives a family of self-adjoint
operators whose (normal) spectral flow is denoted by SFn(Bt; P

+; Y ; 0 ≤ t ≤ ε).
Similar considerations on Z (taking into account the change in orientation of the
inward normal) gives the spectral flow SFn(Bt; P

−; Z; 0 ≤ t ≤ ε). A theorem of
Bunke ([12], see [14] for general splitting theorems for spectral flow) implies that

SFn(Bt; Σ; 0 ≤ t ≤ ε) = SFn(Bt; P
+; Y ; 0 ≤ t ≤ ε) + SFn(Bt; P

−; Z; 0 ≤ t ≤ ε).

Theorem 5.2. Let Bt be the path of reducible perturbed flat connections near

a pointed 2-sphere described above. Then

(i) SFn(Bt, P
+; Y ; 0 ≤ t ≤ ε) = 0,

(ii) SFn(Bt, P
−; Z; 0 ≤ t ≤ ε) = −2.

Hence each pointed 2-sphere contributes +2 to τSU(3)(Σ(p, q, r)).

Sketch of proof. Part (i) follows from vanishing of cohomology H0+1
B0

(Y ; C2) and
is left to the reader. Instead, we outline the argument for part (ii), which uses
additivity of the spectral flow under composition of paths.
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Figure 8. When p and q are both odd, the components
of reducible SU(3) representations of π1Z are homeo-
morphic to cylinders S1 × [0, 1].

The space of conjugacy classes of SU(2) representations of π1Z is a union of
arcs ρs, s ∈ [0, 1]. The endpoints of these arcs are abelian SU(2) representations.
(These facts are proved in [21].) Since H1(Z; Z) = Z, we can twist each SU(2)
representation ρs to get a representation π1Z → U(2) by simply multiplying ρs

by the (unique) abelian representation χt : π1Z → U(1) with χt(γ) = e2πit for γ
generator of H1(Z; Z).

Identifying U(2) with the subgroup S(U(2) × U(1)) ⊂ SU(3), the family
αs,t = χtρs, parameterizes a family of reducible SU(3) representations where
(s, t) ∈ [0, 1] × (−ǫ, ǫ) and ǫ > 0 is chosen small.

The restriction to Z of the path Bt is a path of flat connections whose holonomy
is essentially of the form αs0,t for some fixed s0 ∈ (0, 1). Thus there is a two
parameter family Bs,t of flat connections on Z defined for (s, t) ∈ [0, 1]× [0, ε] with
Bs0,t = Bt and B1,t abelian.

Using the invariance of spectral flow with respect to homotopy rel endpoints
and the additivity with respect to composition of paths, we have:

SF (Bt; P
−; Z; 0 ≤ t ≤ ε) = SF (Bs0,t; P

−; Z; 0 ≤ t ≤ ε),

= SF (Bs,0; P
−; Z; s0 ≤ s ≤ 1) + SF (B1,t; P

−; Z; 0 ≤ t ≤ ε)

−SF (Bs,1; P
−; Z; s0 ≤ s ≤ 1),

= SF (B1,t; P
−; Z; 0 ≤ t ≤ ε).

To see the last step, note that dim H1
Bs,0

(Z; C2) = 4 and dim H1
Bs,1

(Z; C2) = 0 are

both constant in s, hence SF (Bs,0; P
−; Z; s0 ≤ s ≤ 1) and SF (Bs,1; P

−; Z; s0 ≤
s ≤ 1) vanish.

Now {[B1,t] | 0 ≤ t ≤ ε} ⊂ M ab(Z) is a path of connections with abelian
holonomy. The operator KB1,t

on Z with P− boundary conditions has four zero
modes at t = 0 and no zero modes for 0 < t ≤ ε. Working with abelian connections
is simpler and one can show (using for example Levine-Tristam signatures, as in
[20]) that as t increases from t = 0, two of the zero modes go up and the other two
go down, hence (with our convention for spectral flow)

SFn(Bt; Z; P−; 0 ≤ t ≤ ε) = SF (B1,t; P
−; Z; 0 ≤ t ≤ ε) = −2.

This establishes (ii).
Using Bunke’s theorem, the fact that B+ = B− = B0 in this case, the com-

putation that dimH1
B0

(Σ; C2) = 4, and the definition of the correction term for
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τSU(3), it follows that the perturbed flat reducible gauge orbit [Bε] contributes

− 1
4 (−1)SF (θ,Bε)

(
2SFn(B0, Bε) + dimH1

B0
(Σ; C2)

)

= − 1
4 (−1)2SF (θ,Bε)

(
2(−2) + 4

)
= 0

to τSU(3)(Σ). Thus the only contribution of a pointed 2-sphere to τSU(3)(Σ) comes
from the smooth 2-sphere of irreducibles obtained after perturbing which con-
tributes χ(S2) = 2 to (the first term in the definition of) τSU(3)(Σ). �

Σ τSU(3)(Σ)

Σ(3, 4, 12k ± 1) 105k2 ± 21k

Σ(3, 4, 12k ± 5) 105k2 ± 87k + 16

Σ(3, 5, 15k ± 1) 276k2 ± 40k

Σ(3, 5, 15k ± 2) 276k2 ± 74k + 2

Σ(3, 5, 15k ± 4) 276k2 ± 148k + 16

Σ(3, 5, 15k ± 7) 276k2 ± 254k + 56

Table 2. Calculations of the integer valued SU(3) Cas-
son invariant for Brieskorn spheres Σ(p, q, r) with p > 2.

Table 2 gives some sample computations of the integer valued Casson invariant.
Let Kp,q = the (p, q) torus knot and set Xn = 1/n Dehn surgery on Kp,q. Then
Xn = ±Σ(p, q, r) for r = |pqn − 1|. Table 3 gives the value of τSU(3)(Xn) for
various p, q. These calculations suggest several conjectures. First of all, in all these
computations, τSU(3)(Σ) is even, which lends evidence to the following conjecture
of [8].

Conjecture 5.3. τSU(3)(X) is even for all integral homology 3-spheres.

One reason for believing Conjecture 5.3 (apart from the empirical evidence) is
the existence of a natural involution on MSU(3) induced by complex conjugation on
SU(3) and su(3). For example, one can use the involution to prove the conjecture
under the hypothesis that the flat moduli space MSU(3) is regular, which is the

condition that H1
α(X ; su(3)) = 0 for every nontrivial representation α : π1X →

SU(3)).
A second pattern observed in the data is quadratic growth in the surgery coef-

ficient for successive surgeries on a fixed knot.

Conjecture 5.4. If K ⊂ X is a knot in a homology 3-sphere and Xn is the

result of 1/n Dehn surgery on K, then the limit

lim
n→∞

τSU(3)(Xn)/n2 = A(K)

exists and depends only on the knot K.
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p = 2 τSU(3)(Xn) p = 3 τSU(3)(Xn) p = 4 τSU(3)(Xn)

K2,3 3n2 − n K3,4 105n2 − 21n K4,5 1011n2 − 111n

K2,5 33n2 − 9n K3,5 276n2 − 40n K4,7 4110n2 − 320n

K2,7 138n2 − 26n K3,7 1128n2 − 124n K4,9 11 490n2 − 712n

K2,9 390n2 − 58n K3,8 1953n2 − 179n K4,11 25 935n2 − 1297n

K2,11 885n2 − 107n K3,10 4851n2 − 367n K4,13 50 925n2 − 2171n

K2,13 1743n2 − 179n K3,11 7140n2 − 476n K4,15 90 636n2 − 3320n

K2,15 3108n2 − 276n K3,13 14 028n2 − 812n K4,17 149 940n2 − 4888n

K2,17 5148n2 − 404n K3,14 18 915n2 − 993n K4,19 234 405n2 − 6789n

K2,19 8055n2 − 565n K3,16 32 385n2 − 1517n K4,21 350 295n2 − 9231n

K2,21 12 045n2 − 765n K3,17 41 328n2 − 1788n K4,23 504 570n2 − 12 072n

K2,23 17 358n2 − 1006n K3,19 64 620n2 − 2544n K4,25 704 886n2 − 15 600n

K2,25 24 258n2 − 1294n K3,20 79 401n2 − 2923n K4,27 959 595n2 − 19 569n

K2,27 33 033n2 − 1631n K3,22 116 403n2 − 3951n K4,29 1 277 745n2 − 24 363n

Table 3. The integer valued SU(3) Casson invariant for
homology 3-spheres Xn obtained by 1/n surgery on Kp,q

The data from Table 3 even gives a precise (conjectural) formula for A(K) for
torus knots:

A(Kp,q) =
(p2 − 1)(q2 − 1)(2p2q2 − 3p2 − 3q2 − 3)

240
,

which is consistent with the more general formula (also conjectural) that

(5.1) A(K) = 6c4(K) + 3c2(K)2,

where ∆K(z) =
∑

i≥0 c2i(K)z2i is the Conway polynomial of K. Based on Frohman’s

work [17], formula (5.1) is essentially equivalent to the conjecture that A(K) equals
is six times the Frohman-Nicas SU(3) knot invariant, at least for fibered knots
(cf. [18, 10]).

Table 3 suggests a stronger result, namely that

(5.2) τSU(3)(Xn) = A(K)n2 − B(K)n + τSU(3)(X)

is a quadratic polynomial. Here, the assumptions are as before: K ⊂ X is a knot
in a homology 3-sphere and Xn is the result of performing 1/n Dehn surgery on K.
For example, interpolating the data from Table 3,we get the formula

B(K2,q) =

{
1
12 (q3 − 4q + 3) if q ≡ 1 mod 4,
1
12 (q3 − 4q − 3) if q ≡ 3 mod 4,

for p = 2. Further, for p = 3 and p = 4, we get the formulas

B(K3,q) =





1
54 (20q3 + 3q2 − 48q + 25) if q ≡ 1 mod 6,
1
54 (20q3 − 3q2 − 48q + 2) if q ≡ 2 mod 6,
1
54 (20q3 + 3q2 − 48q − 2) if q ≡ 4 mod 6,
1
54 (20q3 − 3q2 − 48q − 25) if q ≡ 5 mod 6,
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and

B(K4,q) =





1
16 (16q3 + q2 − 42q + 25) if q ≡ 1 mod 8,
1
16 (16q3 − q2 − 42q + 39) if q ≡ 3 mod 8,
1
16 (16q3 + q2 − 42q − 39) if q ≡ 5 mod 8,
1
16 (16q3 − q2 − 42q − 25) if q ≡ 7 mod 8.

The complexity of these formulas makes it difficult to guess a general formula for
B(K) in terms of classical invariants of the knot.

Notice that the conjectured formula (5.1) for A(K) is not consistent with the
conjecture (5.2) that τSU(3)(Xn) is a quadratic polynomial in the surgery coefficient.
We explain this point using the well known fact that, for any amphicheiral knot K
in S3, X−n = −Xn. Since τSU(3)(−X) = τSU(3)(X), the conjectured formula (5.2)

would imply that B(K) = 0 and that τSU(3)(Xn) = A(K)n2 for amphicheiral knots

in S3.
The figure eight knot K is amphicheiral, and ±1 surgery on K gives the

Brieskorn sphere ±Σ(2, 3, 7). Hence τSU(3)(X±1) = 4. Assuming Conjecture 5.4
is true (so there is a quadratic growth coefficient A(K)), the formula (5.1) pre-
dicts that A(K) = 3 (because the Conway polynomial of K equals 1 − z2). But
B(K) = 0, τSU(3)(S

3) = 0 and the value of τSU(3)(X±1) for ±1 surgery on K equals
4, hence A(K) = 4. So if τSU(3)(Xn) is a quadratic polynomial as in (5.2), then
formula (5.1) for A(K) is incorrect.

Finding a direct method for computing τSU(3) for surgeries on the figure eight
knot is an important step that promises to help determine the correct surgery
formula for the integer valued SU(3) Casson invariant.
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