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UNIVERSAL FORMULAE FOR SU(n) CASSON INVARIANTS OF
KNOTS

HANS U. BODEN AND ANDREW NICAS

Abstract. An SU(n) Casson invariant of a knot is an integer which can be
thought of as an algebraic-topological count of the number of characters of

SU(n) representations of the knot group which take a longitude into a given

conjugacy class. For fibered knots, these invariants can be characterized as
Lefschetz numbers which, for generic conjugacy classes, can be computed using

a recursive algorithm of Atiyah and Bott, as adapted by Frohman. Using

a new idea to solve the Atiyah-Bott recursion (as simplified by Zagier), we
derive universal formulae which explicitly compute the invariants for all n. Our

technique is based on our discovery that the generating functions associated
to the relevant Lefschetz numbers (and polynomials) satisfy certain integral
equations.

Introduction

A knot in a closed oriented 3-manifold is said to fibered if its complement fibers
over the circle. For a fibered knot K and α ∈ SU(n), the SU(n) Casson invariant
of K, denoted by λn,α(K), is an integer which can be thought of as an algebraic-
topological count of the number of characters of SU(n) representations of the knot
group which take a longitude into the conjugacy class of α. (For a more detailed
description of these invariants, see [8, 2] in case K is fibered and [9, 10] in the general
case.) For generic α ∈ SU(n), including all generators of the center of SU(n),
there exist homogeneous polynomials pn,α(x0, x2, . . . , x2n−2) (depending only on
the conjugacy class of α) of degree n− 1 such that, for any fibered knot K,

λn,α(K) = pn,α

(
∆K(1),∆(2)

K (1), . . . ,∆(2n−2)
K (1)

)
,

where ∆(2j)
K (1) is the 2j-th derivative at t = 1 of ∆K(t), the (balanced) Alexander

polynomial of K. In this paper, we present an explicit calculation of pn,ω for all n,
where ω is e2πi/n times the n × n identity matrix. For generic α ∈ SU(n), pn,α is
determined from pn,ω via the “wall-crossing” formulae of [2]. Thus computing pn,ω

is an important step in the general calculation of λn,α(K).
Given any knot K, there is a unique polynomial called its Conway polynomial

and denoted by ∇K(z), such that ∇K(t1/2 − t−1/2) = ∆K(t). Since the Conway
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and Alexander polynomials carry equivalent information, there exist polynomials
qn,α(y0, y2, . . . , y2n−2) such that

λn,α(K) = qn,α(C0, C2, . . . , C2n−2)

for any fibered knot K with Conway polynomial ∇K(z) =
∑

i≥0 C2iz
2i. (It is

well-known that for knots, ∇K(z) is a polynomial in z2.) The formula for qn,α is
independent of K, so these polynomials give universal formulae for the invariants
λn,α.

For α = ω and n ≤ 5, a remarkable cancellation occurs, revealing that qn,ω is not
only homogeneous but also weighted homogeneous of weighted degree 2n−2, where
y2i has weighted degree 2i. In Conjecture 1.9 we assert that this is true for all n
provided α = ω. Consequently, in computations of qn,ω one can drop all terms of
lower order, which has the effect of making general computations of the universal
formulae possible.

For α ∈ SU(n), let mα be the Euler characteristic of its conjugacy class. (Note
that mα is a positive integer for all α ∈ SU(n).) The wall-crossing formulae of [2]
imply that for generic α, β ∈ SU(n), mα qn,α−mβ qn,β has weighted degree strictly
less than 2n−2. Thus the weighted homogeneous part of 1

mα
qn,α of highest weighted

degree, denoted by νn(y0, y2, . . . , y2n−2), is independent of (generic) α ∈ SU(n).
Even in the absence of Conjecture 1.9, our results give a complete computation of
those terms in the universal polynomials which are invariant under wall-crossing.

Using Zagier’s summation formula [15] for solving the Atiyah-Bott recursion [1],
we are able to express each coefficient of νn as an explicit sum of rational numbers
over the set of all compositions of n (i.e., ordered partitions of n). Since there are
2n−1 compositions of n, direct evaluation of these sums becomes impractical, even
for relatively modest values of n. To overcome this difficulty, a new method for
evaluating the sums is required.

Our technique is based on our discovery that certain generating functions Φ(s, t)
associated to these sums satisfy integral equations of the form:

Φ(s, t) +
∫ 1

0

γ(xs)
x

Φ(tx, t)dx = f(s, t),

where γ(s) =
∑∞

n=1 sn/bn for bn = 4nn!(n− 1)! and f(s, t) is a given formal power
series in s and t.

Indeed, assembling the solutions to the Atiyah-Bott recursion into a generating
function Φ̃(s, t), we prove that Φ̃(s, t) satisfies the contour integral equation:

Φ̃(s, t) +
∮

ρ(sy)Φ̃(ty, t)η(x, y)dy = ρ(s),

where ρ(s) and η(x, y) are certain given power series and the contour integral is
taken over the unit circle in C.

The contour integral equation yields a new, highly efficient method for computing
the Lefschetz polynomials of certain self-maps of Mn,1, the moduli space of rank n
degree 1 bundles over a Riemann surface. These maps are induced by orientation
preserving homeomorphisms of the surface with an open disk deleted. In particular,
this applies to the identity map of Mn,1 and thus provides a rapid method to
generate the Poincaré polynomials of Mn,1.

Applying these techniques to integral equations of the first type, we are able
to determine νn for moderate values of n. Appendix B includes a table of νn for
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2 ≤ n ≤ 10 (the computation is due to Casson for n = 2, [5], and to Frohman for
n = 3, [8]).

Stronger results are obtained whenever one can solve the integral equations in
closed form, which we have done in a number of instances. For example, the simplest
terms appearing in νn are the two monomials Anyn−2

0 y2n−2 and Bnyn−1
2 , where

An = 4
n∑

k=1

(−1)k+1
∑

n1+···+nk=n

∑k
i=1

∑ni

j=1(2j − 1)2n−2∏k
i=1 bni

∏k−1
j=1 (nj + nj+1)

(†)

Bn = 4
n∑

k=1

(−1)k+1
∑

n1+···+nk=n

∏k
i=1

∏ni

j=1(2j − 1)2∏k
i=1 bni

∏k−1
j=1 (nj + nj+1)

. (‡)

In the above equations, bnj
= 4nj nj !(nj − 1)! and the interior sums are over all

compositions of n into k parts. Solving the relevant integral equations allows us
to evaluate these sums for all n and we prove that An = 1

n

(
2n−2
n−1

)
, the Catalan

number, and that Bn = 1 (see Theorems 2.18 and 2.5).
More generally, we express each coefficient of νn as an explicit linear combination

of sums of the form

4
n∑

k=1

(−1)k+1
∑

n1+···+nk=n

∏d
`=1

[∑k
i=1

∑ni

j=1(2j − 1)2λ`

]
∏k

i=1 bni

∏k−1
j=1 (nj + nj+1)

, (∗)

where λ` is a positive integer for ` = 1, . . . , d such that λ1 + · · ·+λd < n. Although
these sums are apparently quite complicated, their evaluation is achieved by a
remarkably simple formula, and we conjecture that the expression in (∗) equals 0
for λ1 + · · · + λd < n − 1 and equals

(
2λ1
λ1

)
· · ·
(
2λd

λd

)
nd−2 for λ1 + · · · + λd = n − 1

(see Conjecture 1.16 and, for a simpler formulation, Conjecture 2.19).
Two corollaries of Theorems 2.18 and 2.5 are stated in section 3. The first

strengthens an earlier result of Frohman (Theorem 1.7 in [8]) on the existence of
irreducible SU(n) representations of fibered knot groups. The second presents a
simple formula for λn,ω(K) in terms of Casson’s SU(2) invariant λ2,ω(K) for knots
K in 3-manifolds N with first Betti number b1(N) > 0. These results do not depend
on the previously stated conjectures.

This paper is organized into three sections and two appendices. In the first sec-
tion, we describe our universal formulae and show how their computation can be
reduced to the evaluation of sums of type (∗). In the second section, we present
our integral equation technique for analyzing such sums and also explain how con-
tour integral equations yield a new algorithm for computing the relevant Lefschetz
polynomials. In the third section, we present two corollaries. Proofs of certain
combinatorial identities used in §2 are given in Appendix A. The polynomials νn

for 2 ≤ n ≤ 10 are tabulated in Appendix B.

Acknowledgments. The maple software package was used for the computations
appearing in the tables in §1 and in Appendix B and was a valuable resource
throughout the course of our investigation.

1. Universal Formulae

This section presents universal formulae determining the SU(n) Casson invariants
λn,α(K) in terms of the Alexander (or Conway) polynomial of K for all fibered
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knots K. After recalling the relevant definitions in §1.1 and the earlier results of
Frohman concerning the existence of polynomials pn,α in §1.2, we provide new direct
computations of pn,ωd for n, d relatively prime and n ≤ 5. Next in §1.3 we describe
a change of variables leading to new polynomials qn,α, which, though equivalent to
pn,α, are given by much simpler formulae, at least for α = ω (cf. Conjecture 1.9).

In §1.4 & 1.5, we reduce the computation of qn,ω to the evaluation of the sums (∗)
from the introduction. This involves computing the weighted homogeneous part of
pn,ωd (which is independent of d provided (n, d) = 1)), and deducing the weighted
homogeneous part νn of qn,ωd . The last part of §1.5 describes the coefficients of νn

as linear combinations of the sums (∗), and §2 presents general methods to evaluate
such sums. For the purposes of §1, Conjecture 1.16 provides a complete solution
determining νn for arbitrary n. Conjecture 1.9 then asserts that qn,ω = νn, allowing
one to recover pn,ω from just its weighted homogeneous part. Finally, we mention
that one could employ the wall-crossing formulae of [2] to determine pn,α for all
generic α ∈ SU(n) yielding universal formulae for λn,α(K) for all fibered knots K.

1.1. Basic Definitions. In this subsection we present a precise definition of the
SU(n) Casson invariants for fibered knots K in closed 3-manifolds N . Before doing
that, we introduce the notation for fibered knots and the classical knot invariants
given by the Alexander and Conway polynomials.

Suppose K is a knot in a closed oriented 3-manifold N .

Definition 1.1. A knot K ⊂ N is said to be fibered if there is an open tubular
neighborhood, τ(K), of K such that N \ τ(K) is homeomorphic to the mapping
torus of an orientation preserving homeomorphism ϕ : F −→ F , where F is a
compact connected oriented surface with one boundary component, i.e.,

N \ τ(K) ∼= F × [0, 1]/(x, 0) ∼ (ϕ(x), 1).

The mapping torus structure of N \τ(K) is essentially unique; if N \τ(K) is also
homeomorphic to the mapping torus of an orientation preserving homeomorphism
ϕ : F ′ −→ F ′ then there is an orientation preserving homeomorphism h : F −→ F ′

and an isotopy between ϕ and h−1 ◦ ϕ′ ◦ h (for details, see chapter 5 of [4]). We
refer to ϕ as the monodromy map of the fibered knot K.

Definition 1.2. (i) The balanced Alexander polynomial of a fibered knot K ⊂
N is given by ∆K(t) ≡ t−g det(id−tϕ∗), where ϕ : F −→ F is the mon-
odromy map of K, g is the genus of F , and ϕ∗ : H1(F ; Z) −→ H1(F ; Z) is
the induced map in homology.

(ii) The Conway polynomial of the fibered knot K ⊂ N is the unique polyno-
mial ∇K(z) such that ∇K(t1/2 − t−1/2) = ∆K(t).

For N = S3, both (i) and (ii) coincide with the common definitions which are
usually given in terms of the Alexander module for (i) and in terms of skein theory
for (ii). In any case, ∇K(z) is in fact a polynomial in z2 for knots K.

Now, we are almost ready to define the SU(n) Casson knot invariants for fibered
knots. These are given as Lefschetz numbers on representation varieties. We review
Lefschetz polynomials and Lefschetz numbers first and then describe the relevant
representation varieties.
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Definition 1.3. Given a space Y with the homotopy type of a finite CW complex
and a map f : Y −→ Y , the Lefschetz polynomial of the pair (Y, f) is defined by∑

j≥0

(−1)j trace (Hj(f) : Hj(Y ; Q) −→ Hj(Y ; Q)) tj .

and the Lefschetz number of (Y, f) is the integer obtained by evaluating this poly-
nomial at t = 1.

Let F be a compact connected oriented surface of genus g with one boundary
component. Choose a basepoint b ∈ ∂F . The fundamental group π1(F, b) is a
free group on 2g generators. Let δ ∈ π1(F, b) be the element determined by ∂F

and its orientation. For α ∈ SU(n), define R̃n,α to be the set of homomorphisms
ρ : π1(F, b)−→SU(n) such that ρ(δ) is conjugate to α. The set R̃n,α can be viewed
as a real algebraic subset of SU(n)2g and thus acquires a topology. Define Rn,α

to be the quotient of R̃n,α by the conjugation action of SU(n). An orientation
preserving homeomorphism h : (F, ∂F ) −→ (F, ∂F ) and a choice of a path from
the basepoint b to h(b) determines an automorphism h# : π1(F, b) −→ π1(F, b).
Precomposition with h# induces a map h̃∗ : R̃n,α −→ R̃n,α which in turn induces
a map h∗ : Rn,α −→ Rn,α and h∗ depends only the homotopy class of h as a map
of pairs. In particular, this process defines an action of the mapping class group,
π0(Homeo+(F )), on Rn,α, where Homeo+(F ) is the topological group of orientation
preserving self-homeomorphisms of F .

Definition 1.4. Suppose that K ⊂ N is a fibered knot with surface F and mon-
odromy map ϕ : F −→ F .

(i) Denote by Ln,α(t;K) the Lefschetz polynomial of the pair (Rn,α, ϕ∗).
(ii) Define the SU(n) Casson invariant of K by setting λn,α(K) ≡ Ln,α(1;K),

i.e., λn,α(K) equals the Lefschetz number of the pair (Rn,α, ϕ∗).

The Lefschetz number of a map can be thought of as an algebraic-topological
count of the number of fixed points of the map; here, fixed points of ϕ∗ correspond
to characters of SU(n) representations of the knot group of K which take a longitude
into the conjugacy class of α.

The following is a restatement of Proposition 1.2 of [8].

Proposition 1.5. If H1(N ; Z) is finite, then ∆K(1) = |H1(N ; Z)|. Otherwise,
∆K(1) = 0.

Consequently, we shall be primarily interested in the case K is a knot in a rational
homology sphere N.

1.2. Universal Polynomials. This subsection gives a brief description of some
results of Frohman and serves as the starting point of our inquiry. Suppose K ⊂
N is a fibered knot of genus g in a rational homology 3-sphere N. For positive
integers d, n satisfying d < n and (d, n) = 1, Theorem 3.14 of [8] establishes the
existence of homogeneous polynomials pn,ωd(x0, x2, . . . , x2n−2) of degree n−1 such
that λn,ωd(K) is obtained by replacing x2j in pn,ωd by ∆(2j)

K (1), the value of the
2j-th derivative of the balanced Alexander polynomial of K at t = 1. (Recall that
ω = e2πi/n times the n× n identity matrix. In [8], pn,ωd is denoted by p(n, d).)

Frohman showed in [8] that the Lefschetz polynomials Ln,ωd(K; t) satisfy a mod-
ified version of the Atiyah-Bott recursion [1]. He also gave an algorithm, based on
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solving this recursion, for determining the polynomials pn,ωd (see equation (2.13)
in §2.2). By explicitly solving the recursion for n = 2 and n = 3, he computed p2,ω

and p3,ω.
Zagier subsequently found a general method for inverting the Atiyah-Bott recur-

sion and derived a summation formula for its solution (Theorem 2 of [15], see also
Theorem 2.2 in §2.2). Adapting Zagier’s result to Frohman’s modification of the
Atiyah-Bott recursion yields the following formula for the Lefschetz polynomials
Ln,ωd(t;K).

Before presenting this formula, we need to introduce some notation. For n > 0,
set c(t) = tg∆K(t), the unbalanced Alexander polynomial, and

(1.1) Qn =
tn

2(1−g)c(t)c(t3) · · · c(t2n−1)
(1− t2)2 · · · (1− t2n−2)2(1− t2n)

.

For any a ∈ R, let 〈a〉 = [a] − a + 1 be the unique b ∈ (0, 1] such that a + b ∈ Z.
Define also

(1.2) M(n1, . . . , nk; s) =
k−1∑
i=1

(ni + ni+1)〈(n1 + · · ·+ ni)s〉.

The following proposition is proved by combining Proposition 2.1 of [8] with
Theorem 2 of [15].

Proposition 1.6. If K is a fibered knot of genus g and (n, d) = 1, then the Lefschetz
polynomial Ln,ωd(t;K) equals

tn
2(g−1)(1− t2)

c(t)

n∑
k=1

∑
n1+···+nk=n

(−1)k−1t2M(n1,...,nk;d/n)Qn1 · · ·Qnk

(1− t2n1+2n2) · · · (1− t2nk−1+2nk)
,

where the interior sum is over all compositions of n into k parts.

Note that λn,ωd(K) = Ln,ωd(1;K) but that the rational expressions in the sum-
mation formula for Ln,ωd(t;K) have poles of order 2n − 2 at t = 1. Thus, to de-
termine the polynomials pn,ωd , one must apply L’Hôpital’s rule 2n− 2 times. The
following table summarizes the known results. The cases n = 2 and n = 3 are due to
Casson and Frohman, respectively; the other cases are new. Since pn,ωd = pn,ωn−d

(because of ‘duality’), these are complete results for n ≤ 5.

Table 1. The polynomials pn,ωd for 2 ≤ n ≤ 5

p2,ω
1
2x2

p3,ω
1
12x0x4 − x0x2 + 1

4x2
2

p4,ω
1

144x2
0x6 − 5

8x2
0x4 + 5x2

0x2 + 7
48x0x2x4 − 7

4x0x
2
2 + 1

8x3
2

p5,ω
1

2880x3
0x8 − 7

60x3
0x6 + 91

12x3
0x4 − 56x3

0x2 + 11
576x2

0x
2
4 + 13

720x2
0x2x6

− 25
12x2

0x2x4 + 63
4 x2

0x
2
2 + 1

6x0x
2
2x4 − 2x0x

3
2 + 1

16x4
2,

p5,ω2
1

2880x3
0x8 − 41

360x3
0x6 + 22

3 x3
0x4 − 54x3

0x2 + 11
576x2

0x
2
4 + 13

720x2
0x2x6

− 49
24x2

0x2x4 + 61
4 x2

0x
2
2 + 1

6x0x
2
2x4 − 2x0x

3
2 + 1

16x4
2.
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1.3. Conway Coordinates. In this subsection, we make a change of variables
which corresponds to replacing the Alexander polynomial ∆K(t) by the Conway
polynomial ∇K(z). By its very definition, ∆K(t) determines ∇K(z) and vice versa.
This is made precise in the following result.

Proposition 1.7. Suppose that a knot K in a closed 3-manifold N has Alexander
polynomial ∆K(t) = a0 +

∑g
j=1 aj(tj + t−j). Then its Conway polynomial ∇K(z)

equals

a0 +
g∑

j=1

2aj +
g∑

k=1

g∑
j=k

(
j + k − 1

j − k

)
jajz

2k

k
.

Proof. We first solve for the polynomials Pn such that Pn(z) = tn + t−n, where
z = t1/2 − t−1/2. It is straightforward to see that these satisfy the recursion:

P0(z) = 2, P1(z) = z2 + 2,

Pn+1(z) = (z2 + 2)Pn(z)− Pn−1(z), n = 1, 2, . . .

Using the formula

n + 1
k

(
n + k

n− k + 1

)
=

n

k − 1

(
n + k − 2
n− k + 1

)
+

2n

k

(
n + k − 1

n− k

)
− n− 1

k

(
n + k − 2
n− k − 1

)
,

one can verify directly that

Pn(z) = 2 +
n∑

k=1

n

k

(
n + k − 1

n− k

)
z2k

by showing that, defined this way, Pn satisfy the recursion. Inserting this explicit
formula for Pn(z) into ∇K(z) = ∆K(t) = a0 +

∑g
j=1 ajPj(z) and interchanging the

order of summation, we obtain the statement of the proposition. �

Define variables y0, y2, . . . , y2n−2 so that y2k represents the 2k-th coefficient of
the Conway polynomial, i.e., so that ∇(2k)

K (0) = (2k)!y2k. Using that

x2j = ∆(2j)
K (1) =

d2j

dt2j
∇K(t1/2 − t−1/2),

together with Di Bruno’s formula for the Bell polynomials (§2.8, [14]), it follows
that

x2j =
∞∑

k=0

∑ (2j)!(2k)!y2k

`1! · · · `2j !

(z1

1!

)`1
· · ·
(

z2j

(2j)!

)`2j

,

where

zi ≡
di

dti
(t1/2 − t−1/2)

∣∣∣∣
t=1

= (−1)n−1 n

2n−1

n−1∏
i=1

(2i− 1).

and where the interior sum is over all `1, . . . , `2j ≥ 0 such that `1 + · · ·+`2j = k and
`1 + 2`2 + · · ·+ 2j`2j = 2j (as multisets, these are just partitions {1`1 , . . . , (2j)`2j}
of 2j into 2k parts, see §5.1 for an explanation of this notation).

By making the above change of coordinates to rewrite the polynomials pn,α in
terms of y0, y2, . . . , y2n−2 and calling the result qn,α, we now see that the following
result is a direct consequence of Theorem 3.14 of [8], as extended in [3].
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Corollary 1.8. Suppose α ∈ SU(n) is generic. There exist homogeneous polyno-
mials qn,α(y0, y2, . . . , y2n−2) of degree n− 1 such that, for any fibered knot K with
Conway polynomial ∇K(z) =

∑
i≥0 C2iz

2i,

λn,α(K) = qn,α(C0, C2, . . . , C2n−2).

The table below is obtained by applying Proposition 1.7 to our previous computa-
tions of pn,ωd .

Table 2. The polynomials qn,ωd for 2 ≤ n ≤ 5

q2,ω y2

q3,ω 2y0y4 + y2
2

q4,ω 5y2
0y6 + 7y0y2y4 + y3

2

q5,ω 14y3
0y8 + 26y2

0y2y6 + 11y2
0y2

4 + 16y0y
2
2y4 + y4

2

q5,ω2 14y3
0y8 + 26y2

0y2y6 + 11y2
0y2

4 + 16y0y
2
2y4 + y4

2

+2y2
0y2y4 + 2y3

0y6

Notice that this change of variables yields strikingly simpler formulae than before.
Notably, if we assign to y2i the weighted degree 2i, then qn,ω is seen to be weighted
homogeneous for 2 ≤ n ≤ 5. We believe this is true for all n.

Conjecture 1.9. qn,ω(y0, y2, . . . , y2n−2) is weighted homogeneous for all n > 1.

It is not generally true that qn,α is weighted homogeneous for α ∈ SU(n).
In all our computations, the coefficients of qn,ωd are integers. Moreover, the

coefficients of qn,ω are all positive integers. We ask if these statements are true in
general.

Question 1.10. (1) Is qn,α ∈ Z[y0, y2, . . . , y2n−2] for all n and all generic
α ∈ SU(n)?

(2) Are the coefficients of qn,ω always positive integers?

Remark 1.11. Viewing qn,α as a map from Qn to Q, it follows that qn,α takes the
integer lattice Zn to Z. This is easily demonstrated by interpreting qn,ω(k1, . . . , kn)
as the Lefschetz number of the fibered knot K with Conway polynomial ∇K(z) =∑

n knz2n.

1.4. The weighted homogeneous part of pn,ωd and enumerative sums. In
the next subsection, we shall assume Conjecture 1.9 and derive a formula for qn,ω in
terms of certain sums. In this subsection, we determine a formula for the weighted
homogeneous part of pn,ωd and observe that this is vastly simpler to compute than
all of pn,ωd . The general idea is to apply L’Hôpital’s rule 2n − 2 times to the
summation formula for L̃n,ωd(t;K), which is the balanced polynomial associated
to Ln,ωd(t;K) of Proposition 1.6. Exploiting the fact that we only care about
the terms in pn,ωd of highest weighted degree, we are able to perform what would
otherwise be an unreasonably complicated calculation.

Sample calculations of pn,ω for n = 2 and n = 3 can be found in [8], and the
material here assumes some familiarity with those techniques. We only explain
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those features relevant to the more general calculation. It was observed in [8] that
the formula for the balanced Lefschetz polynomial

L̃n,ωd(t;K) ≡ t−
1
2 dim(R

n,ωd )Ln,ωd(t;K)

is nearly identical to the formula given in Proposition 1.6 except that it is inde-
pendent of the genus g. Specifically, letting c̃(t) denote the balanced Alexander
polynomial of K (so c̃(t) = t−gc(t)), it follows from (1.1) that

Qn =
tn

2
c̃(t)c̃(t3) · · · c̃(t2n−1)

(1− t2)2 · · · (1− t2n−2)2(1− t2n)
.

Since dim Rn,ωd = 2(n2 − 1)(g − 1), we see from Proposition 1.6 that

L̃n,ωd(t;K) =
(1− t2)

c̃(t)

n∑
k=1

∑
n1+···+nk=n

(−1)k−1t2M(n1,...,nk;d/n)−1Qn1 · · ·Qnk

(1− t2n1+2n2) · · · (1− t2nk−1+2nk)
,

where M(n1, . . . , nk; d/n) is as defined in equation (1.2).
Now for some general comments. Suppose that I is an index set and that

L̃(t) =
∑
i∈I

pi(t)
qi(t)

,

where L̃(t), pi(t), i ∈ I, are Laurent polynomials which are analytic at t0, and
where qi(t), i ∈ I, are polynomials with zeroes of order m at t0. Writing qi(t) =
(t− t0)mqi(t) and noting that qi(t0) 6= 0, we observe that

(1.3) L̃(t0) =

 dm

dtm

∣∣∣∣
t=t0

∑
i∈I

pi(t)
∏
j∈I
j 6=i

qj(t)

/m!
∏
i∈I

qi(t0).

We are interested in using this to evaluate L̃n,ωd(t;K) at t = 1, so let

I = {n = (n1, . . . , nk) | k ≥ 1, n1 + · · ·+ nk = n}
be the set of all compositions of n, and define

pn(t) = (−1)k−1t2M(n;d/n)−1(c̃(t))−1
k∏

i=1

ni∏
j=1

c̃(t2j−1)(1.4)

qn(t) =

[∏k
i=1

∏ni

j=1(1− t2j)2
] [∏k

i=1(1− t2ni+2ni+1)
]

(1− t2)
∏k−1

i=1 (1− t2ni)
.(1.5)

Notice that pn(t) is indeed a Laurent polynomial and is analytic at t = 1, and that
qn(t) ∈ Z[t] has a zero of order 2n− 2 at t = 1. Writing qn(t) = (t− 1)2n−2qn(t), it
is straightforward to verify that

(1.6) qn(1) = 22n−2
k∏

i=1

ni!(ni − 1)!
k−1∏
j=1

(nj + nj+1).

To determine L̃n,ωd(1;K) using (1.3), we compute

(1.7)

 d2n−2

dt2n−2

∣∣∣∣
t=1

∑
n∈I

pn(t)
∏
m∈I
m 6=n

qm(t)

/ (2n− 2)!
∏
n∈I

qn(1)
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For a fixed knot K, this allows one to determine λn,ωd(K). However, as Frohman
observes (see p. 137, [8]), since the formula obtained is independent of the genus g
of the knot, one actually obtains a formula for λn,ωd(K) in terms of the derivatives
of c̃(t) at t = 1 which is universal in the sense that it does not depend on K.

Although it is possible to compute (1.7) for certain restricted values of n, the
general computation appears intractable. For example, in the table of §1.2, the
results of computer calculations of pn,ωd are listed. As n increases, the complexity
of this computation grows exponentially making it impossible to directly determine
pn,ωd in general.

On the other hand, we are only interested in the weighted homogeneous part of
pn,ωd of highest weighted degree, thus we can ignore all terms of (1.7) involving fewer
than 2n− 2 derivatives of pn(t). This means that for our purposes, the expression
in (1.7) simplifies to give

(1.8)
∑
n∈I

(
d2n−2

dt2n−2

∣∣∣
t=1

pn(t)
)/

(2n− 2)! qn(1).

We are not claiming that (1.8) equals L̃n,ωd(1;K), just that (1.8) can be used
to find the weighted homogeneous part of pn,ωd of highest weighted degree. The
expression in (1.8) is still quite cumbersome to calculate, but notice that there is a
further simplification. To make this precise, we introduce the following definition.

Definition 1.12. Given a Laurent polynomial c̃(t), suppose

p(t) =
k∏

i=1

c̃(ui(t)) fi(t),

where ui(t), fi(t) for i = 1, . . . , k are polynomials. Then

(1.9)
dm

dtm
p(t) =

∑
`1+...+`k≤m

k∏
i=1

c̃(`i)(ui(t)) gi,`(t),

where the sum is over all ` = (`1, . . . , `k) ∈ Nk and where gi,`(t) are polynomi-
als depending on `i, fi(t), ui(t), i = 1, . . . , k and their derivatives. For each term∏k

i=1 c̃(`i)(ui(t))gi,`(t) of (1.9), define its c̃-order to be
∑k

i=1 `i.

Notice that for terms in (1.9) of c̃-order m, we have gi,`(t) =
(

m
`1,...,`k

)
fi(t).

We now introduce the index set Bn defined for n = (n1, . . . , nk) a composition
of n by

Bn = {(i, j) | 1 ≤ i ≤ k, 1 ≤ j ≤ ni, (i, j) 6= (1, 1)}.
(Bn is just the Ferrers board associated to n with the block at (1, 1) removed.)
Thus, we can rewrite (1.4) as

(1.10) pn(t) = (−1)k−1t2M(n;d/n)−1
∏

(i,j)∈Bn

c̃(t2j−1).

Now use the basic derivative formula for products:

dm

dtm

k∏
i=1

hi(t) =
∑(

m

`1, . . . , `k

) k∏
i=1

h
(`i)
i (t),

where the sum is over all solutions to `1 + · · · + `k = m in nonnegative integers
`1, . . . , `k. Taking m = 2n−2, applying the above to (1.10), and noting that we can
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drop any term of c̃-order less than 2n−2, again because we only need the weighted
homogeneous part of pn,ωd of highest weighted degree, it is apparent that

d2n−2

dt2n−2 pn(t) = (−1)k−1t2M(n;d/n)−1
∑

`

(
2n− 2
(`ij)

) ∏
(i,j)∈Bn

(2j − 1)`ij c̃(`ij)(t2j−1)

+ (terms of c̃-order less than 2n− 2),(1.11)

where the sum is over all `ij ∈ N satisfying
∑

(i,j)∈Bn
`ij = 2n−2 and where

(
2n−2
(`ij)

)
indicates a multinomial coefficient.

By Proposition 1.4 of [8], since c̃(t) = c̃(t−1), it follows that any odd order deriv-
ative c̃(2`+1)(1) can be written as a linear combination of the even order derivatives
c̃(1), c̃′′(1), . . . , c̃(2`)(1). Keeping track of only those terms of c̃-order 2n−2, we may
thus ignore any term from (1.11) where `ij is odd for some (i, j) ∈ Bn.

Evaluating (1.11) at t = 1 and dropping these irrelevant terms, we are left with

d2n−2

dt2n−2 pn(t)
∣∣∣
t=1

= (−1)k−1
∑

λ

(
2n− 2
(2λij)

) ∏
(i,j)∈Bn

(2j − 1)2λij c̃(2λij)(1)

+ (terms of c̃-order less than 2n− 2)(1.12)
+ (terms of odd order derivatives of c̃(t) at t = 1),

where λij ∈ N satisfy
∑

(i,j)∈Bn
λij = n− 1.

Finally, we obtain a formula for the weighted homogeneous part of pn,ωd by
replacing c̃(2e)(1) by x2e in (1.12), dividing by (1.6) and summing over all n. Setting
b` = 4``!(`− 1)!, we deduce that the weighted homogeneous part of pn,ωd equals

(1.13) 4
n∑

k=1

(−1)k+1
∑

n1+···+nk=n

∑
λ

(
2n−2
(2λij)

)∏
(i,j)∈Bn

(2j − 1)2λij x2λij

(2n− 2)!
∏k

i=1 bni

∏k−1
j=1 (nj + nj+1)

.

The monomial terms of (1.13) are indexed by partitions of n− 1 determined by
(λij). Writing λ = (λ1, . . . , λd) for the partition obtained from (λij) by removing
all occurrences of 0 and setting x2λ = x2n−2d−2

0 x2λ1 · · ·x2λd
, we observe from (1.13)

that

(1.14) pn,ωd =
∑

λ

Cλx2λ

i1! · · · in−1!
+ (terms of lower weighted degree),

where the sum is over partitions (λ1, . . . , λd) of n − 1, which we have written as
{1i1 , . . . , (n − 1)in−1} in multiset notation (see the beginning of §1.5 for an expla-
nation of this notation), and where Cλ is given in Definition 1.13.

If d is a positive integer, denote elements ((i1, j1), . . . , (id, jd)) ∈ Bd
n, the d-fold

Cartesian product of Bn, by (i, j) where i = (i1, . . . , id) and j = (j1, . . . , jd). Let

4d
n =

{
(i, j) ∈ Bd

n | (ik, jk) = (i`, j`) for some k 6= `
}

be the large diagonal subset of Bd
n and set 0Bd

n = Bd
n \ 4d

n. With respect to the
obvious Sd action, 4d

n is an invariant subset.
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Definition 1.13. Suppose that λ = (λ1, . . . , λd) is a partition of n − 1. Set b` =
4``!(`− 1)! and define

(1.15) Cλ =
4

(2λ1)! · · · (2λd)!

n∑
k=1

(−1)k+1
∑

n=(n1,...,nk)

aλ(n)∏k
i=1 bni

∏k−1
j=1 (nj + nj+1)

,

where the interior sum is over all compositions n = (n1, . . . , nk) of n into k parts
and

aλ(n) =
∑

(i,j)∈ 0Bd
n

(2j1 − 1)2λ1 · · · (2jd − 1)2λd .

1.5. The weighted homogeneous part of qn,ωd . Before proceeding, we intro-
duce some useful notation. Given a partition n = (n1, . . . , nk) of n, we may write
this as the multiset {1`1 , . . . , n`n}, where

(i) `i is the number of times i occurs in (n1, . . . , nk),
(ii) i` means i, . . . , i, repeated ` times (in particular i0 = ∅), and
(iii) `1 + 2`2 + · · ·+ n`n = n.

Suppose that α ∈ SU(n) has eigenvalues λ1, . . . , λk of multiplicities n1, . . . , nk. It
is elementary to see that the conjugacy class of α in SU(n) has Euler characteristic
given by the multinomial coefficient

(
n

n1,...,nk

)
. Define mα =

(
n

n1,...,nk

)
. It follows

from the results of [2, 3] that the weighted homogeneous part of qn,α/mα, denoted
by νn(y0, y2, . . . , y2n−2), is independent of generic α ∈ SU(n). Note that mωd = 1
and that ωd is generic if and only if (n, d) = 1.

In this subsection, we derive a formula for each coefficient of νn(y0, y2, . . . , y2n−2),
the weighted homogeneous part of qn,ωd , as a linear combination of the sums
p(λ1, . . . , λd;n) appearing in Definition 1.15. The computation of νn is vastly sim-
pler than that of qn,ω. By the general results of §1.3, it follows that

x2j = (2j)!y2j + (terms of lower weighted degree).

Thus, if λ = (λ1, . . . , λd) is a partition of n−1 and if we denote by y2λ the monomial
y2n−2d−2
0 y2λ1 · · · y2λd

, then νn is obtained from (1.14) by replacing x2λ by

(2λ1)! · · · (2λd)!y2λ.

Remark 1.14. As invariants of knots, νn and pn,ωd do not appear to bear any
relationship to one another. In fact, considering how many terms were dropped
from L̃n,ωd(1;K) in our calculations of the weighted homogeneous part of pn,ωd

(not to mention that (2i)!y2i 6= x2i), Conjecture 1.9 seems to be quite miraculous.

Writing
νn(y0, y2, . . . , y2n−2) =

∑
λ

cλy2λ

i1! · · · in−1!
,

we see from (1.15) that

(1.16) cλ = 4
n∑

k=1

(−1)k+1
∑

n=(n1,...,nk)

aλ(n)∏k
i=1 bni

∏k−1
j=1 (nj + nj+1)

.

where aλ(n) is given in Definition 1.13 and b` = 4``!(`− 1)! as before.

Examples. We relate (1.16) to the summation formulae (†) and (‡) for An and Bn

from the introduction.
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(i) Suppose d = 1 and λ = (n−1). Then for any composition n = (n1, . . . , nk) of n,
41

n = ∅ and we see from Definition 1.13 that aλ(n) = −1+
∑k

i=1

∑ni

j=1(2j−1)2n−2.

Thus, using (1.16), the coefficient of yn−2
0 y2n−2 in νn is given by

c(n−1) = 4
n∑

k=1

(−1)k+1
∑

n1+···+nk=n

−1 +
∑k

i=1

∑ni

j=1(2j − 1)2n−2∏k
i=1 bni

∏k−1
j=1 (nj + nj+1)

.

It will follow from Theorem 2.18 that the above sum equals An as defined in (†)
in the introduction, and moreover that this sum evaluates to give 1

n

(
2n−2
n−1

)
, the

(n− 1)-st Catalan number.

(ii) Now suppose d = n − 1 and λ = (1, . . . , 1). Because Bn is a finite set with
n− 1 elements and because the set 0Bk

n consists of k-tuples of distinct elements of
Bn, it follows that up to the action of the symmetry group Sn−1, every element
of 0Bn−1

n is equivalent to the (n− 1)-tuple obtained by listing each element of Bn

once. Thus,

a(1,...,1) =
∑

(i,j)∈0Bn−1
n

(2j1 − 1)2 · · · (2jn−1 − 1)2

= (n− 1)!
k∏

i=1

ni∏
j=1

(2j − 1)2,

and it follows that the coefficient of yn−1
2 in νn is given by

c(1,...,1)

(n− 1)!
= 4

n∑
k=1

(−1)k+1
∑

n1+···+nk=n

∏k
i=1

∏ni

j=1(2j − 1)2∏k
i=1 bni

∏k−1
j=1 (nj + nj+1)

.

This equals the sum for Bn as defined in (‡) of the introduction, and in Theorem
2.5, we will evaluate this sum and prove it equals 1.

The evaluation of both sums in (i) and (ii) above involve the method of integral
equations. These methods apply more generally to the sums in the following defi-
nition, which are what one gets for (1.16) by replacing 0Bd

n by the larger set Bd
n in

Definition 1.13.

Definition 1.15. For any λ and for n a partition of n, define

(1.17) ãλ(n) =
∑

(i,j)∈Bd
n

(2j1 − 1)2λ1 · · · (2jd − 1)2λd .

Define

(1.18) p(λ1, . . . , λd;n) = 4
n∑

k=1

(−1)k+1
∑

n=(n1,...,nk)

ãλ(n)∏k
i=1 bni

∏k−1
j=1 (nj + nj+1)

.

Notice that λ is not assumed to be a partition of n − 1 in the above definition.
The following conjecture gives a formula for the evaluation of these sums assuming
that λ1 + · · · + λd ≤ n − 1. The conjecture has been extensively verified and will
be proved in the case d = 1 in the next section (see Theorem 2.18).
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Conjecture 1.16.

p(λ1, . . . , λd;n) =

{ (
2λ1
λ1

)
· · ·
(

2λd

λd

)
nd−2 if λ1 + · · ·+ λd = n− 1

0 if λ1 + · · ·+ λd < n− 1.

We shall describe the coefficients cλ of νn as linear combinations of p(λ′;n). Our
description is independent of Conjecture 1.16. For ease of notation, simply write
p(λ) for p(λ;n) whenever λ1 + · · · + λd = n − 1 (i.e., whenever λ is a partition of
n− 1).

In the special case where d = 1, then of course 4d
n = ∅ and p(λ) = cλ. However,

for d > 1 one must correct by subtracting the contribution to (1.18) made by those
terms in the diagonal 4d

n in (1.17).
The argument proceeds by utilizing the principle of inclusion-exclusion as follows.

For an arbitrary set X, the d-fold product Xd is “stratified” with respect to the
group action Sd, as we now explain. Given a partition d = (d1, . . . , dr) of d, we
say that (x1, . . . , xd) ∈ Xd has type d, if, up to reordering, x1 = · · · = xd1 , and
xd1+1 = · · · = xd1+d2 , and so on. Define the subsets Ωd ⊂ Xd by

Ωd = {(x1, . . . , xd) has type d}.

For example, Ω{1
d} = Xd and Ω{2,1d−2} = 4d, the large diagonal subset of Xd.

Clearly these sets are nested, in fact, Ωd ⊂ Ωe if and only if e is a refinement of d.
We will write e < d whenever e is a proper refinement of d. Let

0Ωd = Ωd \
⋃

e > d

Ωe

be the set of “pure” d type.
Let Hd be the stabilizer of Ωd with respect to the Sd action. Writing the partition

d as a multiset {1`1 , . . . , d`d}, one sees that Hd sits in the short exact sequence

(S1)`1 × · · · × (Sd)`d −→ Hd −→ S`1 × · · · × S`d

and is, in fact, a direct sum of wreath products of (Si)`i and S`i (it being understood
that (Si)` = {e}, the trivial group, whenever ` = 0). The order of Hd is therefore

|Hd| = (1!)`1 · · · (d!)`d`1! · · · `d!

and its index is given by the following quotient,

(1.19) hd ≡
d!
|Hd|

=
(

d

d1, . . . , dr

)
1

`1! · · · `d!
.

Now suppose X = Bn. Using this notation, stratify the large diagonal subset 4d
n

of our d-fold Ferrers Board Bd
n into the sets denoted by Ωd

n and 0Ωd
n. The strategy

is to correct our initial guess for cλ by successively adding and subtracting terms
associated with these subsets.

For example, notice what happens to the summand of (1.17) for a typical term
(i, j) ∈ Bd

n in the diagonal. Taking (i1, j1) = (i2, j2), then the summand is the one
that arises in the power sum with λ replaced by λ′ = (λ1 + λ2, λ3, . . . , λd). More
generally if (ik, jk) = (i`, j`), then λ is replaced by λ′ where

λ′ = (λk + λ`, λ1, . . . , λ̂k, . . . , λ̂`, . . . , λd).

The first approximation is to subtract off these associated power sums, and it will
prove convenient to do this in an Sd-equivariant way.
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Definition 1.17. For d = (d1, . . . , dr) a partition of d and σ ∈ Sd, define

Λk = λσ(d1+···+dk−1+1) + · · ·+ λσ(d1+···+dk)

for k = 1, . . . , r (we suppress the dependence of Λ on d and σ). Set

pd(λ1, . . . , λd) =
∑

[σ]∈Sd/Hd

p(Λ1, . . . ,Λr),

where [σ] denotes the coset of Hd in Sd represented by σ.

Returning to the example where (ik, jk) = (i`, j`) for some k 6= `, the rel-
evant partition is d = (2, 1, . . . , 1) and the first approximation is to subtract
pd(λ1, . . . , λd). This successfully subtracts all terms in the sum (1.17) coming from
0Ωd

n, however, it over-subtracts terms in Ωe
n whenever e < d because Ωe

n has a
different stabilizer group.

For a specific example, suppose d = 3, d = (2, 1) and e = (3). Because hd = 3, Ωd
n

has three components intersecting in Ωe
n. Subtracting pd from p(λ1, λ2, λ3) over-

subtracts pe by a factor of 3, and to compensate we need to adjust by adding back
2pe.

We continue this procedure using the principle of inclusion-exclusion, which ex-
plains the occurrence of the numbers αd of Proposition 1.18. We work for the
moment with extended partitions, which are non-increasing sequences of positive
integers (pi) such that lim

i→∞
pi = 1. One may think of these as partitions of ∞, two

examples being (1∞) and (2, 1∞) in multiset notation. There is a partial ordering
on these sequences given by refinement and we write (pi) < (p′i) if (pi) is a proper
refinement of (p′i). For example, (`, 1∞) < (`′, 1∞) if and only if ` < `′. For any such
p = (pi), there is a chain (1∞) = p′ < p′′ < · · · < p(`) = p and we define the level of
p, denoted `(p), to be the maximal such `. For example, (`, 1∞) and (2`, 1∞) both
have level `.

We now define integer-valued functions on the set {p = (pi)} of extended parti-
tions by setting

a0(p) =
{

1 if p = (1∞)
0 if otherwise,

and defining aj+1(p) in terms of aj(p) by

aj+1(p) =


aj(p) if `(p) ≤ j

aj(p)−
∑
p′<p

`(p′)=j

mp′,paj(p′) if `(p) > j.

Here, mp′,p is the multiplicity with which p occurs in p′. Because putting a string
of ones at the end of d and e has no effect on the numbers me,d of Definition 1.20,
we may use that definition to define mp′,p here.

Clearly, all terms of level ` are determined after ` iterations, and we claim that
aj(p) −→ αp as j →∞. This is the content of the following proposition.

Proposition 1.18. Suppose λ is a partition of n−1 into d parts. For any partition
d = (d1, . . . , dr) of d, define αd = (d1 − 1)! · · · (dr − 1)!(−1)d+r. Then

(1.20) cλ =
∑

d

αd pd(λ1, . . . , λd),
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the sum being over all partitions of d.

The proof of the proposition rests on some well-known properties of Stirling
numbers of the first kind, which is illustrated in the following lemma.

Lemma 1.19. Suppose d is a partition of d and hd is given by (1.19). If d > 1,
then

∑
d αd hd = 0, the sum being taken over all partitions of d.

Proof. The standard results which this proof uses can be found in many introduc-
tory texts on combinatorics, e.g. see Secs. 3.2 and 3.3 of [14].

Write the partition d as the multiset {1`1 , . . . , d`d} and notice that

(−1)d+rαd hd =
d!

1`1 · · · d`d`1! · · · `d!

equals the number of cycles in Sd consisting of `1 1-cycles, `2 2-cycles, etc. It is a
well-known fact that the function defined by

fd(t) =
d∑

r=1

 ∑
d=(d1,...,dr)

αd hd

 tr,

is the generating function for the Stirling numbers s(d, r) of the first kind (here, the
inside sum is over partitions of d into r parts). Thus fd(t) = t(t− 1) · · · (t− d + 1)
and fd(1) = 0 for d > 1, which completes the proof. �

The proof of the proposition follows from the lemma, as we now explain.

Proof. We must show that, after performing the sum on the right-hand side of
(1.20), terms in the diagonal 4d

n do not contribute, i.e., the overall coefficient of
each and every summand term associated to the stratum 0Ωd

n is zero whenever
d 6= (1, . . . , 1). A given stratum Ωe

n contributes terms of d type if and only if e ≤ d,
where recall that e ≤ d if e is a refinement of d. Hence we claim that

(1.21)
∑
e≤ d

αe me,d = 0.

Here, me,d is the multiplicity of 0Ωd
n in Ωe

n, and roughly it counts the number of
times a term of pure type d appears in pe. In order to define me,d precisely, we shall
need to make a subtle distinction between refinements and sub-partitions of d. We
denote the former by e and the latter by d, where d = (d1, . . . , dr) is a sub-partition
of d = (d1, . . . , dr) (i.e., di is a partition of di for each i = 1, . . . , r).

The difference between refinements and sub-partitions is nicely illustrated by the
following example. Let d = (4, 2), e = (2, 2, 1, 1), and consider d = ((2, 2), (1, 1))
and d′ = ((2, 1, 1), (2)). Both d and d′ are sub-partitions of d with underlying
refinement e, but they are not equal.

Write d ∼ e if d is a sub-partition whose underlying partition equals e.

Definition 1.20. (i) Define hd = hd1
· · ·hdr

if d = (d1, . . . , dr) is a sub-
partition of d, where hd defined in (1.19).

(ii) If e ≤ d, define me,d =
∑

d∼ehd, the sum being over distinct ways of writing
e as a sub-partition d.
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For example, taking as before d = (4, 2), e = (2, 2, 1, 1), d = ((2, 2), (1, 1)) and
d′ = ((2, 1, 1), (2)), then hd =

(
4
2

)
1
2 = 3 and hd′ =

(
4
2

)
= 6, hence me,d = 3+6 = 9.

Since αe = αd1
· · ·αdr

whenever e ∼ d = (d1, . . . , dr), we obtain∑
e≤d

αe me,d =
∑
e≤d

∑
d∼e

αd1
· · ·αdr

hd

=

∑
d1

αd1
hd1

 · · ·

∑
dr

αdr
hdr

 = 0.

The second set of sums is over all partitions di of di and the last step follows from
the lemma. This proves the claim (1.21) and the proposition now follows. �

Computations of νn for 2 ≤ n ≤ 10 can be found in Appendix B. To rigorously
perform these calculations, we use the techniques of the next section to verify
Conjecture 1.16 in the relevant cases.

2. Integral Equations

In §2.1 we introduce, in a general context, integral equation techniques for ana-
lyzing sums of the form

n∑
k=1

(−1)k−1
∑

n1+···+nk=n

an1 · · · ank∏k−1
j=1 (nj + nj+1)

.

These ideas are extended in §2.2 to contour integral equations and then applied to
obtain an efficient new recursive algorithm for computing the Lefschetz polynomials
Ln,ωd(t;K). Strong results are obtained when the relevant integral equations can
be solved in closed form. By finding such a closed form solution, we show in
§2.3 that the sum Bn (see (‡) in the introduction) evaluates to 1 (Theorem 2.5).
Our approach to Conjecture 1.16 requires that we obtain explicit solutions to a
certain class of integral equations (2.25); this is accomplished in §2.4. In §2.6
these solutions, together with some facts (see §2.5) concerning sums of powers of
odd numbers, are the main ingredients of the proof of Conjecture 1.16 in the case
d = 1 (Theorem 2.18). In particular, we prove that the sum An (see (†) in the
introduction) evaluates to the Catalan number 1

n

(
2n−2
n−1

)
.

Our development of the integral equations in §2.1 and 2.2 is slightly more general
than we need. There, we consider an algebra A which need not be commutative.
It should be noted that a commutative algebra would suffice for the applications in
the sequel.

2.1. Generating functions and integral equations. LetA be a (not necessarily
commutative) algebra over a field of characteristic 0 and let A[Y1, . . . , Ym] denote
the polynomial ring over A in the commuting variables Y1, . . . , Ym. For p(y) =∑N

i=0 aiy
i ∈ A[y], define the formal integral:∫ 1

0

p(y)dy ≡
N∑

i=0

ai

i + 1
∈ A.
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If f(t, y) =
∑∞

n=0 pn(y)tn is a formal power series in the commuting variable t with
coefficients in A[y], define∫ 1

0

f(t, y)dy ≡
∞∑

n=0

(∫ 1

0

pn(y)dy

)
tn.

Given a sequence an ∈ A, n = 1, 2, . . ., the associated generating function is the
formal power series in the commuting variable s:

ρ(s) ≡
∞∑

n=1

ansn.

For k ≥ 2, define a formal power series over A[y1, . . . , yk−1] in the commuting
variables s, t by

Vk(s, t; y1, . . . , yk−1) ≡ (y1 · · · yk−1)−1ρ(y1s)

k−1∏
j=2

ρ(yjyj−1t)

 ρ(yk−1t)

=
∞∑

n=k

∑
n1+···+nk=n

an1 · · · ank
yn1+n2−1
1 · · · ynk−1+nk−1

k−1 sn1tn−n1 .

The second sum is over all compositions of n into k parts.
Set φ1(s, t) ≡ ρ(s) and, for k ≥ 2, define

φk(s, t) ≡
∫ 1

0

· · ·
∫ 1

0

Vk(s, t; y1, . . . , yk−1)dy1 · · · dyk−1(2.1)

=
∞∑

n=k

∑
n1+···+nk=n

an1 · · · ank∏k−1
j=1 (nj + nj+1)

sn1tn−n1

Note that φk(s, t) =
∫ 1

0
ρ(ys)

y φk−1(ty, t)dy for k > 1 and consequently if we define

(2.2) Φ(s, t) ≡
∞∑

k=1

(−1)k−1φk(s, t),

then Φ(s, t) satisfies the basic integral equation:

(2.3) Φ(s, t) +
∫ 1

0

ρ(ys)
y

Φ(ty, t)dy = ρ(s).

From (2.1) and (2.2) we have that

(2.4) Φ(s, t) =
∞∑

n=1

(
n∑

k=1

(−1)k−1
∑

n1+···+nk=n

an1 · · · ank∏k−1
j=1 (nj + nj+1)

sn1tn−n1

)
,

and thus

Φ(t, t) =
∞∑

n=1

(
n∑

k=1

(−1)k−1
∑

n1+···+nk=n

an1 · · · ank∏k−1
j=1 (nj + nj+1)

)
tn.
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If Φ(s, t) ≡
∑∞

i=1

∑∞
j=0 Aijs

itj , satisfies the integral equation (2.3), then a com-
parison of the coefficients on both sides of (2.3) yields the following recursion for-
mula for the coefficients Aij :

Ai0 = ai i = 1, 2, . . .(2.5)

Aij = −ai

j−1∑
q=0

Aj−q,q

j − q + i
j > 0.(2.6)

Conversely, if Aij are elements in A defined by (2.5) and (2.6), then Φ(s, t) ≡∑∞
i=1

∑∞
j=0 Aijs

itj is a solution to (2.3). Since (2.5) and (2.6) uniquely define the
Aij ’s, this formal power series solution to (2.3) is unique.

2.2. Contour integral equations. Let F be a field of characteristic 0, let F((x))
be the field of formal power series over F in the variable x and let A be a (not
necessarily commutative) algebra over F((x)). Define the formal contour integral
of a polynomial f(y) =

∑N
n=1 anyn ∈ A[y] by

∮
f(y)η(x, y)dy ≡

N∑
n=1

an

1− xn
.

Remark 2.1. We justify the terminology “formal contour integral” as follows. Con-
sider the series

η(u, v) =
1

2πi

∞∑
k=0

uk

v(v − uk)

in the complex variables u, v. This series converges uniformly on compacta in the
domain

Ω = {(u, v) ∈ C2 | v 6= 0, |u| < 1, v 6= uk, k = 0, 1, . . .}.

Calculating residues, we obtain

Res
v=uk

vnuk

v(v − uk)
= Res

v=uk

vn−1uk

v − uk
= ukn n = 1, 2, . . .

and hence by the Residue Theorem:∮
vnη(u, v)dv =

∞∑
k=0

ukn =
1

1− un
n = 1, 2, . . .

(contour integral over the unit circle).

Recall that given a sequence Qn ∈ A, n = 1, 2, . . ., the associated generating
function is the formal power series:

ρ(u) ≡
∞∑

n=1

Qnun.
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For k ≥ 2, define a formal power series over A[y1, . . . , yk−1] in the commuting
variables s, t by

Ṽk(s, t; y1, . . . , yk−1) ≡ ρ(y1s)

k−1∏
j=2

ρ(yjyj−1t)

 ρ(yk−1t)

=
∞∑

n=k

∑
n1+···+nk=n

Qn1 · · ·Qnk
yn1+n2−1
1 · · · ynk−1+nk−1

k−1 sn1tn−n1 .

The second sum is over all compositions of n into k parts.
Set φ̃1(s, t) ≡ ρ(s) and for, k ≥ 2, define

φ̃k(s, t) ≡
∮
· · ·
∮

Ṽk(s, t; y1, . . . , yk−1)
k−1∏
j=1

η(x, yj)dy1 · · · dyk−1

=
∞∑

n=k

∑
n1+···+nk=n

Qn1 · · ·Qnk∏k−1
j=1 (1− xnj+nj+1)

sn1tn−n1 .(2.7)

Note that φ̃k(s, t) =
∮

ρ(sy)φ̃k−1(ty, y)η(x, y)dy for k > 1 and consequently if

we define

(2.8) Φ̃(s, t) ≡
∞∑

k=1

(−1)k−1φ̃k(s, t),

then Φ̃(s, t) satisfies the basic integral equation:

(2.9) Φ̃(s, t) +
∮

ρ(sy)Φ̃(ty, t)η(x, y)dy = ρ(s).

From (2.7) and (2.8) we see that

(2.10) Φ̃(s, t) =
∞∑

n=1

(
n∑

k=1

(−1)k−1
∑

n1+···+nk=n

Qn1 · · ·Qnk∏k−1
j=1 (1− xnj+nj+1)

sn1tn−n1

)
.

If Φ̃(s, t) ≡
∑∞

i=1

∑∞
j=0 Ãijs

itj satisfies the integral equation (2.9), then a com-
parison of the coefficients on both sides of (2.9) yields the following recursion for-
mula for the coefficients Ãij :

Ãi0 = Qi i = 1, 2, . . .(2.11)

Ãij = −Qi

j−1∑
q=0

Ãj−q,q

1− xj−q+i
j > 0.(2.12)

Conversely, if Ãij are the elements in A are defined by (2.11) and (2.12), then
Φ(s, t) ≡

∑∞
i=1

∑∞
j=0 Ãijs

itj is a solution to (2.9). Since (2.11) and (2.12) uniquely
define the Ãij ’s, this formal power series solution to (2.9) is unique.

Let Qn and Qn,d (n > 0, d ∈ Z/nZ) be elements of a not necessarily commutative
algebra over F((x)) which are related by

(2.13) Qn,d =
n∑

k=1

∑
n1+···+nk=n

∑
d1/n1>···>dk/nk

d1+···+dk=d

xN(n1,...,nk;d1,...,dk)Qn1 · · ·Qnk
,
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where

N(n1, . . . , nk; d1, . . . , dk) =
∑

1≤i<j≤k

(dinj − djni).

A recursive formula of this type was given by Harder and Narasimhan [11] (im-
plicitly, but made explicit by [6]) and by Atiyah and Bott [1] for computing the
Poincaré polynomials of the moduli space of semistable rank n, degree d holomor-
phic vector bundles over a given Riemann surface of genus g in the case n and d
are relatively prime. Frohman showed [8] that the same recursion can be used to
compute the Lefschetz polynomials Ln,ωd(t;K) (cf. Proposition 1.6 from §1.2) in
the case n and d are relatively prime. Explicitly, if Qn and Qn,d are defined by

Qn,d =
tn

2(1−g)c(t)
1− t2

Ln,ωd(t),(2.14)

Qn =
tn

2(1−g)c(t)c(t3) · · · c(t2n−1)
(1− t2)2 · · · (1− t2n−2)2(1− t2n)

,(2.15)

where c(t) = tg∆K(t) is the (unbalanced) Alexander polynomial of K (this agrees
with (1.1) of §1.2) then, letting x = t2, Qn and Qn,d satisfy (2.13).

Zagier discovered the following summation formula (Theorem 2 of [15]) for solv-
ing the recursion given by (2.13).

Theorem 2.2. For Qn and Qn,d as in (2.13)

Qn,d =
n∑

k=1

(−1)k−1
∑

n1+···+nk=n

xM(n1,...,nk;d/n)Qn1 · · ·Qnk∏k−1
j=1 (1− xnj+nj+1)

where M(n1, . . . , nk; s) is defined as in equation (1.2) from §1.2.

Since M(n1, . . . , nk; 1/n) = n− n1, for Qn and Qn,d as in (2.13), we have

Qn,1 =
n∑

k=1

(−1)k−1
∑

n1+···+nk=n

xn−n1Qn1 · · ·Qnk∏k−1
j=1 (1− xnj+nj+1)

,

and a comparison with (2.10) yields the following result.

Proposition 2.3. For Qn and Qn,d as in (2.13) and Φ̃(s, t) as in (2.10), we have
that

∞∑
n=1

Qn,1 un = Φ̃(u, ux),

i.e., Φ̃(u, ux) is the generating function for the sequence {Qn,1 | n = 1, 2, . . .}.

In particular, this proposition can be applied to obtain an efficient new recursive
algorithm for computing the Lefschetz polynomials Ln,ωd(t;K):

(i) Let Qn,1 and Qn be given by (2.14) and (2.15) respectively.
(ii) Compute Φ̃(s, t) via the recursive formula given by (2.11) and (2.12).
(iii) Obtain Qn,1 as the coefficient of un in Φ̃(u, ux).



22 HANS U. BODEN AND ANDREW NICAS

2.3. Evaluation of sums via integral equations: An example. For n =
1, 2, . . . define the rational numbers βn by

βn ≡
n

42n

(
2n

n

)2

.

Consider the formal power series

ρ(t) ≡
∞∑

n=1

βntn.

Then ρ(t) can be characterized in terms of hypergeometric functions, in fact ρ(t) =
t
4F ( 3

2 , 3
2 , 2; t), where F (a, b, c; t) is a power series solution to Gauss’s hypergeometric

differential equation t(1− t)y′′ + [c− (a + b + 1)t]y′ − aby = 0.
We are interested in the integral equation:

(2.16) Φ(s, t) +
∫ 1

0

ρ(xs)
x

Φ(tx, t)dx = ρ(s).

Proposition 2.4. Φ(s, t) = s
s−tρ

(
s−t
1−t

)
is the unique power series solution to

(2.16).

Before giving its proof, we observe the following consequence of Proposition 2.4
which asserts that the sums denoted by Bn in (‡) of the introduction evaluate to 1.

Theorem 2.5. Let bk ≡ 4kk!(k − 1)!. For n ≥ 1,

4
n∑

k=1

(−1)k−1
∑

n1+···+nk=n

∏k
i=1

∏ni

j=1(2j − 1)2∏k
i=1 bni

∏k−1
j=1 (nj + nj+1)

= 1.

Proof. By Proposition 2.4 and (2.4),
∞∑

n=1

n∑
k=1

(−1)k−1
∑

n1+···+nk=n

βn1 · · ·βnk∏k−1
j=1 (nj + nj+1)

tn = Φ(t, t) =
t

4(1− t)
.

The conclusion follows from the fact that

βn =
∏n

i=1(2i− 1)2

4nn!(n− 1)!
. �

Remark 2.6. We sketch a topological proof that Bn from (‡) of the introduction
(i.e., the sum considered in Theorem 2.5) equals ±1, assuming Conjecture 1.9. If K
is a fibered knot of genus 1, then ∇K(z) = C0 + C2z

2, where C0 = ±1 and C2 = 1.
Moreover, for (n, d) = 1, it follows that Rn,ωd is connected and 0-dimensional, hence
just a point. Thus Ln,ωd(t;K) = ±1. Now Conjecture 1.9 implies that

±1 = λn,ω(K) = νn(C0, C2, 0, . . . , 0) = BnCn−1
2 = Bn.

Proof of Proposition 2.4. Expanding Φ(s, t) = s
s−tρ

(
s−t
1−t

)
as a power series and

using the binomial theorem and the formula: 1
(1−t)n+1 =

∑∞
k=n

(
k
n

)
tk−n, we observe

that



UNIVERSAL FORMULAE FOR SU(n) CASSON INVARIANTS OF KNOTS 23

Φ(s, t) =
∞∑

n=0

sβn+1
(s− t)n

(1− t)n+1

=
∞∑

n=0

sβn+1

(
n∑

`=0

(−1)`

(
n

`

)
sn−`t`

)( ∞∑
k=n

(
k

n

)
tk−n

)

=
∞∑

n=0

∞∑
k=n

n∑
`=0

(−1)`βn+1

(
n

`

)(
k

n

)
sn−`+1tk+`−n

=
∞∑

n=0

∞∑
k=n

n∑
m=0

(−1)n−mβn+1

(
n

n−m

)(
k

n

)
sm+1tk−m

=
∞∑

k=0

k∑
m=0

[
k∑

n=m

(−1)n−mβn+1

(
n

m

)(
k

n

)]
sm+1tk−m,(2.17)

where the fourth line follows by making the substitution m = n− `.
Substituting i = m + 1 and j = k −m into (2.17) shows that

Φ(s, t) =
∞∑

i=1

∞∑
j=0

Ai,js
itj ,

where Ai,j is defined for i ≥ 1 and j ≥ 0 by the term in (2.17) in brackets, i.e.,

Ai,j =
i+j−1∑
n=i−1

(−1)n−i+1

(
n

i− 1

)(
i + j − 1

n

)
βn+1

=
j∑

q=0

(−1)q

(
i + q − 1

i− 1

)(
i + j − 1
i + q − 1

)
βi+q.(2.18)

Now define Ãi,j for i ≥ 1 and j ≥ 0 by setting

Ãi,0 = βi

Ãi,j = −βi

j−1∑
q=0

(−1)q

(
j − 1

q

)
q!βq+1

(i + 1) · · · (i + q + 1)
.(2.19)

Lemma 2.7. (i) For i ≥ 1 and j ≥ 0, Ai,j = Ãi,j .

(ii) For i, j ≥ 1, Ãi,j satisfies the recursion Ãi,j = −βi

j−1∑
q=0

Ãj−q,q

(i + j − q)
.

First, observe that parts (i) and (ii) of the lemma establish the theorem, since (ii)
is exactly the recursion formula that the solution to (2.16) must satisfy. Moreover,
part (i) actually implies part (ii), as we now explain.

Part (ii) is equivalent to the statement that, for i, j ≥ 1,

j−1∑
k=0

(−1)k

(
j − 1

k

)
k!βk+1

(i + 1) · · · (i + k + 1)
=

βj

i + j
−

j−1∑
q=1

βj−q

i + j − q

(
q−1∑
r=0

(−1)r

(
q − 1

r

)
r!βr+1

(j − q + 1) · · · (r + j − q + 1)

)
.(2.20)
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Applying the method of partial fractions to 1/(x + 1) · · · (x + k + 1), we see that

k!βk+1

(i + 1) · · · (i + k + 1)
=

k∑
s=0

(−1)s

(
k

s

)
βk+1

i + s + 1
.

Substituting this into the left hand side of (2.20), interchanging the order of sum-
mation, and equating coefficients of 1/(i+s+1) on the left with those of 1/(i+j−q)
on the right (so s = j−q−1), this implies that (2.20) is equivalent to the statement
that if j > q > 0 then

j−1∑
k=j−q−1

(−1)j+k−q−1

(
j − 1

k

)(
k

j − q − 1

)
βk+1

= βj−q

q−1∑
r=0

(−1)r

(
q − 1

r

)
r!βr+1

(j − q + 1) · · · (r + j − q + 1)
.(2.21)

(The 1/(i + j) term can be handled separately.) Comparing with (2.18) and (2.19),
we see that (2.21) is equivalent to the statement: if j > q > 0 then Aj−q,q = Ãj−q,q.
Thus (i) implies (ii).

It remains to prove part (i) of the lemma. If j = 0, this is obvious, and for j > 0,
define

(2.22) Bi,j =
j∑

k=1

(−1)k

(
j − 1
k − 1

)
Ai,k and B̃i,j =

j∑
k=1

(−1)k

(
j − 1
k − 1

)
Ãi,k.

We prove (i) by showing that Bi,j = B̃i,j for all i, j > 0. From (2.19), we see that

B̃i,j = −βi

j∑
k=1

k−1∑
q=0

(−1)k+q

(
j − 1
k − 1

)(
k − 1

q

)
q!βq+1

(i + 1) · · · (i + q + 1)!

= −βi

j−1∑
q=0

 j∑
k=q+1

(−1)k+q

(
j − q − 1

j − k

) i! (j − 1)!βq+1

(j − q − 1)! (i + q + 1)!

=
i! (j − 1)!
(i + j)!

βiβj .

The last step uses
∑j

k=q+1(−1)k+q
(
j−q−1

j−k

)
= −δj−1,q, where δi,j is the Kronecker

symbol. This formula is an easy consequence of the binomial theorem.
We claim that the same is true of Bi,j , i.e., we claim that

(2.23) Bi,j =
i! (j − 1)!
(i + j)!

βiβj .

This requires induction and is more difficult to prove.
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Using (2.18) and the identity
(

j
q

)
=
(
j−1

q

)
+
(

j−1
q−1

)
, it follows that

Ai,j =
j∑

q=0

(−1)q

(
i + q − 1

i− 1

)(
i + j − 1
i + q − 1

)
βi+q

=
j∑

q=0

(−1)q

(
i + j − 1

i− 1

)(
j − 1

q

)
βi+q

=
j∑

q=0

(−1)q

(
i + j − 1

i− 1

)[(
j

q

)
−
(

j − 1
q − 1

)]
βi+q

=
j−1∑
q=0

(−1)q

(
i + j − 1

i− 1

)(
j − 1

q

)
(βi+q − βi+q+1) .(2.24)

Substituting (2.24) into (2.22) and using Identity A.1, we obtain that

Bi,j =
j∑

k=1

k−1∑
q=0

(−1)k+q

(
j − 1
k − 1

)(
i + k − 1

i− 1

)(
k − 1

q

)
(βi+q − βi+q+1)

=
j−1∑
q=0

j∑
k=q+1

(−1)k+q

(
j − 1

q

)(
i + k − 1

i− 1

)(
j − q − 1
k − q − 1

)
(βi+q − βi+q+1)

=
j−1∑
q=0

(−1)q

(
j − 1

q

) j∑
k=q+1

(−1)k

(
i + k − 1

i− 1

)(
j − q − 1
k − q − 1

) (βi+q − βi+q+1)

=
j−1∑
q=0

(−1)j+q

(
j − 1

q

)(
i + q

j

)
(βi+q − βi+q+1) .

(Recall the convention that
(
n
k

)
= 0 if n < k.) Claim (2.23) now follows directly

from Identity A.6. �

2.4. Methods for solving integral equations. Let bn = 4nn!(n−1)! and define
the power series

γ(z) ≡
∞∑

n=1

zn

bn
.

This series is given by the Bessel function γ(u2) = − iu
2 J1(iu). It will also be useful

to define

µ(z) ≡ γ(z)
z

=
∞∑

n=0

zn

bn+1
.

We will be interested in solving integral equations of the form:

(2.25) Φ(s, t) +
∫ 1

0

γ(xs)
x

Φ(tx, t)dx = f(s, t),

where f(s, t) is a formal power series in the variables s, t. We first consider the case
f(s, t) = γ(s):

(2.26) Φ(s, t) +
∫ 1

0

γ(xs)
x

Φ(tx, t)dx = γ(s).
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Proposition 2.8. The unique formal power series solution to the equation (2.26)
is given by Φ(s, t) = µ(s− t)s.

Proof. For Φ(s, t) ≡ µ(s− t)s the left side of (2.26) is

µ(s− t)s + t

∫ 1

0

γ(xs)µ(t(x− 1))dx.

This expression is 0 when s = 0 and, for k ≥ 1, the coefficient of sk is

(2.27)
µ(k−1)(−t)
(k − 1)!

+
t

bk

∫ 1

0

xkµ(t(x− 1))dx.

For n ≥ 1 and k ≥ 1,(
k + n− 1

k

)
(k + n)bkbn =

(k + n− 1)!
k! (n− 1)!

(k + n)4kk! (k − 1)! 4nn! (n− 1)!

= 4k+n(k + n)! n! =
n! bn+k

(k + n− 1)!
,

and thus

(2.28)
(k + n− 1)!

bn+kn!
(−1)n +

(−1)n−1

bkbn

(
k + n− 1

k

)−1

(k + n)−1 = 0.

The coefficient of tn in (2.27), n ≥ 1, is precisely the left side of the identity (2.28)
and is consequently equal to 0. Hence (2.27) is equal to its value at t = 0, namely
1/bk, which coincides with the coefficient of sk in γ(s). �

The following result is another useful special case of (2.25).

Proposition 2.9. The unique formal power series solution to the equation

Pq(s, t) +
∫ 1

0

γ(xs)
x

Pq(tx, t)dx = sq

is given by

Pq(s, t) = sq+(−1)q4qq!
∞∑

n=q+1

n−q−1∑
k=0

(−1)n+k(2n− k − q − 2)!
bn (n− q)!(n− k − 1− q)!

(
n− 1

k

)
sk+1tn−k−1.

Proof. A comparison of coefficients shows that the series

Pq(s, t) ≡
∞∑

i=1

∞∑
j=0

Aijs
itj

as defined in the statement of the Proposition satisfies the integral equation
Pq(s, t) +

∫ 1

0
γ(xs)

x Pq(tx, t)dx = sq if and only if the Aij ’s satisfy the recursion:

Ai0 = δiq i = 1, 2, . . .(2.29)

Aij = − 1
bi

j−1∑
`=0

Aj−`,`

j − ` + i
j > 0,(2.30)

where δiq = 1 if i = q and δiq = 0 otherwise. Observe that (2.29) is equivalent to
the condition Pq(s, 0) = sq, which is clearly satisfied. In the case 0 < j ≤ q, it is
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also easily seen that (2.30) is satisfied. When j > q, after dividing by (−1)q4qq!,
(2.30) becomes the assertion that

(−1)j−1(i + 2j − q − 1)!
bi+j (i + j − q)!(j − q)!

(
i + j − 1

i− 1

)
is equal to

−1
bi

j−1∑
`=q

(−1)`−1(j + `− q − 1)!
bj (j − q)!(`− q)!(j − ` + i)

(
j − 1

j − `− 1

)
.

This is equivalent to the assertion that

(−1)j−1

(
i + 2j − q − 1

j − 1

)
=

j−1∑
`=q

(−1)`

(
j + `− q − 1

j − 1

)(
i + j

`

)(
i + j − `− 1

i

)
,

which is Identity A.5. �

Given a formal power series f(t) =
∑∞

n=0 antn and a non-negative integer p, the
p–th derivative of f(t), denoted by f (p)(t), is the formal power series:

f (p)(t) ≡
∞∑

`=0

(` + p)!
`!

a`+pt
`.

Proposition 2.10. Pq(t, t) = 4qq! tqµ(q−1)(−t).

Proof. By Proposition 2.9, Pq(t, t) equals

tq + (−1)q4qq!
∞∑

n=q+1

(−1)n(n− 1)!
bn(n− q)!

(
n−q−1∑

k=0

(−1)k(2n− k − q − 2)!
(n− q − 1− k)! (n− 1− k)! k!

)
tn.

By Identity A.3,
n−q−1∑

k=0

(−1)k(2n− k − q − 2)!
(n− q − 1− k)! (n− 1− k)! k!

=
n−q−1∑

k=0

(−1)k

(
n− 1

k

)(
2n− k − q − 2

n− 1

)
= 1,

and thus

Pq(t, t) = tq + (−1)q4qq!
∞∑

n=q+1

(−1)n(n− 1)!
bn(n− q)!

tn

= tq + 4qq! tq
∞∑

`=1

(−1)`(` + q − 1)!
b`+q`!

t`

= 4qq! tq
∞∑

`=0

(−1)`(` + q − 1)!
b`+q`!

t` = 4qq! tqµ(q−1)(−t).

�

Consider a power series of the form f(s, t) =
∑∞

i=1

∑∞
j=0 Fijs

itj , which we write
as
∑∞

n=1 fn(t)sn, where fn(t) =
∑∞

j=0 Fnjt
j , n = 1, 2, . . ..

Proposition 2.11. The solution to (2.25) is Φ(s, t) =
∑∞

n=1 fn(t)Pn(s, t).
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Proof. Let m be the maximal ideal of formal power series in the variables s, t with
vanishing constant term. Since Pn(s, t) ∈ mn, n ≥ 1, the expression Φ(s, t) ≡∑∞

n=1 fn(t)Pn(s, t) is valid as a formal power series; furthermore,

Φ(s, t) +
∫ 1

0

γ(xs)
x

Φ(tx, t)dx

=
∞∑

n=1

fn(t)Pn(s, t) +
∫ 1

0

γ(xs)
x

( ∞∑
n=1

fn(t)Pn(tx, t)

)
dx

=
∞∑

n=1

fn(t)
(

Pn(s, t) +
∫ 1

0

γ(xs)
x

Pn(tx, t)dx

)
.

The conclusion now follows from Proposition 2.9. �

2.5. Some facts about power sums. In this subsection we collect some facts for
use in the sequel concerning sums of powers of odd integers.

The Bernoulli numbers are the rational numbers Bn, n = 0, 1, . . . defined by the
exponential generating function:

t

et − 1
=

∞∑
n=0

Bn

n!
tn.

The Euler-Maclaurin polynomials are defined by

pk(x) =
k∑

i=0

Bi

k + 1− i

(
k

i

)
xk+1−i,

and their associated exponential generating function is given by

G(x, t) ≡
∞∑

k=0

pk(x)
tk

k!
=

ext − et

et − 1
.

Using this generating function it is easy to deduce (see [12]) the well known Euler-
Maclaurin formula:

pk(n) = 1k + 2k + · · · + (n− 1)k n = 1, 2, . . .

Define polynomials

uk(x) ≡ pk(2x)− 2kpk(x) k = 0, 1, . . .

Then for each positive integer n, the Euler-Maclaurin formula yields the formula

(2.31) uk(n) = 1k + 3k + 5k + · · · + (2n− 1)k.

The exponential generating function H(x, t) ≡
∑∞

k=0 uk(x)tk/k! is given by

H(x, t) = G(2x, t)−G(x, 2t) = ext sinh(xt)
sinh(t)

.

Note that
∞∑

k=0

u2k(x)
t2k

(2k)!
= 1

2 (H(x, t) + H(x,−t)) =
sinh(2xt)
2 sinh(t)

from which it follows that

(2.32) u2k(x) =
k∑

j=0

4jD2k−2j

2j + 1

(
2k

2j

)
x2j+1,
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where the rational numbers Dn are given by exponential generating function

(2.33)
t

sinh(t)
=

∞∑
n=0

Dn

n!
tn = 1− 1

6
t2 +

7
360

t4 − · · ·

2.6. Proof of Conjecture 1.16 for d = 1. Let δij be the Kronecker symbol, i.e.,

δij =
{

1 if i = j,
0 if i 6= j.

For m ≥ 1, define the power series Wm(s, t) by
(2.34)

Wm(s, t) ≡
∞∑

n=1

(
n∑

k=1

(−1)k−1
∑

n1+···+nk=n

∑k
j=1 δmnj∏k

j=1 bnj

∏k−1
j=1 (nj + nj+1)

sn1tn−n1

)
.

The power series Wm(s, t) arises from an integral equation of the type (2.3) as
follows. Define the power series ρ(s;λ), where λ is a complex parameter, by

ρ(s;λ) ≡
∞∑

n=1

(1 + λδmn)
sn

bn
= γ(s) + λ

sm

bm
,

and let Wm(s, t;λ) be the solution to the integral equation:

(2.35) Wm(s, t;λ) +
∫ 1

0

ρ(xs;λ)
x

Wm(tx, t;λ)dx = ρ(s;λ).

By (2.4), Wm(s, t;λ) is given by the power series:

Wm(s, t;λ) =
∞∑

n=1

(
n∑

k=1

(−1)k−1
∑

n1+···+nk=n

∏k
j=1(1 + λδmnj

)∏k
j=1 bnj

∏k−1
j=1 (nj + nj+1)

sn1tn−n1

)
.(2.36)

Note that ρ(s; 0) = γ(s) so that the substitution of λ = 0 into (2.35) yields the
equation (2.26) and thus by Proposition 2.8 we have that Wm(s, t; 0) = µ(s− t)s.

From the power series (2.36) we observe that

d

dλ
Wm(s, t;λ)

∣∣∣∣
λ=0

= Wm(s, t).

Differentiating the equation (2.35) at λ = 0 yields:

(2.37) Wm(s, t) +
∫ 1

0

γ(xs)
x

Wm(tx, t)dx +
∫ 1

0

sm

bm
xm−1Φ0(tx, t)dx =

sm

bm
,

where Φ0(s, t) ≡ Wm(s, t; 0) = µ(s − t)s. By (2.26) and Proposition 2.8, the
expression ∫ 1

0

−xm−1

bm
Φ0(tx, t)dx +

1
bm

is the coefficient of sm in µ(s− t)s, which by Taylor’s theorem is
µ(m−1)(−t)
(m− 1)!

, and

so (2.37) is equivalent to

(2.38) Wm(s, t) +
∫ 1

0

γ(xs)
x

Wm(tx, t)dx =
µ(m−1)(−t)
(m− 1)!

sm.
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The solution to (2.38) is given by the next result, which follows from Proposition
2.11.

Proposition 2.12. Wm(s, t) =
µ(m−1)(−t)
(m− 1)!

Pm(s, t). �

Consequently, using Proposition 2.10, we make the following conclusion.

Corollary 2.13. Wm(t, t) = 4mm tm
(
µ(m−1)(−t)

)2
. �

Define the power series Φ1(s, t; z), where z is a complex variable, by

Φ1(s, t; z) ≡
∞∑

n=1

(
n∑

k=1

(−1)k−1
∑

n1+···+nk=n

∑k
j=1 znj∏k

j=1 bnj

∏k−1
j=1 (nj + nj+1)

sn1tn−n1

)
.

Observe from (2.34) that for m ≥ 1,

1
2πi

∮
Φ1(s, t; z)

zm+1
dz = Wm(s, t),

(contour integral over the unit circle) and thus

(2.39) Φ1(s, t; z) =
∞∑

m=1

Wm(s, t)zm.

Define polynomials Ψn(z) by

(2.40) Ψn(z) =
n∑

k=1

(−1)k+n 2k (2n− 1)!
(n + k)! (n− k)!

zk, n = 1, 2, . . .

Proposition 2.14. Φ1(t, t; z) =
∞∑

n=1

Ψn(z)
tn

bn
.

Proof. By (2.39) and Corollary 2.13,

Φ1(t, t; z) =
∞∑

m=1

Wm(t, t)zm =
∞∑

m=1

4mmtm
(
µ(m−1)(−t)

)2

zm.

Using Identity A.4,

(2.41)
∑̀
k=0

(k + m− 1)!
k! bk+m

(`− k + m− 1)!
(`− k)! b`−k+m

=
1

42m+``! (2m + `)!

(
2m + 2`

m + `

)
,

we have that(
µ(m−1)(−t)

)2

=

( ∞∑
k=0

(k + m− 1)!
k! bk+m

(−1)ktk

)2

=
∞∑

`=0

(∑̀
k=0

(k + m− 1)!
k! bk+m

(`− k + m− 1)!
(`− k)! b`−k+m

)
(−1)`t`

=
∞∑

`=0

1
42m+``! (2m + `)!

(
2m + 2`

m + `

)
(−1)`t`,
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and thus

Φ1(t, t; z) =
∞∑

m=1

∞∑
`=0

4mm
1

42m+``! (2m + `)!

(
2m + 2`

m + `

)
(−1)`t`+mzm

=
∞∑

n=1

(
n∑

m=1

m
zm

4n(n−m)! (n + m)!

(
2n

n

)
(−1)n−m

)
tn

=
∞∑

n=1

Ψn(z)
tn

bn
.

�

Corollary 2.15. For m ≥ 0 and n ≥ 1,
n∑

k=1

(−1)k−1
∑

n1+···+nk=n

∑k
j=1 nm

j∏k
j=1 bnj

∏k−1
j=1 (nj + nj+1)

=
1
bn

n∑
k=1

(−1)k+n2km+1(2n− 1)!
(n + k)!(n− k)!

.

Proof. By Proposition 2.14,
n∑

k=1

(−1)k−1
∑

n1+···+nk=n

∑k
j=1 znj∏k

j=1 bnj

∏k−1
j=1 (nj + nj+1)

=
Ψn(z)

bn
.

Making the substitution z = ey and then taking the m-th derivative at y = 0 of
the resulting equation yields the conclusion of the corollary. �

Proposition 2.16. For n ≥ 1,

2
n∑

k=1

(−1)kk2p

(
2n

n− k

)
=
{

0 if 1 ≤ p < n
(−1)n(2n)! if p = n.

Proof. By the binomial theorem,

(−1)nx−n(1− x)2n =
(

2n

n

)
+

n∑
k=1

(−1)k

(
2n

n− k

)
(xk + x−k).

Making the substitution x = ey we obtain that

(2.42) (−1)ne−ny(1− ey)2n =
(

2n

n

)
+ 2

n∑
k=1

(−1)k

(
2n

n− k

)
cosh(ky).

Since e−ny(1−ey)2n = y2n+o(y2n+1), the 2p-th derivative of the left side of (2.42) at
y = 0 equals 0 for 0 ≤ p < n and equals (−1)n(2n)! for p = n. For p ≥ 1, the 2p-th
derivative of the right side of (2.42) at y = 0 equals 2

∑n
k=1(−1)kk2p

(
2n

n−k

)
. �

Combining Corollary 2.15 and Proposition 2.16 yields the next proposition.

Proposition 2.17. For n ≥ 1,
n∑

k=1

(−1)k−1
∑

n1+···+nk=n

∑k
j=1 n2p−1

j∏k
j=1 bnj

∏k−1
j=1 (nj + nj+1)

=
{

0 if 1 ≤ p < n

4−n
(
2n−1

n

)
if p = n. �

The following theorem verifies Conjecture 1.16 in the case d = 1.
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Theorem 2.18. For n ≥ 1,

4
n∑

k=1

(−1)k−1
∑

n1+···+nk=n

∑k
j=1

∑nj

`=1(2`− 1)2p∏k
j=1 bnj

∏k−1
j=1 (nj + nj+1)

=
{

0 if 1 ≤ p < n− 1
1
n

(
2n−2
n−1

)
if p = n− 1.

Proof. For n ≥ 1 and m ≥ 0 define

g(n, m) ≡
n∑

k=1

(−1)k−1
∑

n1+···+nk=n

∑k
j=1 nm

j∏k
j=1 bnj

∏k−1
j=1 (nj + nj+1)

.

By (2.31) and (2.32),
∑nj

`=1(2`− 1)2p = u2p(nj) where

u2p(x) =
p∑

j=0

4jD2p−2j

2j + 1

(
2p

2j

)
x2j+1

and the rational numbers Di are given by (2.33). Thus
n∑

k=1

(−1)k−1
∑

n1+···+nk=n

∑k
j=1

∑nj

`=1(2`− 1)2p∏k
j=1 bnj

∏k−1
j=1 (nj + nj+1)

=
p∑

j=0

4jD2p−2j

2j + 1

(
2p

2j

)
g(n, 2j+1).

By Proposition 2.17, g(n, 2j +1) = 0 if 0 ≤ j < n−1 and g(n, 2n−1) = 4−n
(
2n−1

n

)
.

Thus the right side of the above identity is equal to 0 if 1 ≤ p < n− 1 and is equal
to

4n−1

2n− 1
g(n, 2n− 1) =

(
4n−1

2n− 1

)
4−n

(
2n− 1

n

)
=

1
4n

(
2n− 2
n− 1

)
if p = n− 1. �

Proposition 2.17 verifies the following conjecture in the case d = 1.

Conjecture 2.19. For n ≥ 1 and m1, . . . ,md ≥ 0,

n∑
k=1

(−1)k−1
∑

n1+···+nk=n

∏d
`=1

(∑k
j=1 n2m`+1

j

)
∏k

j=1 bnj

∏k−1
j=1 (nj + nj+1)

=

{
0 if

∑d
`=1 m` < n− 1

nd−24−n
∏d

`=1

(
2m`

m`

)
(2m` + 1) if

∑d
`=1 m` = n− 1. �

Remark 2.20. It is not difficult to see that Conjecture 2.19 implies Conjecture 1.16.
In fact, the two conjectures are equivalent.

3. Topological Consequences

In this section, we indicate two topological consequences of the previous results.
These corollaries are independent of Conjectures 1.9 and 1.16. The first result is
an immediate consequence of Theorem 2.18. The only additional fact one needs is
that the Conway polynomial of a fibered knot of genus g is a polynomial in z2 of
degree g.

Corollary 3.1. Let K ⊂ N be a fibered knot with Conway polynomial

∇K(z) = C0 + C2z
2 + · · ·C2gz

2g
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and let GK = π1(N \ τ(K)) denote the knot group and ` ∈ GK the element repre-
sented by the longitude of K. If C2n is the first nonzero coefficient of ∇K(z) with
n ≥ 1, then

λn+1,ω(K) =
1

n + 1

(
2n

n

)
C2nCn−1

0 .

If N is a rational homology 3-sphere, then C0 6= 0 and it follows that there exists
an irreducible representation ρ : GK → SU(n + 1) such that ρ(`) = ω.

Remark 3.2. Our computation of the universal polynomials and the hypotheses
above imply that λm,ω(K) = 0 for 2 ≤ m ≤ n. Theorem 1.7 of [8] states that, for
N a rational homology sphere, λm,ω(K) 6= 0 for some 2 ≤ m ≤ g + 1. Corollary 3.1
identifies the first nonvanishing invariant and shows that it can be easily computed
from the Conway polynomial of K.

To put our results into perspective, it is helpful to further compare them to the
results in [8]. Theorem 1.7 of [8] can also be deduced from Corollary 3.1 since
C2n 6= 0 for some n with 1 ≤ n ≤ g. Moreover, using the notation of [8], Theorem
2.18 shows that the coefficient of xn−2

0 x2n−2 in pn,ω is 1/n!(n− 1)!. Proposition
13.3 (b) of [8] claims correctly that this coefficient is nonzero, but the proof of 13.3
(b) incorrectly asserts that r = r(n)− r1, i.e. that ri = 0, and direct computation
shows that this is not true. Theorem 2.18 should be viewed as filling the gap in
Proposition 13.3 (b), which is important because Theorems 1.6 and 1.7 of [8] depend
on 13.3 (b) in an essential way.

Next, we consider the situation where N is not a rational homology sphere. In
this case, we can determine the invariants λn,ω for all n from Theorem 2.5.

Corollary 3.3. If K ⊂ N is a fibered knot and H1(N ; Q) 6= 0, then the Conway
polynomial has the form ∇K(z) = C2z

2 + · · ·+C2gz
2g. In particular, since C0 = 0,

it follows that λn,ω(K) = Cn−1
2 .

Appendix A. Identities

In this appendix, we collect a number of combinatorial identities upon which
some of our previous results depend. For the most part, the proofs are elementary
applications of the Residue theorem and are included for the reader’s convenience.

Identity A.1. For i, j, q > 0,

j∑
k=q+1

(−1)k

(
i + k − 1

i− 1

)(
j − q − 1
k − q − 1

)
= (−1)j

(
i + q

j

)
.

Remark A.2. This is true for i + q < j provided
(
n
`

)
is defined to be 0 when n < `.

Identity A.3. For n > q ≥ 0,

n−q−1∑
k=0

(−1)k

(
n− 1

k

)(
2n− k − q − 2

n− 1

)
= 1.

Identity A.4. For k,m > 0,∑̀
k=0

(
2m + 2`

m + k

)(
`

k

)
=
(

2m + 2`

m + `

)
.
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Identity A.5. For i > 0 and j > q ≥ 0,

j−1∑
`=q

(−1)`

(
j + `− q − 1

j − 1

)(
i + j

`

)(
i + j − `− 1

i

)
= (−1)j−1

(
i + 2j − q − 1

j − 1

)
.

Identity A.6. Set βn ≡ n
42n

(
2n
n

)2
. Then

j−1∑
q=0

(−1)j+q

(
j − 1

q

)(
i + q

j

)
(βi+q − βi+q+1) =

i! (j − 1)!
(i + j)!

βiβj .

Proofs. All but the last identity are exhibited using the method of residues [7].
Recall that for a meromorphic function f(z), its residue at infinity is defined as

Res
z=∞

f(z) = −Res
z=0

f( 1
z )/z2.

In particular, if f(z) = p(z)/q(z) is a rational function, where p(z) and q(z) are
polynomials with deg q ≥ deg p+2, then one can easily verify that Resz=∞ f(z) = 0.

Proof of Identity A.1. Assume i, j, q > 0. Substituting Resx=0 (1 + x)n/x`+1 for(
n
`

)
, summing the resulting geometric series, and applying the Residue theorem to

the incident rational function, we have

j∑
k=q+1

(−1)k

(
i + k − 1

i− 1

)(
j − q − 1
k − q − 1

)
= Res

x=0
Res
y=0

j∑
k=q+1

(1− x)i+k−1

xk+1

(1 + y)j−q−1

yk−q

= Res
x=0

Res
y=0

j∑
k=−∞

(1− x)i+k−1

xk+1

(1 + y)j−q−1

yk−q

= Res
x=0

Res
y=0

(1− x)i+j(1 + y)j−q−1

xj+1yj−q(1− x− xy)

= Res
x=0

Res
y=[ 1−x

x ]

−(1− x)i+j(1 + y)j−q−1

xj+1yj−q(1− x− xy)

= Res
x=0

(1− x)i+q

xj+1
= (−1)j

(
i + q

j

)
.

�

Proof of Identity A.3. Assume n > q ≥ 0 and argue as before.

n−q−1∑
k=0

(−1)k

(
2n− k − q − 2

n− 1

)(
n− 1

k

)
= Res

x=0
Res
y=0

n−q−1∑
k=−∞

(1− x)n−1

xk+1

(1 + y)2n−q−k−2

yn

= Res
x=0

Res
y=0

(1− x)n−1(1 + y)n−1

xn−qyn(1− x− xy)
= 1.

�
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Proof of Identity A.4. Assume k, m > 0. Then∑̀
k=0

(
2m + 2`

m + k

)(
`

k

)
= Res

x=0
Res
y=0

∑̀
k=−∞

(1 + x)2m+`

xm+k+1

(1 + y)`

yk+1

= Res
x=0

Res
y=0

(1 + x)2m+`(1 + y)`

x`+m+1y`+1(1− xy)
=
(

2m + 2`

m + `

)
.

�

Proof of Identity A.5. By reindexing, Identity A.5 is easily seen to be equivalent to(
i + 2j − q − 1

j − 1

)
=

j−q−1∑
k=0

(−1)k

(
2j − k − q − 2

j − 1

)(
i + j

j − k − 1

)(
i + k

k

)
.

We prove the above formula by making use of Identity A.3. First, notice that
j−q−1∑

k=0

(−1)k

(
2j − k − q − 2

j − 1

)(
i + j

j − k − 1

)(
i + k

k

)

= Res
x=0

Res
y=0

Res
z=0

j−q−1∑
k=−∞

(1 + x)2j−k−q−2

xj

(1 + y)i+j

yi+k+2

(1− z)i+k

zk+1

= Res
x=0

Res
y=0

Res
z=0

(1 + x)j−1(1 + y)i+j(1− z)i+j−q

xjyi+j−q+1zj−q(1− xyz − yz − z)

= Res
y=0

Res
z=0

(1 + y)i+j(1− z)i+j−q

yi+j−q+1zj−q

(
Res

x=[ 1−z
yz −1]

−(1 + x)j−1

xj(1− xyz − yz − z)

)

= Res
y=0

Res
z=0

(1 + y)i+j

yi+j−q+1

(1− z)i+2j−q−1

zj−q(1− z − yz)j
.(A.1)

Using the binomial theorem and the equation: 1
(1−w)n+1 =

∑∞
m=0

(
n+m

n

)
wm, where

w = z(1 + y), we find that

(1− z)i+2j−q−1

(1− z − yz)j
=

i+2j−q−1∑
`=0

∞∑
m=0

(−1)`

(
i + 2j − q − 1

`

)(
j + m− 1

j − 1

)
(1 + y)mz`+m.

Hence

Res
z=0

(1− z)i+2j−q−1

zj−q(1− z − yz)j
=

j−q−1∑
`=0

(−1)`

(
i + 2j − q − 1

`

)(
2j − q − `− 2

j − 1

)
(1 + y)j−q−`−1.

Inserting this into equation (A.1), we see that that expression equals

j−q−1∑
`=0

(−1)`

(
i + 2j − q − 1

`

)(
2j − q − `− 2

j − 1

)(
i + 2j − q − `− 1

i + j − q

)

=
(

i + 2j − q − 1
j − 1

) j−q−1∑
`=0

(−1)`

(
2j − q − `− 2

j − q − 1

)(
j − q − 1

`

)
=
(

i + 2j − q − 1
j − 1

)
.
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This used the equation
j−q−1∑

`=0

(−1)`

(
j − q − 1

`

)(
2j − q − `− 2

j − q − 1

)
= 1,

which is a reformulation of Identity A.3. �

Proof of Identity A.6. For notational convenience, set

Bi,j =
j−1∑
q=0

(−1)j+q

(
j − 1

q

)(
i + q

j

)
(βi+q − βi+q+1) .

The proof proceeds by induction on i > 0. Using the relation

(A.2) n(n + 1)(βn − βn+1) = β1βn,

which is easily verified, it is not difficult to establish Identity A.6 for i = 1 and for
all j > 0. This gets the induction started.

To prove the inductive step, we use the formula that

(A.3) (i− 1)Bi,j = (i− j − 1)Bi−1,j + (j + 1)Bi−1,j+1,

which is valid for i > 1 and j > 0. We first show that equation (A.3) and the
inductive hypothesis imply Identity A.6 and afterwards we will prove equation
(A.3). Fix i > 1 and assume that Bi−1,k = (i − 1)! (k − 1)!βi−1βk/(i + k − 1)! for
all k > 0. Inserting this into the right hand side of equation (A.3), we find that

(i− 1)Bi,j = (i− j − 1)
(

(i− 1)! (j − 1)!
(i + j − 1)!

)
βi−1βj + (j + 1)

(
(i− 1)! j!
(i + j)!

)
βi−1βj+1

= [(i + j)(i− j − 1)βj + j(j + 1)βj+1]
(i− 1)! (j − 1)!

(i + j)!
βi−1

=
[
(i + j)(i− j − 1)βj + (j2 + j + 1

4 )βj

]( (i− 1)! (j − 1)!
(i + j)!

)
βi−1

=
(

(i− 1)! (j − 1)!
(i + j)!

)
(i2 − i + 1

4 )βi−1βj

=
(

(i− 1)! (j − 1)!
(i + j)!

)
i(i− 1)βiβj .(A.4)

This uses the relation:

(n2 + n + 1
4 )βn = n(n + 1)βn+1,

which follows directly from equation (A.2). It is applied twice to the equation
above; once to the term in the brackets in the second line with n = j, and again to
the fourth line with n = i−1. Now Identity A.6 is a direct consequence of equation
(A.4) and induction, and it only remains to prove equation (A.3). Since this fact
makes no reference to the special properties of the βi’s, we will prove a slightly
more general version of equation (A.3).

With this in mind, define polynomials (cf. the formula for Bi,j given at the end
of the proof of Lemma 2.7) by setting

Bi,j(x) =
j−1∑
q=0

(−1)j+q

(
j − 1

q

)(
i + q

j

)
xi+q,
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and consider the analog of equation (A.3) given by

(A.5) (i− 1)Bi,j(x) = (i− j − 1)Bi−1,j(x) + (j + 1)Bi−1,j+1(x).

It is clear that this assertion implies equation (A.3). Writing

Bi−1,j(x) =
j−1∑
q=0

(−1)j+q

(
j − 1

q

)(
i + q − 1

j

)
xi+q−1

Bi−1,j+1(x) =
j∑

q=0

(−1)j+q+1

(
j

q

)(
i + q − 1

j + 1

)
xi+q−1

and equating coefficients of xi+q−1, we see that equation (A.5) follows from the
collection of equations, valid for q ≥ 0 :

(j − i + 1)
(

j − 1
q

)(
i + q − 1

j

)
+ (j + 1)

(
j

q

)(
i + q − 1

j + 1

)
=
(

i + q − 1
j

)[
(j − i + 1)

(
j − 1

q

)
+ (i + q − j − 1)

(
j

q

)]
=
(

i + q − 1
j

)[
(j − i + 1)

[(
j − 1

q

)
−
(

j

q

)]
+ q

(
j

q

)]
=
(

i + q − 1
j

)[
(i− j − 1)

(
j − 1
q − 1

)
+ q

(
j

q

)]
=
(

i + q − 1
j

)[
(i− 1)

(
j − 1
q − 1

)
− j

(
j − 1
q − 1

)
+ q

(
j

q

)]
= (i− 1)

(
i + q − 1

j

)(
j − 1
q − 1

)
.

The last step uses the relation j
(

j−1
q−1

)
= q
(

j
q

)
, and this completes the proof �
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Appendix B. Table of νn for 2 ≤ n ≤ 10

ν2 = y2

ν3 = 2y0y4 + y2
2

ν4 = 5y2
0y6 + 7y0y2y4 + y3

2

ν5 = 14y3
0y8 + 26y2

0y2y6 + 11y2
0y2

4 + 16y0y
2
2y4 + y4

2

ν6 = 42y4
0y10 + y3

0(98y2y8 + 78y4y6) + y2
0(82y2

2y6 + 68y2y
2
4) + 30y0y

3
2y4 + y5

2

ν7 = 132y5
0y12 + y4

0(372y2y10 + 288y4y8 + 134y2
6) + y3

0(398y2
2y8 + 620y2y4y6)

+ 86y3
0y3

4 + y2
0(202y3

2y6 + 247y2
2y2

4) + 50y0y
4
2y4 + y6

2

ν8 = 429y6
0y14 + y5

0(1419y2y12 + 1083y4y10 + 971y6y8) + 1857y4
0y2

2y10

+ y4
0(2818y2y4y8 + 1305y2y

2
6 + 1097y2

4y6) + y3
0(1223y3

2y8 + 2805y2
2y4y6)

+ 767y3
0y2y

3
4 + y2

0(427y4
2y6 + 686y3

2y2
4) + 77y0y

5
2y4 + y7

2

ν9 = 1430y7
0y16 + y6

0(5434y2y14 + 4114y4y12 + 3610y6y10 + 1735y2
8)

+ y5
0(8426y2

2y1212628y2y4y10 + 11256y2y6y8 + 4776y2
4y8)

+ y4
0(6862y3

2y10 + 15346y2
2y4y8 + 7079y2

2y2
6 + 11756y2y

2
4y6 + 807y4

4)
+ 4418y4

0y4y
2
6 + y3

0(3148y4
2y8 + 9472y3

2y4y6 + 3836y2
2y3

4)
+ y2

0(812y5
2y6 + 1610y4

2y2
4) + 112y0y

6
2y4 + y8

2

ν10 = 4862y8
0y18 + y7

0(12778y8y10 + 13618y6y12 + 20878y2y16 + 15730y4y14)
+ y6

0(37466y2
2y14 + 55792y2y4y12 + 48664y2y6y10 + 23352y2y

2
8)

+ y6
0(20810y2

4y10 + 37012y4y6y8 + 5714y3
6) + y5

0(36454y3
2y12 + 80622y2

2y4y10)
+ y5

0(71510y2
2y6y8 + 60038y2y

2
4y8 + 55346y2y4y

2
6 + 15350y3

4y6)
+ y4

0(20876y4
2y10 + 61284y3

2y4y8 + 28178y3
2y2

6 + 69420y2
2y2

4y6)
+ y3

0(7152y5
2y8 + 26520y4

2y4y6 + 14160y3
2y3

4 + 9425y2y
4
4)

+ y2
0(1428y6

2y6 + 3360y5
2y2

4) + 156y0y
7
2y4 + y9

2
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