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1 Introduction

Let X be a compact holomorphic orbifold of dimension 2. Such orbifolds are topo-
logically classified by their genus and a finite collection of integers giving the cone
angles at the cone points in X. By a smoothing process which replaces singular neigh-
borhoods of the cone points with holomorphic disks, we obtain a Riemann surface Xs

with a collection of distinguished points (called parabolic points). Let E → X be a
holomorphic orbifold bundle. By the push forward construction (a smoothing process
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on the level of bundles), we obtain a holomorphic bundle E → Xs with parabolic
structure, i.e. a weighted (partial) flag in the fiber Ep over each parabolic point p.
In this thesis, we establish that the bundle E is parabolic stable if and only if there
is a unitary connection A on E with constant central curvature (Theorem 5.1). In
particular, E is projectively flat. Thus, we get a description of the space of projective
unitary representations of the orbifold group as stable parabolic bundles and use it
to compute the cohomology of the SU(2)-representation space of any Seifert-fibered
homology sphere.

In order to put this result into context, let us consider for a moment the case of
holomorphic bundles (without parabolic structure) over a Riemann surface X. The
big picture includes the three moduli:

• SS = the moduli of semistable holomorphic structures on E,

• R = certain1 PU(n)-representations of π1X,

• M = the moduli of Yang-Mills2 connections on E.

Each of these spaces is a quotient space; in order to avoid singularities and non-
Hausdorff behavior, we consider the subspaces:

• S ⊆ SS of stable holomorphic structures,

• R∗ ⊆ R irreducible representations,

• M∗ ⊆M of Yang-Mills minima.

In [15], Narasimhan and Seshadri prove that SS ≈ R, with S ≈ R∗. In [4], Donaldson
gives a gauge theoretic proof of the result of Narasimhan and Seshadri by showing
M∗ ≈ S. Atiyah and Bott, in [1], give an inductive procedure based on the strati-
fication of C, the space of all holomorphic structures, to compute H∗(S) in the case
where SS = S.

The three moduli have counterparts in world of orbifolds and parabolic bundles.
Namely, given a holomorphic orbifold bundle E → X with push forward E → Xs, we
have

• SS = the moduli of semistable holomorphic parabolic structures on E,

• R = certain PU(n)-representations of πorb1 X,

• M = the moduli of Yang-Mills orbifold connections on E.

with analogous subspaces S ⊆ SS, R∗ ⊆ R, andM∗ ⊆M. Mehta and Seshadri [14]
prove SS ≈ R (with S ≈ R∗) for genus g ≥ 2 and one parabolic point. Moreover,
the Atiyah-Bott program is extended in [17] to parabolic bundles. In this thesis we

1or equivalently, representations of π1 of the once-punctured surface with prescribed holonomy.
2These are connections which are critical points for the Yang-Mills functional.
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give another proof of the result of Mehta and Seshadri, i.e. we show that S ≈ M∗

for arbitrary genus. The approach used is essentially Donaldson’s [4], adapted to
orbifolds. Consequently, we have S ≈ R∗ for an appropriately defined3 representa-
tion space. This, along with the Atiyah-Bott program for parabolic bundles, allows
for the cohomology of the representation space of certain Fuchsian groups (orbifold
fundamental groups).

Lately, the work of Casson and Floer has stimulated interest in the theory of
SU(2)-representation space of π1(Σ

3), where Σ3 is a homology 3-sphere. Let R(Σ)
denote the representations modulo conjugation. If, in addition, Σ is Seifert-fibered,
then there is a canonical orbifold X so that R(Σ) ≈ R(X). Thus, the above program
gives a method for computing the cohomology of R(Σ). In carrying this out, we find
that Hi(R(Σ)) = 0 for i odd. This is not suprising in light of the conjecture of
Fintushel and Stern[6], proved by Kirk and Klassen [11] (see also [3] and [7]). In both
[3] and [7], it is proved thatR(Σ) is a rational variety and therefore simply connected.
We have tried to find a simple topological proof of the fact π1R(Σ) = 0, but the usual
techniques (i.e. Newstead’s [16]) fail.

Having completed this work, we learned of the work of Furuta and Steer [7] giving
the same results by similar methods. In this thesis, we extend the results to compute
the cohomology of representation spaces of Seifert fibrations which are torsion free
(arbitrary genus). In particular, we have complete results for genus 1 and partial
results for genus ≥ 2. This includes simple connectivity of all but one component
of R(Σ). This one component is diffeomorphic to the SU(2)-representation space of
a surface of genus g and is singular for g > 2. Andrew Nicas pointed out to me
that one can use Kirwan’s explicit formulas (§4 and 5 of [12]) to find the intersection
Betti numbers of this component (up to 2-torsion). In a future article, we hope to
address the problem of higher rank bundles (i.e. U(n) and SU(n) representations).
The presence of reducibles, reflected by the fact that SS 6= S, is the main obstacle
to this program. Kirwan’s theory appears to be the best hope for dealing with these
issues.

We introduce the notion of orbifolds and orbifold bundles in §2. The category of
parabolic bundles is introduced in §3, where we also define stability (Definition 3.9)
and obtain a result (Proposition 3.8) which we will need in §5. In §4, we establish
an equivalence between the categories of holomorphic orbifold bundles and parabolic
bundles (Propositions 4.1 & 4.4). We also prove the technical result (Proposition 4.5)
which is needed for Theorem 5.1, our main result. §5 contains the proof of this result
and establishes the relationship between representations and semistable parabolic
bundles. In §6, we give, as an application, the computation of the cohomology of S
in the rank 2 case and describe its relationship to R(Σ) for Seifert-fibered spaces Σ.
We close this section with some explicit calculations where S (a component of R) is
of dimensions four and six.

3i.e. representations of π
orb
1

of the once-punctured orbifold with prescribed holonomy.
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2 Orbifolds

In this section, we briefly define holomorphic orbifolds, classifying (topologically)
those of dimension 2. We also describe the orbifold fundamental group πorb1 . We give
a presentation for this group in case the orbifold has dimension 2. We then turn
attention to orbifold bundles and develop the complex differential geometry which we
shall use throughout our thesis. We end with a description of the second fundamental
form for a short exact sequence of holomorphic orbifold bundles.

We now define orbifolds (also called V-manifolds), using the notion of a local
uniformizing system, which we abbreviate l.u.s. Before we get into the formalities,
intuitively, an orbifold is locally modelled on an open set in Cn modulo a finite group.
Of course, saying what happens on the overlaps is the tricky part.

Definition 2.1 A connected metric space X is a holomorphic orbifold if
(a) For a base of open sets U ⊂ X, we have a local uniformizing system, i.e. triples
{Ũ ,Γ, φ} where

1. Ũ is a connected open subset of Cn,

2. Γ is a finite set of biholomorphic bijections of Ũ ,

3. φ : Ũ → U is Γ-invariant and induces a homeomorphism Ũ/Γ
φ
≈ U.

(b) If U ⊆ U ′, then we have an injection, which is a pair {λ, ψ} so that

1. λ : Γ→ Γ′ is a monomorphism,

2. ψ : Ũ ↪→ Ũ ′ is a holomorphic embedding such that the diagram

Ũ
ψ
→ Ũ ′

↓γ′ ↓γ

Ũ
ψ
→ Ũ ′

↓φ′ ↓φ
U ⊆ U ′

commutes for all γ ∈ Γ, where γ ′ = λ(γ).

We call the collection of l.u.s. and corresponding injections a defining family F ,
and, as usual, consider two families F and F ′ equivalent if F ∪ F ′ is a defining
family (i.e. satisfies b). We shall be mainly concerned with holomorphic orbifolds
of dimension 2, which are (topologically) classified by a finite list (see [19] for a list
of all 2-dimensional orbifolds). This follows because any finite subgroup of U(1) is a
cyclic group Za. So, any singular point c ∈ X has an l.u.s. of the form D2/Za where
Za is the standard action on D2 (i.e. multiplication by an ath root of unity). In this
case, the cone point c has cone angle 2π/a. So compact holomorphic orbifolds X are
topologically classified by their genus g and a finite collection of integers (a1, . . . , an)
giving the cone angles at the cone points (c1, . . . , cn). We use X(g; a1, . . . , an) to
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Figure 1: X(3; 2, 5, 7)

denote this orbifold. For example, Figure 1 is a picture of an orbifold of genus 3 with
three cone points of orders 2, 5, and 7.

The fundamental group of an orbifold is, by definition, the group of deck transfor-
mations of the universal covering orbifold. That such an orbifold exists is a theorem
which we will not prove, because in our case, the orbifolds are good, namely, they
have a manifold as a (branched) orbifold cover. In fact, almost all of our examples
are hyperbolic, namely their universal covering is H2 and πorb1 is a discrete subgroup
of PSL(2,R). Thus, we take as πorb1 (X) the group of deck transformations of the
universal branched cover. The orbifold fundamental group can be computed in terms
of curves on X. For consider a closed curve x going once around a cone point c ∈ Xof
order a.

Figure 2: The curve x lifted to x̃.

Because c has order a, a neighborhood of c has an l.u.s. {D̃2,Za, φ}. Lifting x to
the path x̃ in D̃2. we see that xa lifts to a closed path in D̃2, which is contractible.

Thus we have generators xi of order ai for each cone point ci ∈ X. We also have
the standard generatos Ai, Bi coming from the g handles of X.

Then the product of the xi’s is homotopic to π which itself is homotopic to the
product of the [Ai, Bi]’s, i.e.

n∏

i=1

xi = π =
g∏

i=1

[Ai, Bi].

Thus, setting X = X(g; a1, . . . , an), we get the group presentation

πorb1 (X) = 〈A1, B1, . . . , Ag, Bg, x1, . . . , xn | x
ai
i = 1 and

n∏

i=1

xi =
g∏

i=1

[Ai, Bi]〉.
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Figure 3: The generators for πorb1 .

We shall often use the following smoothing procedure, which replaces an orbifold
X with its underlying Riemann surface Xs. To do this, choose a collection of non-
intersecting neighborhoods D2

i of the cone points ci ∈ X. Dropping the subscripts,
for c ∈ D2 ⊂ X we have an l.u.s. of the form {D̃2,Za, φ}. Let c̃ = φ−1(c). We see
that the action of Za is free on the punctured disk D̃2 \ {c̃}. Thus, we can glue in
a deleted holomorphic disk D̂2 = (D̃2 \ {c̃})/Za, giving a holomorphic structure on
X0 = X \ {c1, . . . , cn}. We compactify this by adding in the points {p1, . . . , pn} to
obtain a smooth Riemann surface which we denote by Xs.

In § 4 we introduce a process of smoothing on the level of bundles. This replaces
an orbifold bundle over X with a bundle over Xs with some additional data. Briefly,
an orbifold bundle is locally a Γ-equivariant bundle.

Definition 2.2 A complex orbifold bundle is a continuous map E
θ
→ X between

orbifolds such that for any x ∈ X, there is an open set U containing x with an l.u.s.
{Ũ ,Γ, φ} and a compatible l.u.s. for EU = θ−1(U) of the form {ẼU ,Γ, φ′} where

1. ẼU = Ũ ×Cn

2. the Γ action on ẼU is given by a representation ρ : Γ→ GL(n,C).

3. θ is covered by θ̃ : ẼU → Ũ which is projection onto the first factor.

Remark : The action of Γ on ẼU = Ũ × Cn is the diagonal action. One does not
need to assume, as we have done, that the bundle is proper, i.e. that the finite groups
for the l.u.s. of Ũ and ẼU coincide, a surjection would suffice.

For us, an orbifold bundle E → X consists of an honest bundle E0 → X0 along
with “equivariant trivializations” over each cone point c ∈ X. That is, for c ∈ D2,
we have ẼD2 ≈ D̃2 × Cn with an action of Za given by a representation ρ : Za →
GL(n,C). Such representations are determined by their characters.

In what follows, we use freely the many results of differential geometry for orb-
ifolds. Namely, a version of the Atiyah-Singer index theorem holds (see [10]), and the
Hodge decomposition theorem holds (see [2]). Of course, to make any sense of this,
we need definitions of the following differential geometric gadgets.

Suppose E → X is an orbifold bundle with compatible l.u.s.’s {Ũ ,Γ, φ} for U ⊂ X
and {ẼU ,Γ, φ′} for EU ⊂ E. Then a section s : X → E is an orbifold section if s
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descends from a Γ-equivariant C∞ section s̃ : Ũ → ẼU . Since an orbifoldX has natural
tangent bundle TX and cotangent bundle T ∗X, we can construct the associated tensor
bundles. Let TXc = TX ⊗R C and T ∗Xc = T ∗X ⊗R C be the complexified tangent
and cotangent bundles. We use

∧k T ∗Xc to denote the bundle of complex alternating
k-tensors and Ωk(X) the orbifold sections of

∧k T ∗Xc. Notice that Ω0(X) is just the
smooth maps from X into C, namely C∞(X). Then the exterior derivative extends
by complex linearity to give

d : Ωk(X)→ Ωk+1(X).

For the orbifold bundle E → X, we denote by Ωk(E) the orbifold sections of the
bundle E ⊗

∧k T ∗Xc. Then a connection on E is a C linear map

∇ : Ω0(E)→ Ω1(E)

satisfying ∇(fs) = (df)s+ f(∇s) for f ∈ Ω0(X) and s ∈ Ω0(E).

Thus, ∇ has a description locally as a Γ-invariant connection ∇̃ in the Γ-bundle
ẼU → Ũ . With a connection ∇, we get the induced covariant derivative

d∇ : Ωk(E)→ Ωk+1(E).

A hermitian metric h is a Γ-invariant hermitian metric h̃ in ẼU → Ũ . We call
a bundle E → X with a hermitian metric a hermitian bundle. Given a hermitian
bundle E → X, the connection ∇ is hermitian if it satisfies

d(s1, s2) = (∇s1, s2) + (s1,∇s2),

for si ∈ Ω0(E), where we have written (·, ·) for the metric.
Using the complex structure on X, we decompose the k-forms into

Ωk(X) =
⊕

p+q=k

Ωp,q(X).

The holomorphic structure on X gives the Dolbeault operator

∂̄ : Ωp,q(X)→ Ωp,q+1(X)

and the exterior derivative decomposes into d = ∂ + ∂̄. Likewise, we decompose the
bundle-valued forms into (p,q) components by

Ωk(E) =
⊕

p+q=k

Ωp,q(E).

A hermitian metric h is a Γ-invariant hermitian metric h̃ in ẼU → Ũ . We call
a bundle E → X with a hermitian metric a hermitian bundle. Given a hermitian
bundle E → X, the connection ∇ is hermitian if it satisfies

d(s1, s2) = (∇s1, s2) + (s1,∇s2),
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for si ∈ Ω0(E), where we have written (·, ·) for the metric.
Using the complex structure on X, we decompose the k-forms into

Ωk(X) =
⊕

p+q=k

Ωp,q(X).

The holomorphic structure on X gives the Dolbeault operator

∂̄ : Ωp,q(X)→ Ωp,q+1(X)

and the exterior derivative decomposes into d = ∂ + ∂̄. Likewise, we decompose the
bundle-valued forms into (p,q) components by

Ωk(E) =
⊕

p+q=k

Ωp,q(E).

Then a holomorphic structure for E is a map

d′′ : Ω0(E)→ Ω0,1(E) satisfying

d′′(fs) = (∂̄f)s+ f(d′′s) for f ∈ Ω0(X) and s ∈ Ω0(E).

Given the connection ∇, we can decompose it

d∇ = d′∇ + d′′∇

where d′∇ is the (1,0)-component and d′′∇ the (0,1)-component of d∇. We say a con-
nection is compatible with the holomorphic structure d′′ provided

d′′∇ = d′′.

Because X has dimension 2, any connection determines a holomorphic structure (the
integrability condition is just d′′∇◦d

′′
∇ = 0). Likewise, given a hermitian bundle E with

holomorphic structure, then there exists a unique hermitian connection compatible
with the holomorphic structure.

The argument in § 5 minimizes the trace norm of a connection in a holomorphic
bundle. We shall need the following description of the induced connections on sub-
and quotient bundles. The underlying principle is that while exact sequences of C∞

bundles always split, the same is not true of holomorphic bundles. The obstruction
to their splitting is measured by an extension class, with representative the second
fundamental form which we describe now.

Suppose 0→ P → E → Q→ 0 is a short exact sequence of holomorphic orbifold
bundles. Then a hermitian metric on E determines a C∞ splitting E = P ⊕ Q. Let

πP and πQ be the projections E
πP→ P and E

πQ
→ Q. The metric defines hermitian

metrics on P and Q by restriction. This, together with the holomorphic structures,
determine the connections A,AP , and AQ on the bundles E, P, and Q respectively.
For s ∈ Ω0(P ), we have AP (s) = πP (A(s)). Likewise, for s ∈ Ω0(Q), we have
AQ(s) = πQ(A(s)). This follows by uniqueness of the metric connections, because one
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can check that πP ◦A and πQ◦A satisfy the requirements for being metric connections
on P and Q. For s ∈ Ω0(P ), consider the difference

α(s) = A(s)− AP (s) ∈ Ω1(Q).

If f ∈ Ω0(X), then α(fs) = fα(s), thus α is linear over Ω0(X) and can be represented
by a 1-form α ∈ Ω1(P ∗⊗Q). In fact, if s is a holomorphic section of P, αs ∈ Ω1,0(Q),
thus α ∈ Ω1,0(P ∗ ⊗Q). Similarly, if s ∈ Ω0(Q), then βs = A(s)− AQ(s) ∈ Ω1(P ) for
β ∈ Ω0,1(Q∗ ⊗ P ). In fact, β is the adjoint of −α. To see this, take s1 ∈ Ω0(P ) and
s2 ∈ Ω0(Q), then in terms of the metric, we have

0 = (s1, s2)

= d(s1, s2)

= (A(s1), s2) + (s1, A(s2))

= (AP (s1) + αs1, s2) + (s1, AQ(s2) + βs2)

= (αs1, s2) + (s1, βs2).

Because the curvature of a metric connection is a (1,1)-form, we see that ∂̄β = 0.
Thus, β represents a homology class in H0,1(Q∗ ⊗ P ). The connection A has matrix
description

A =

(
AP β
−β∗ AQ

)
.

Furthermore, β = 0 ⇔ A preserves the splitting, i.e. the splitting is actually a
splitting of holomorphic bundles. We call β the second fundamental form and its
homology class [β] the extension class. If [β] = 0, then for some choice of metric, the
splitting E = P ⊕Q is holomorphic.

3 Parabolic Bundles

In this section, we define the notion of a parabolic bundle over a Riemann surface
X. A parabolic bundle E is just a holomorphic bundle over X with the additional
structure of weighted flags (not necessarily full) in the fibers Ep over a (finite) set
of points p ∈ X. We shall see in §4 that holomorphic orbifold bundles really are
parabolic bundles in an explicite way. Before we proceed, we point out that already
at least two excellent references exist for this material (see [14] or [18]).

Definition 3.1 Given a compact Riemann surface X with a finite set of points
{pj}n1 ⊂ X (called parabolic points), a parabolic bundle over (X, {pj}) is a holo-
morphic bundle E over X with parabolic structure, i.e. for each parabolic point
p ∈ {pj}n1 , we have

1. Ep = Fp,1 ⊃ Fp,2 ⊃ . . . ⊃ Fp,rp ⊃ 0, a descending flag and

2. 0 ≤ ap,1 < ap,2 < . . . < ap,rp < 1 associated weights.

The multiplicity of the weight ap,i is mp,i = dim(Fp,i)− dim(Fp,i+1).
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For the purpose of clarity, we shall write “E is a parabolic bundle over X”, when the
parabolic points in X and the parabolic structure on E are understood.

Definition 3.2 We define the parabolic degree of a parabolic bundle E by the formula

pardeg(E) = deg(E) +
∑

p∈{pj}

rp∑

i=1

mp,iap,i

and the parabolic slope by

µ(E) =
pardeg(E)

rank(E)
.

Definition 3.3 Given two parabolic bundles E 1 and E2 over X, a parabolic mor-
phism is a map ψ : E1 → E2 of holomorphic bundles which respects the parabolic
structures. I.e. for each parabolic point p with the parabolic structures on E k at p for
k = 1, 2 given by

Ekp = F k
1 ⊃ F k

2 ⊃ . . . ⊃ F k
rk
⊃ 0

0 ≤ ak1 < ak2 < . . . < akrk < 1,

we require that ψp satisfies

a1
i > a2

j ⇒ ψp(F
1
i ) ⊆ F 2

j+1. (1)

We use the notation ParHom(E1, E2) for the set of parabolic morphisms of two bun-
dles. A bundle isomorphism ψ is a parabolic isomorphism if both ψ and ψ−1 are
parabolic maps. We use ParAut(E) to denote the set of parabolic automorphisms of
a bundle.

Remark : We can replace condition (1) by the following equivalent condition on ψp.
Given the weight a1

i , let a2
j be the smallest weight such that a1

i ≤ a2
j , then we require

ψp(F
1
i ) ⊆ F 2

j . (2)

If there is no such a2
j , then we demand that ψp(F

1
i ) = 0. Because a1

i > a2
j−1, we see

that conditions (1) and (2) are equivalent.

Remark : Given the parabolic bundle E, consider the group of parabolic bundle
automorphisms ψ : E → E lying over the identity map of X, denoted by ParAut(E).
Then since ψ is a parabolic map, we must have ψp(Fp,i) = Fp,i. Thus ParAut(E) is
independent of the weights (i.e. it depends only on the quasi-parabolic structure of
E, namely the unweighted flag structure).

Lemma 3.4 If E1
ψ
→ E2

φ
→ E3 is a sequence of parabolic morphisms, then φ ◦ ψ is a

parabolic map.
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Proof : Suppose p ∈ X is a parabolic point. We use the notation {F ı
j , a

ı
j} for the

weighted flag in E ı at p for ı = 1, 2, 3. Given the weight a1
i , let a2

j be the smallest
weight with a1

i ≤ a2
j . Then by condition (2), ψp(F

1
i ) ⊆ F 2

j . Also, if a3
k is the smallest

weight with a2
j ≤ a3

k, then (again by condition (2)) φp(F
2
j ) ⊆ F 3

k . Thus we see that
(φ ◦ ψ)p(F

1
i ) ⊆ F 3

k . On the other hand, let a3
k′ be the smallest weight with a1

i ≤ a3
k′.

Since a1
i ≤ a3

k, we see that a3
k′ ≤ a3

k. Thus F 3
k ⊆ F 3

k′ ⇒ (φ ◦ ψ)p(F
1
i ) ⊆ F 3

k′ . A final
application of condition (2) shows φ ◦ ψ is parabolic.

Given a short exact sequence of holomorphic bundles over X

0→ E1
ı
→ E2

π
→ E3 → 0,

then a parabolic structure on E2 determines a unique parabolic structure on E1 and E3

as we shall explain in short order. We first remark that the converse is true (namely
that parabolic structures on E1 and E3 determine a parabolic structure on E2). The
interested reader is referred to page 68 of [18].

Suppose we have a parabolic structure on E 2. Then at each parabolic point p ∈ X,
we have the weighted flag

E2p = F 2
1 ⊃ F 2

2 ⊃ . . . ⊃ F 2
r2
⊃ 0

0 ≤ a2
1 < a2

2 < . . . < a2
r2 < 1.

We define the parabolic structure on E1 first. Let Hi = ı−1(F 2
i ) (think of this as

E1 ∩ F
2
i ). We get a flag from the non-increasing sequence of subspaces

H1 ⊇ H2 ⊇ · · · ⊇ Hr2

by removing those terms for which the inclusion is not proper. The easiest way to do
this is to choose a subsequence {i1, . . . , ir1} ⊂ {1, . . . , r2} so that

H1 = · · · = Hi1 ⊃ Hi1+1 = · · · = Hi2 ⊃ Hi2+1 = · · · = Hir1
.

Set F 1
j = Hij and a1

j = a2
ij

for j = 1, . . . , r1. This gives the following flag for E1p

E1p = F 1
1 ⊃ F 1

2 ⊃ . . . ⊃ F 1
r1
⊃ 0

0 ≤ a1
1 < a1

2 < . . . < a1
r1
< 1.

To define a parabolic structure on E3, set Hi = π(F 2
i ) and use the same technique

to get a flag from H1 ⊇ H2 ⊇ · · · ⊇ Hr2, i.e. choose a subsequence {i1, . . . , ir3} ⊂
{1, . . . , r2}, and set F 3

j = Hij and a3
j = a2

ij
for j = 1, . . . , r3. This gives the weighted

flag for E3p.

Remark : Notice that the weights are assigned to the E 1 and E3 by forcing

1. a1
i = a2

j where j = greatest integer with ı(F 1
i ) ⊆ F 2

j

2. a3
k = a2

j where j = greatest integer with π(F 2
j ) ⊆ F 3

k

11



If we give E1 and E3 these canonical parabolic structures, ı and π are parabolic mor-
phisms.

We call E1 with this canonical parabolic structure, a parabolic subbundle of
E2. Likewise, we call E3 a parabolic quotient.
Warning : The following (seemingly innocent) statements are false.
(1) A parabolic isomorphism is an isomorphism that is a parabolic map.
(2) A parabolic subbundle is given by an injection that is a parabolic map.
(3) A parabolic quotient is given by a surjection that is a parabolic map.
The trivial flag Ep ⊂ 0 with weight a1 = 0 provides an easy counterexample to (1).
For (2) and (3), notice that the canonical procedure specifies exactly what the weights
of the flags in a subbundle and quotient must be. With this in mind, we define

Definition 3.5 A short exact sequence of parabolic bundles is a short exact sequence
of bundles

0→ E1 → E2 → E3 → 0,

where E1 is a parabolic subbundle of E2 and E3 is a parabolic quotient.

Lemma 3.6 Suppose P is a parabolic bundle over X and

0→ E1 → E2 → E3 → 0,

is a short exact sequence of parabolic bundles over X. Then

1. ψ : P → E1 parabolic ⇔ ı ◦ ψ : P → E2 parabolic

2. φ : E3 → P parabolic ⇔ φ ◦ π : E2 → P parabolic

3. pardeg(E1) + pardeg(E3) = pardeg(E2)

Proof : Lemma 3.4 and the observation that ı and π are parabolic proves (⇒) for
both (1) and (2). Choose p parabolic. We will use the following notation for the flags
of these bundles at p. Let {F Pi , a

P
i } be the weighted flag of P at p and {F ı

j , a
ı
j} be

the weighted flag of E ı for ı = 1, 2, 3.
(1) We must show that if aPi > a1

j , then ψ(FPi ) ⊆ F 1
j+1. But since E1 is a parabolic

subbundle, we have F 2
k , a

2
k with F 1

j = ı−1(F 2
k ) and a1

j = a2
k. Moreover k is the largest

integer with this property, i.e. F 1
j 6= ı−1(F 2

k+1), in fact F 1
j+1 = ı−1(F 2

k+1). Since ı ◦ ψ
is parabolic, (ı ◦ ψ)p(F

P
i ) ⊆ F 2

k+1. Thus ψp(F
P
i ) ⊆ ı−1(F 2

k+1).
(2) For this we must show that if a3

j > aPk , then φ(F 3
j ) ⊆ FPk+1. Because E3 is a

parabolic quotient, F 3
j = π(F 2

i ) and a3
j = a2

i . Since φ ◦ π is parabolic, (φ ◦ π)p(F
2
i ) ⊆

FPk+1. The result (2) now follows.
(3) Clearly deg(E1) + deg(E3) = deg(E2). But in our description of the canonical
procedure it is evident that the sets of weights of E 1 and of E3 form a partition of the
set of weights of E2 (taken with multiplicity). Thus

∑

i

n1
i a

1
i +

∑

k

n3
ka

3
k =

∑

j

n2
ja

2
j

12



where nıl is the multiplicity of the weight aıl in F ı
l for ı = 1, 2, 3.

By §4 of [15], any non-zero map α : E → F of holomorphic bundles has a canonical
factorization

0→ P → E
π
→ Q → 0

↓β

0←N ← F
ı
← M ← 0

where α = ı ◦β ◦π and β has maximal rank. In particular, rank(Q) = rank(M) = n.
Maximal rank means that ∧n(β) : ∧n(Q)→ ∧n(M) is not the zero map. If ∧n(β) is
nowhere zero, β is said to be of full rank and then β is seen to be isomorphism. In
any case, it follows that deg(Q) ≤ deg(M) with equality ⇔ β is an isomorphism.

We are interested in the analogous statement for parabolic bundles. Suppose E and
F are parabolic bundles and that α is a parabolic map. ThenM, being a subbundle
of F , and Q, a quotient of E, inherit canonical parabolic structures. By Lemma 3.6,
β is a parabolic map. The next lemma shows that pardeg(Q) ≤ pardeg(M).

Lemma 3.7 If β : E1 → E2 is a maximal rank, parabolic map between parabolic
bundles. Then pardeg(E1) ≤ pardeg(E2).

Proof : We first show how the result follows if β has full rank, and then we address
the more general case.

Consider a parabolic point p ∈ X. Since β has full rank, β is an isomorphism. In
particular, deg(E1) = deg(E2). Writing out the two weighted flags

E1p = F 1
1 ⊃ F 1

2 ⊃ . . . ⊃ F 1
r ⊃ 0

0 ≤ a1 < a2 < . . . < ar < 1

E2p = F 2
1 ⊃ F 2

2 ⊃ . . . ⊃ F 2
s ⊃ 0

0 ≤ b1 < b2 < . . . < bs < 1

with multiplicities m1, . . . , mr and n1, . . . , ns, respectively, we see that the result will
follow if we show that, for each parabolic point, we have the inequality

s∑

i=1

nibi ≥
r∑

i=1

miai.

In order to prove this, we write out each sum and claim

b1+
n1
· · · +b1 + · · ·+ bs+

ns
· · · +bs ≥ a1+

m1
· · · +a1 + · · ·+ ar+

mr
· · · +ar.

There are N = dim(E1p) = dim(E2p) terms in each expression, so we prove the claim
by simply showing that the ith term on the left (bki

) is greater than or equal to the
ith term on the right (aji), where j : {1, . . . , N} → {1, . . . , r} and k : {1, . . . , N} →
{1, . . . , s} are the choice functions.
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Suppose not, namely that aji > bki
for some i. Since β is parabolic, it follows

that β(F 1
ji
) ⊆ F 2

ki+1. Further, since βp is an isomorphism, rankβ(F 1
ji
) = rank(F 1

ji
).

But rank(F 1
ji
) ≥ N − i + 1 and rank(F 2

ki+1) < N − i + 1, which gives the desired
contradiction.

Now we prove the propostion in the general case (β is maximal rank). This means
that for generic points q ∈ X, βq is an isomorphism. The problem : there is no reason
parabolic points must be generic. Call nongeneric points singular. Because X is a
compact Riemann surface, there is a finite number of singular points {qi}. Further,
we have an exact sequence of sheaves

0→ E1
β
→ E2 → S → 0,

where S is a sum of skyscraper sheaves with support on {qi}. We are tempted to
call S a skyline sheaf! In any case, deg(S) = deg(E 2) − deg(E1) by the short exact
sequence. For each qi, let γi be the amount which β drops rank at qi. More precisely,

γi
def
= codim(β(E1qi)) in E2p. Since S is a skyline sheaf, deg(S) =

∑
i γi. Since the

previous argument will apply to the generic parabolic points, it suffices to show that,
for any singular parabolic point p with γ = the amount that β drops rank at p, then

s∑

i=1

nibi + γ ≥
r∑

i=1

miai (3)

where we use the same notation for the multiplicities and weights as before.
To prove (3), we note that because each ai < 1, we have

γ > aj(N−γ+1)
+ · · ·+ ajN .

Here, as before, aji means the ith term in the expanded sum (j is a choice function).
Writing out the remaining terms in each sum, we claim

b1+
n1
· · · +b1 + · · ·+ bs+

ns
· · · +bs ≥ a1 + · · ·+ aj(N−γ)

. (4)

There are N terms on the left of (4) and N − γ terms on the right. Comparing the
(γ + i)th term on the left (bk(γ+i)

) with the ith term on the right (aji), we claim that

bk(γ+i)
≥ aji. For otherwise aji > bk(γ+i)

⇒ βp(F
1
ji
) ⊆ F 2

k(γ+i)+1 because β is parabolic.

But this forces β to drop rank more than γ at p, a contradiction.

In summary,

Proposition 3.8 Any nonzero parabolic map α : E → F has the following canonical
factorization

0→ P → E
π
→ Q → 0

↓β

0←N ← F
ı
← M ← 0

where

14



1. the two rows are short exact sequences of parabolic bundles,

2. β is a parabolic map and satisfies α = ı ◦ β ◦ π,

3. rank(Q) = rank(M),

4. deg(Q) ≤ deg(M) with equality ⇔ β is a bundle isomorphism.

5. pardeg(Q) ≤ pardeg(M) with equality here and in (4) ⇔ β is a parabolic
isomorphism.

We close this section with the following

Definition 3.9 Suppose E is a parabolic bundle. Then

1. E is parabolic stable if µ(F) < µ(E) for all proper subbundles F .

2. E is parabolic semistable if µ(F) ≤ µ(E) for all proper subbundles F .

4 Push Forward Construction

Suppose X is a holomorphic 2-dimensional orbifold and E is a Cn holomorphic orb-
ifold bundle over X. As in section 2, we construct Xs, the smoothing of X, with
holomorphic structure. Further if {c1, c2, . . . , cN} is the set of cone points of X, their
image under our topological identification X ≈ Xs is a set of distinguished points
{p1, p2, . . . , pN} which we call parabolic points. We will show how to use the holo-
morphic structure of E to obtain a holomorphic bundle over Xs with the additional
data of partial flags over each parabolic points pi.

Proposition 4.1 Given a holomorphic orbifold bundle E over X, there is a natural
parabolic bundle E over Xs. Here, by natural, we mean that given a holomorphic map
of orbifold bundles φ : E1 → E2, there is an associated parabolic morphism of the
parabolic bundles φ̃ : E1 → E2 (see Proposition 4.5).

Proof : We construct the sheaf of sections of E . It will follow from our description
that this sheaf is actually locally free and hence describes a vector bundle. First con-
sider the situation over a nonsingular neighborhood U of X. Then EU is a (regular)
holomorphic bundle over U. Thus, sections of EU are in an obvious way sections of
EU . Of course we are using the fact that U is simultaneously a smooth neighborhood
for both X and Xs.

Next, consider the situation over a cone point ci of X. Choose a neighborhood
U ≈ Ũ/ΓU of ci not containing any other cone points. We may assume that E has
the trivialization EU ≈ ẼU/ΓU where ẼU ≈ Ũ ×Cn. Sections of EU over U are just
ΓU -invariant sections of ẼU over Ũ . Taking holomorphic coordinates Ũ ≈ D2 ≈ {z ∈
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C |z| ≤ 1} and ẼU ≈ D2×Cn, then local sections of E are holomorphic, ΓU -invariant
maps

s : D2 → D2 ×Cn

z 7→ (z, f(z))

Because the action of ΓU is necessarily holomorphic, we know ΓU is cyclic. We can
choose a generator σ for ΓU ∼= Zm so that

σ : D2 → D2

z 7→ ωz

where ω = e2πi/m. Since the action of Zm on the bundle is the diagonal action, σ acts
on Cn by a matrix ρ(σ) By choosing a basis {e1, . . . , en} of eigenvectors for ρ(σ), we
see

ρ(σ) =




ωk1 0
. . .

0 ωkn




Because s is ΓU -invariant, s satisfies σ(s) := σsσ−1 = s.

But σ(sσ−1(z)) = σ(s(ωz)) = σ(ωz, f(ωz)) = (z, ρ(σ)f(ωz)).

So we see that since s is ΓU -invariant

ρ(σ)f(ωz) = f(z) (5)

Writing f(z) = f1(z)e1 + . . .+ fn(z)en in terms of the basis {e1, . . . , en}, we see that

ρ(σ)f(ωz) = ρ(σ)(f1(ωz)e1, . . . , fn(ωz)en)

= ωk1f1(ωz)e1 + . . .+ ωknfn(ωz)en.

In these coordinates for ẼU , equation (5) becomes

ωkifi(ωz) = fi(z) for i = 1, . . . , n (6)

Now we use the holomorphicity of s. This implies that each fi is a holomorphic map,
i.e.

fi(z) =
∞∑

j=0

ajz
j .

Taking jth derivatives of both sides in equation 6 and evaluationg at z = 0, it follows
that aj = 0 unless j ≡ ki(mod m). Thus

fi = zki

∞∑

j=0

bj(z
m)j = zki f̂i(z

m),

where f̂i(z
m) is a holomorphic function on U ≈ Ũ/ΓU ≈ D2/Zm. Thus

f(z) = zk1 f̂1(z
m)e1 + . . .+ zkn f̂n(z

m)en
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and
f̂(zm) = f̂1(z

m)e1 + . . .+ f̂n(z
m)en

are local holomorphic sections. The sheaf of sections is, by construction, locally free,
and we call the associated bundle E the push forward bundle and f̂ the push forward
section.

This bundle has additional structure of a descending (partial) flag at the parabolic
point p ∈ U. Order the basis {e1, . . . , en} so that

ρ(σ) =




ωk1 0
. . .

0 ωkn


 satisfies 0 ≤ k1 ≤ k2 ≤ . . . ≤ kn < m.

By reindexing, we can write

ρ(σ) =




ωk
′
1 0

. . .

ωk
′
1

. . .

ωk
′
r

. . .

0 ωk
′
r




where 0 ≤ k′1 < k′2 < . . . < k′r < m

and are repeated according to their multiplicities n1, . . . , nr. Let Wi be the ωk
′
i-

eigenspace of ρ(σ) and define

Fp,i = Wi ⊕ · · · ⊕Wr with associated weight ai = k′i/m for i = 1, . . . , r.

Then Ep = F1 ⊃ F2 ⊃ . . . ⊃ Fr ⊃ 0 is a flag

with weights 0 ≤ a1 < a2 < . . . < ar < 1

We will see from Proposition 4.5 that this correspondence is natural and from its
corollary (Corollary 4.6) that the parabolic bundle is canonical. This ends the proof
of the proposition.

Remark : Although there is no canonical choice for the basis {e1, . . . , en}, the
eigenspaces Wi are canonical. And so the flag F1 ⊃ F2 ⊃ . . . ⊃ Fr ⊃ 0 is canoni-
cal.

Definition 4.2 Given a flag F1 ⊃ F2 ⊃ . . . ⊃ Fr ⊃ 0, whose successive quotients Fi/Fi+1

are of dimension ni, then a basis {e1, . . . , en} for F1 is a flag basis if

{en1+1, . . . , en} is a basis for F2,
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{en1+n2+1, . . . , en} is a basis for F3,

...

{en1+...+nr−1+1, . . . , en} is a basis for Fr.

Remark : Occasionally it will be convenient to list the weights repeated according
to their multiplicities. Then we will write

0 ≤ α1 ≤ α2 ≤ . . . ≤ αn < 1

where the αi are the aj repeated dim(Fj/Fj+1) times. For example, in the construc-
tion above, it is clear that αi = ki/m.

From a parabolic bundle E over Xs, we construct the pull back bundle E over
X, an orbifold bundle which pushes forward to E. Roughly, we use the flag data
to construct local representations of cyclic groups on Cn. Notice that any parabolic
bundle which is a push forward has rational weights of the form k/m where m is the
order of the cone point in X. Thus, not every parabolic bundle can be pulled back to

an orbifold bundle. We begin with a definition. Suppose Xs
ψ
→ X is our topological

identification, with parabolic points pi ∈ Xs corresponding to cone points ci ∈ X, i.e.
ψ(pi) = ci.

Definition 4.3 Given a parabolic bundle E over Xs. We say a parabolic bundle E
over Xs is commensurate with X if the weights of the flag over each parabolic point
pi are rational numbers of the form k/mi where mi is the order of the cone point
ci ∈ X.

Proposition 4.4 If E is commensurate with X, then there exists a holomorphic orb-
ifold bundle E over X so that E is the push forward of E.

Proof : For each parabolic point pi, choose small 2-disk neighborhoods Di of pi so
that Di ∩Dj = ∅. Let Xs0 = Xs \ ∪iDi. Let Ui = ψ(Di) be the corresponding neigh-

borhoods for each cone point ci ∈ X. We have Ui ≈ D̃2
i/Zmi

. Setting X0 = X \∪iUi,

we have a diffeomorphism Xs0

ψ0
≈ X0. We define the bundle over the nonsingular part

of X by E0 = (ψ0)
∗(E0).

Now we need to define E over each Ui. We choose a particular Ui and drop the
i-subscripts in what follows. Let {e1, . . . , en} be a flag basis for the flag

Ep = F1 ⊃ F2 ⊃ . . . ⊃ Fr ⊃ 0

0 ≤ a1 < a2 < . . . < ar < 1

and 0 ≤ α1 ≤ α2 ≤ . . . ≤ αn < 1 be the weights repeated according to their multiplic-
ities. We may assume E ≈ D2 ×Cn where {e1, . . . , en} is our basis for Cn. Since we
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assumed E is commensurate with X, there exists ki ∈ Z with 0 ≤ ki < m so that
αi = ki/m for all i. We define a function

∆ : C∗ → GL(n,C) by ∆(z) =




zk1 0
. . .

0 zkn




Notice that ∆ is independent of choice of flag basis. Let ω = e2πi/m and choose a
generator σ ∈ Zm so that

σ : D̃2 → D̃2

z 7→ ωz

Define the action of Zm on D̃2 ×Cn by σ(z, v) = (wz,∆(ω)v) and set

ẼU ≈ D̃2 ×Cn.

Now we check that on the intersection Ui ∩X0 = S1, there is an equivariant patching
map. Clearly, since S̃1 = ∂D̃2 is the Zm-cover of S1, the action is free. We have to
patch together the two Zm actions on the bundle S̃1×Cn, one which is trivial on the
second factor, the other nontrivial (twist by ∆(ω)). Let σ0 denote the first action and
σ1 the second. We need to construct a map F so that

S̃1 ×Cn σ0−→ S̃1 ×Cn

↓F ↓F

S̃1 ×Cn σ1−→ S̃1 ×Cn

commutes. Defining F by

F : S̃1 ×Cn → S̃1 ×Cn

(z, v) 7→ (z,∆(z)v)

we check that it is our required equivariant patching map.

Suppose E1 and E2 are holomorphic orbifold bundles over X. Given a holomorphic
orbifold bundle morphism

E1
φ
−→ E2

↘↙
X

we show how to construct the push forward morphism of parabolic bundles

E1
φ̂
−→ E2

↘↙
Xs

We outline the idea informally. Suppose s1 is a local holomorphic section of E1U , and
let s2 = φ(s1) be the local section of E2U . Then we have the push forward sections ŝ1
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and ŝ2 of E1 and E2. We define φ̂(ŝ1) = ŝ2. Of course, to see that this is well-defined,
we need to know that every local section ŝ1 of E1 is the push forward of a canonical
section s1 of E1. This is the content of proposition 4.4. We are interested in proving
a stronger result, namely that φ̂ is a parabolic morphism (recall definition 3.3).

We formulate this statement in terms of unitary connections. Suppose E1, E2

are unitary orbifold bundles over X, and A1, A2 are unitary orbifold connections in
E1, E2 respectively. We push forward the holomorphic structures d′′A1

, d′′A2
, to obtain

parabolic bundles E1, E2 over Xs. Let d′′12 be the (0,1)-component of the connection
A∗1 ⊗ 1 + 1⊗ A2 on E∗1 ⊗ E2. So

d′′12 : Ω0(E∗1 ⊗ E2)→ Ω0,1(E∗1 ⊗ E2)

and d′′12(φ) = 0⇔ φ is a holomorphic orbifold morphism. Then

Proposition 4.5 Given φ : E1 → E2, then d′′12(φ) = 0 ⇔ φ̂ : E1 → E2 is a parabolic
morphism.

Proof : Let p ∈ Xs be a parabolic point and

E1p = F 1
1 ⊃ F 1

2 ⊃ . . . ⊃ F 1
r1
⊃ 0

0 ≤ a1
1 < a1

2 < . . . < a1
r1 < 1

E2p = F 2
1 ⊃ F 2

2 ⊃ . . . ⊃ F 2
r2
⊃ 0

0 ≤ a2
1 < a2

2 < . . . < a2
r2
< 1

be the weighted flags for E1 and E2.We must show that φ̂p satisfies condition

φ̂p(F
1
i ) ⊂ F 2

j+1 whenever a1
i > a2

j .

Equivalently, writing φ̂p = φ̂ij(p) in terms of flag bases

{e11, . . . , e
1
n1
} for E1p and {e2

1, . . . , e
2
n2
} for E2p,

this requires
φ̂ij(p) = 0 whenever α1

i > α2
j (7)

where
0 ≤ α1

1 ≤ α1
2 ≤ . . . ≤ α1

n1
< 1 and 0 ≤ α2

1 ≤ α2
2 ≤ . . . ≤ α2

n2
< 1

are the weights repeated according to their multiplicities.

Let c ∈ X be the cone point associated to p, and suppose c ∈ U ≈ Ũ/ΓU over
which the bundles E1 and E2 have trivializations

E1U ≈ Ẽ1U/ΓU where Ẽ1U ≈ Ũ ×Cn1
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and
E2U ≈ Ẽ2U/ΓU where Ẽ2U ≈ Ũ ×Cn2 .

Further, we may assume Ũ ≈ D2 and ΓU ∼= Zm, where σ a generator for Zm gives
the standard elliptic action, which is just multiplication by ω = e2πi/m

σ : D2 → D2

z 7→ ωz

Let ρ1 and ρ2 be the representaions of the Zm actions on Ẽ1U ≈ Ũ × Cn1 and
Ẽ2U ≈ Ũ ×Cn2. Then

σ : Ũ ×Cn1 → Ũ ×Cn1

(z, v1) 7→ (ωz, ρ1(σ)v1)

and

σ : Ũ ×Cn2 → Ũ ×Cn2

(z, v2) 7→ (ωz, ρ2(σ)v2)

Choose bases {e1
1, . . . , e

1
n1
} for Cn1 and {e2

1, . . . , e
2
n1
} for Cn2 so that

ρ1(σ) =




ωk1 0
. . .

0 ωkn1


 where 0 ≤ k1 ≤ k2 ≤ . . . ≤ kn1 < m

and

ρ2(σ) =




ωh1 0
. . .

0 ωhn2


 where 0 ≤ h1 ≤ h2 ≤ . . . ≤ hn2 < m.

As can be seen from definition 4.2,

{e11, . . . , e
1
n1
} and {e2

1, . . . , e
2
n2
}

give flag bases for E1 and E2. A local section s1 of E1U is a ΓU -equivariant map
Ũ → Ẽ1U , which is given by a Zm-equivariant map D2 → Cn1 in these coordinates.
As in the proof of 4.1 write s1(z) =

∑
s1
i (z)e

1
i in terms of the basis {e1

1, . . . , e
1
n1
}.

Then each s1
i (z) satisfies

s1
i (z) = zki ŝ1

i (z
m)

where ŝ1
i (z

m) is the push forward section on E1. Applying the same considerations to
the local section s2 of E2U gives s2(z) =

∑
s2
j(z)e

2
j where

s2
j(z) = zhj ŝ2

j(z
m).

ŝ2
j(z

m) is the push forward section on E2. Now we write φU : Ẽ1U → Ẽ2U as a
matrix (φij). Since d′′12(φ) = 0, we know that φ is holomorphic, i.e. that φ(s1) is
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holomorphic. Thus we can apply the above considerations to s2 = φ(s1). Further, we
define φ̂ : E1 → E2 by sending the section ŝ1 to ŝ2. Writing φ̂ also as a matrix (φ̂ij),
then

∑

i

φij(z)s
1
i (z) = s2

j(z) = zhj ŝ2
j(z

m)

∑

i

φij(z)z
ki ŝ1

i (z
m) =

∑

i

zhj φ̂ij(z
m)ŝ1

i (z
m)

It follows that
φij(z) = zhj−kiφ̂ij(z

m) (8)

But since φij(z) is bounded as z → 0, we see that

φ̂ij = 0 whenever ki > hj (9)

But since α1
i = ki/m and α2

j = hj/m, clearly condition (9) is equivalent to condi-

tion (7). This proves (⇒) of the claim. To see (⇐), notice that if φ̂ is parabolic,
then we can define φ via equation (8). Thus φ will be well-defined precisely when φ̂
is parabolic. By its definition, φ is holomorphic, thus d′′12(φ) = 0. This completes the
proof.

An easy consequence of Proposition 4.5 is

Corollary 4.6 If g ∈ GC

orb(E), then ĝ ∈ ParAut(E)

Proof : Let dAAg be the orbifold connection on E∗⊗E induced by A∗ and Ag. Then
g ∈ Gorb(E)⇒ dAAg(g) = 0, and g ∈ GC

orb(E)⇒ d′′AAg(g) = 0.

5 Main Theorem

At this point we have developed the tools for orbifold and parabolic bundles necessary
for the following generalization of [4]. As the argument in this case is very similar,
we pay particular attention to those steps of the argument which are not found in [4].
We remind the reader of the definition of parabolic slope for a parabolic bundle E

µ(E) =
pardeg(E)

rank(E)
.

Recall further that E is parabolic stable if, for every proper subbundle F ⊂ E , we have

µ(F) < µ(E).

Theorem 5.1 Given an indecomposable holomorphic orbifold bundle E over X, let
E be the parabolic bundle over Xs obtained by pushing forward E, then E is parabolic
stable ⇔ ∃ unitary orbifold connection A compatible with E with constant central
curvature, i.e. ∗FA = −2πiµ · I, where µ = µ(E) and I denotes the identity matrix.
This connection is unique up to isomorphism.
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In order to prove this, we define a functional J(A) on connections A as follows. For
any n× n hermitian matrix M , let

τ(M) =
√
tr(M∗M) =

n∑

i=1

|λi|

where λi are the eigenvalues of M . We can define τ equivalently by,

τ(M) = max
{ei}

n∑

i=1

|(Mei, ei)|, where {ei} is an orthonormal basis for Cn

since this max will be obtained by a basis of eigenvectors for M. It is easy to check
that τ is a norm from this characterization. Also, we see that if M is written in

the block form M =

(
A B
B∗ D

)
, then τ(M) ≥ |tr(A)| + |tr(B)|. This follows since

∑
|(Mei, ei)| = |tr(A)|+ |tr(D)| for the standard basis. We can extend this to smooth

self-adjoint sections s ∈ Ω0(EndE) by

N(s) =
(∫

X
τ(s)2

)1/2

where orbifold integration is understood, i.e. over a neighborhood of the form U ≈ Ũ/ΓU ,
we integrate by

1

|ΓU |

∫

Ũ
τ(s̃)2.

Since N is norm equivalent to the usual L2 norm, it extends to L2 sections. If
{si ∈ L2(Ω0(EndE)} is a sequence and τ∞ = lim inf τ(si), then by Fatou’s Lemma,
we observe that ‖τ∞‖L2 ≤ lim infN(si). Define J(A) for an L2

1 connection A by

J(A) = N
(
∗FA
2πi

+ µ · I
)
.

By the previous observation J is upper-semicontinuous, i.e. if Ai → B weakly in L2
1,

then J(B) ≤ lim inf J(Ai).
Also J(A) = 0⇔ A is of the type required by the theorem. We will minimize J(A)

along a gauge orbit to obtain a connection A with J(A) = 0. The pertinent gauge
group here is the complexified gauge group GC

orb of orbifold gauge transformations
which are general linear in each fiber. These are precisely the bundle automorphisms
of E preserving its holomorphic structure. Consider a connection A, and decompose
dA into the (1, 0) and (0, 1) components

dA = d′A + d′′A.

If g ∈ GC

orb, then it acts on a connection dA by

d′g(A) = g ◦ d′A ◦ g
−1 = d′A + g(d′Ag

−1)

d′′g(A) = g∗−1 ◦ d′′A ◦ g
∗ = d′′A + g∗−1(d′′Ag

∗).
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Thus, g(A) = A+ a, where

a = gd′Ag
−1 + g∗−1d′′Ag

∗.

The curvature transforms by FA+a = FA + dAa+ a ∧ a. This gives

Fg(A) = FA+d′′A(gd′Ag
−1)+d′A(g∗−1d′′Ag

∗)+g(d′Ag
−1)g∗−1(d′′Ag

∗)+g∗−1(d′′Ag
∗)g(d′Ag

−1).

Using FA = d′Ad
′′
A + d′′Ad

′
A, we can write this more conveniently as

g−1Fg(A)g = FA + d′′A(h−1d′Ah)

= FA + h−1(d′′Ad
′
Ah− d

′′
Ahh

−1d′Ah)

where h = g∗g.
First, we need the following theorem of Uhlenbeck (adapted to orbifolds, see [5])

Proposition 5.2 Suppose Ai is a sequence of L2
1 connections with ‖FAi

‖L2 bounded.
Then ∃ a subsequence {i′} and L2

2 gauge transformations gi′ so that gi′(Ai′) converges
weakly in L2

1.

Suppose E is a holomorphic orbifold bundle and A any connection compatible with
E. Let GC

orb(A) be the gauge orbit of A in A. For any orbifold connection A′ on E
(not necessarily compatible with the holomorphic structure), let EA′ be the parabolic
bundle obtained by pushing forward E with holomorphic structure induced by A′,
namely d′′A′. With this notation, we are ready to prove the following consequence of
Proposition 5.2,

Lemma 5.3 Either inf{J(A′)|A′ ∈ GC

orb(A)} is obtained in GC

orb(A), or ∃ a unitary
connection B on E so that EA and EB are not isomorphic, but have the same rank,
degree, and parabolic degree, and satisfy

1. J(B) ≤ inf{J(A′)|A′ ∈ GC

orb(A)}

2. ParHom(EA, EB) 6= 0

Proof : Choose Ai ∈ GC

orb(A) a minimizing sequence for J. Because N is norm-
equivalent to the L2 norm, it follows that ‖FAi

‖L2 is bounded. Applying proposi-
tion 5.2 (with a mild abuse of notation), we obtain a subsequence of connections Ai

and gauge transformations gi so that gi(Ai) → B weakly in L2
1. Since J is upper-

semicontinuous, we have

J(B) ≤ lim inf J(Ai) = inf{J(A′)|A′ ∈ GC

orb(A)}.

To complete the proof, we need to show that ParHom(EA, EB) 6= 0, the conclusion
of the theorem being established if EA ≈ EB or not. Using A∗ on E∗ and B on E
we construct the connection A∗ ⊗ 1 + 1⊗ B on E∗ ⊗ E = Hom(E,E). Consider the
(0, 1)−component of this, namely

d′′AB : Ω0(Hom(E,E)) −→ Ω0,1(Hom(E,E)).
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Then by Proposition 4.5, s ∈ ker(d′′AB)⇔ ŝ ∈ ParHom(EA, EB), so we need to show

Claim: ker(d′′AB) 6= 0.
Suppose otherwise. Since d′′AB is first order elliptic, we have

‖d′′AB(s)‖L2 ≥ c‖s‖L2
1

for some c > 0, and all s.

By the Sobolev inequalities L2
1 ↪→ L4, we have ‖s‖L4 ≤ c1‖s‖L2

1
⇒

‖d′′AB(s)‖L2 ≥ c2‖s‖L4

Now Ai → B converges weakly in L2
1, and so by the Sobolev inequalities, it converges

in L4. Thus

‖d′′AB(s)‖L2 − ‖d′′AAi
(s)‖L2 ≤ ‖d′′AB(s)− d′′AAi

(s)‖L2 ≤ c3‖B − Ai‖L4‖s‖L4,

where the first estimate is just the triangle inequality, and the second is seen by
noticing that d′′AB − d

′′
AAi

is the (0, 1)−component of B − Ai. It follows that

‖d′′AAi
(s)‖L2 ≥ ‖d′′AB(s)‖L2 − c3‖B − Ai‖L4‖s‖L4

≥ (c2 − c3‖B − Ai‖L4)‖s‖L4

≥ c‖s‖L4 for some c > 0

where the last inequality follows by choosing i large. This holds for all s, contra-
dicting the fact that ker(d′′AAi

) 6= 0.
We now need two estimates (Lemmas 5.4 & 5.5) to show that if E is parabolic

stable, then the second case of Lemma 5.3 cannot hold. To this end, recall from §2
that given any short exact sequence of holomorphic orbifold bundles

0→ P → E → Q→ 0 (10)

then a hermitian structure on E determines a C∞ splitting of (10), and the second
fundamental form β ∈ Ω0,1(Q∗ ⊗ P ) is the obstruction to this splitting being holo-
morphic. In terms of a unitary connection A on E and the induced connections on
P,Q denoted by AP , AQ, we see that in this splitting, A has the form

A =

(
AP β
−β∗ AQ

)

and the curvature FA has the form

FA =

(
FP − β ∧ β∗ dβ
−dβ∗ FQ − β∗ ∧ β

)
,

where d : Ω1(P ∗ ⊗ Q) → Ω2(P ∗ ⊗ Q) is the covariant derivative of the connection
A∗P ⊗ 1+1⊗AQ. Of course we can push forward the entire sequence in (10) to obtain
a short exact sequence of parabolic bundles

0→ P → E → Q → 0. (11)
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It follows that β is the obstruction to this sequence admitting a parabolic splitting.

Remark : This notation for the second fundamental form is the adjoint of that
in [8]. The important point here is that β∗∧ β and −β ∧ β∗ are positive semidefinite
(1,1)-forms. Since ∗(dz̄ ∧ dz) = 2i = − ∗ (dz ∧ dz̄) we can normalize so that

∗tr(β ∧ β∗) = − ∗ tr(β∗∧ β) = 2πi|β|2

Lemma 5.4 Suppose E is a holomorphic orbifold bundle with parabolic push forward
F . Then if 0 → M → F → N → 0 is any short exact sequence with µ(M) ≥
µ(F) (⇒ µ(F) ≥ µ(N )), then for any unitary connection B compatible with E, we
have

J(B) ≥ rank(M)(µ(M)− µ(F)) + rank(N )(µ(F)− µ(N ))
def
= J0

with equality ⇔ the sequence splits.

Remark : Note that by hypothesis, J0 ≥ 0. We first show how this lemma proves
(⇒) of theorem 5.1. For suppose E is an indecomposable holomorphic orbifold bundle
with unitary connection A and J(A) = 0. Then ifM is a proper parabolic subbundle
of E we have µ(M) < µ(E). Otherwise, by the lemma J0 = 0 = J(A) ⇒ E decom-
poses, which is a contradiction. Thus E is stable.

Proof : Set µ = µ(F). Following the notation introduced above, for any B, we
have

FB =

(
FM − β ∧ β∗ dβ
−dβ∗ FN − β∗∧ β

)

where FM = FBM and FN = FBN . Note that BM and BN are the induced connections
on the pullbacks of M and N respectively. ¿From the properties of τ on block
matrices, it follows that

τ
(
∗FB
2πi

+ µ · IF

)
≥

∣∣∣∣∣tr
(
∗(FM − β ∧ β∗)

2πi
+ µ · IM

)∣∣∣∣∣+
∣∣∣∣∣tr
(
∗(FN − β ∧ β∗)

2πi
+ µ · IN

)∣∣∣∣∣

Thus, by Cauchy-Schwarz we see

J(B) =

(∫

X
τ
(
∗FB
2πi

+ µ · IF

)2
)1/2

≥

∣∣∣∣∣

∫

X
tr

(
∗(FM − β ∧ β∗)

2πi
+ µ · IM

)∣∣∣∣∣+
∣∣∣∣∣

∫

X
tr

(
∗(FN − β∗∧ β)

2πi
+ µ · IN

)∣∣∣∣∣

=

∣∣∣∣
∫

X
tr
(
∗FM
2πi

+ µ · IM

)
− |β|2

∣∣∣∣+
∣∣∣∣
∫

X
tr
(
∗FN
2πi

+ µ · IN

)
+ |β|2

∣∣∣∣

=

∣∣∣∣
∫

X
tr
(
∗FM
2πi

+ µ · IM

)∣∣∣∣+
∣∣∣∣
∫

X
tr
(
∗FN
2πi

+ µ · IN

)∣∣∣∣+ 2‖β‖2

= rank(M)(µ(M)− µ(F)) + rank(N )(µ(F)− µ(N )) + 2‖β‖2
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where the last two steps hold because

∫

X
tr
(
∗FM
2πi

+ µ · IM

)
= rank(M)(µ(F)− µ(M)) ≤ 0

∫

X
tr
(
∗FN
2πi

+ µ · IN

)
= rank(N )(µ(F)− µ(N )) ≥ 0

by hypothesis. Furthermore, equality above implies β = 0, which is equivalent to a
holomorphic splitting of the sequence.

For the second estimate, we again look at short exact sequences of holomorphic
orbifold bundles, except that now we assume the middle term E has parabolic stable
push forward E .

Lemma 5.5 Suppose E is a holomorphic orbifold bundle of rank n, and that its push
forward bundle E is parabolic stable. Assuming (by induction) that theorem 5.1 is
true for bundles with rank < n, then given any short exact sequence

0→ P → E → Q → 0

of parabolic bundles, then ∃ an orbifold connection A compatible with E (i.e. E ≈ EA)
so that

J(A) < rankP(µ(E)− µ(P)) + rankQ(µ(Q)− µ(E))
def
= J1.

Note: since E is parabolic stable, µ(P) < µ(E) and µ(E) < µ(Q), thus J1 is positive.

Proof : To any parabolic bundle, we have a canonical (Harder-Narasimhan-parabolic)
filtration (see [18]). Applying this to P, we get

0 ⊂ P1 ⊂ P2 ⊂ . . . ⊂ Pp = P

so that each quotientMi = Pi/Pi−1 is semistable with decreasing slopes µi = µ(Mi).
Note that µi ≤ µ1 = µ(P1) < µ(E) by stability. Now Mi is semistable, thus has a
filtration of the form

0 ⊂ (Mi)1 ⊂ (Mi)2 ⊂ . . . ⊂ (Mi)mi
= (Mi),

each of whose quotients Cij = (Mi)j/(Mi)j−1 is stable with slope µ(Cij) = µi. Al-
though this filtration is not canonical, the isomorphism class of

Gr(Mi)
def
=

mi⊕

j=1

Cij

depends only on that ofMi (see p.71 of [18] for details). Since rank(Cij) < rank(E),
we can apply the inductive hypothesis to each Cij. To facilitate our discussion, we
will adopt the following breach of ethics, namely we will say “A is a connection on
E” when we really mean that A is an orbifold connection on E whose push forward
is E , i.e. EA ≈ E . With the aforementioned amoralities, we apply theorem 5.1 to
get a connection Aij on Cij whose curvature Fij satisfies ∗Fij = −2πiµi. Since Ci1 =
(Mi)1, this gives a connection A(Mi)1 = Ai1 on (Mi)1 for each i. Furthermore,
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given connections A(Mi)j
on (Mi)j and Aij+1 on Cij+1 along with a choice of second

fundamental form βij ∈ Ω0,1(C∗ij+1 ⊗ (Mi)j) for the exact sequence

0→ (Mi)j → (Mi)j+1 → Cij+1 → 0,

these determine a connection on (Mi)j+1 by the formula

At(Mi)j+1
=

(
A(Mi)j

tβij
−tβ∗ij Aij+1

)
.

Proceeding inductively, we get connections At
i on eachMi. Since P1 =M1, this gives

a connection on P1. The same argument applied to the short exact sequences

0→ Pi → Pi+1 →Mi → 0

gives, at long last, a connection At
P on P. Then At

P → A0
P as t → 0, where A0

P is a
connection on

⊕
iGr(Mi) whose curvature satisfies ∗F 0

P = −2πiΛP . Here ΛP is the
diagonal matrix

ΛP =




µ1 0
. . .

µ1

. . .

µp
. . .

0 µp




.

where µi is repeated dim(Mi) times. Notice that by construction

tr(
∗F 0

P

2πi
+ µ(E) · IP) = tr(µ(E) · IP − ΛP)

= rank(P)µ(E)−
∑

i

pardeg(Mi)

= rank(P)µ(E)− pardeg(P)

= rank(P)(µ(E)− µ(P))

The same considerations applied to Q yield the filtration

0 ⊂ Q1 ⊂ Q2 ⊂ . . . ⊂ Qq = Q

with semistable quotients Ni = Qi/Qi−1 whose slopes λi = µ(Ni) are decreasing.
Note that λi ≥ λq > µ(E) by stability. A construction similar to that given above
builds connections At

Q on Q so that At
Q → A0

Q as t → 0, where A0
Q is a connection
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on
⊕

iGr(Ni) whose curvature satisfies ∗F 0
Q = −2πiΛQ where

ΛQ =




λ1 0
. . .

λ1

. . .

λq
. . .

0 λq




.

Again notice that

tr(
∗F 0

Q

2πi
+ µ(E) · IQ) = rank(Q)(µ(E)− µ(Q)) (12)

Using the connections At
P and AtQ constructed above, we get an operator dt on

Q∗ ⊗ P. (Actually, the breach of ethics is rather severe here, since dt is really the
covariant derivative on the orbifold bundle corresponding to the pullback of Q∗⊗P.)
For each t, we choose a harmonic (with respect to dt) representative βt of the extension
class of E. By changing the scale, we may assume ‖βt‖L2 = 1 Also,

‖βt‖L2
k+1
≤ ct(‖dtβt‖L2

k
+ ‖βt‖L2).

The ct can be uniformly bounded, since dt → d0. Thus there is a uniform bound for
‖βt‖Co. This gives the connection Ast on E

Ast =

(
AtP sβt
−sβ∗t AtQ

)

with curvature

Fst =

(
F t
P − s

2βt ∧ β∗t 0
0 F t

Q − s
2β∗t ∧ βt

)
.

Now −ΛP+µ(E)·IP has all positive eigenvalues, and so do sufficiently close operators.
For these operators τ(·) = tr(·). Furthermore, ∗tr(βt ∧ β∗t ) = −2πi|βt|2. Using this
and formula (12) we see for small s and t,

τ(
∗(F t

P − s
2βt ∧ β∗t )

2πi
+ µ(E) · IP) = tr(

∗F t
P

2πi
+ µ(E) · IP)− s2|βt|

2

= tr(
∗F 0

P

2πi
+ µ(E) · IP)− s2|βt|

2 + δ1(t)

= rank(P)(µ(E)− µ(P))− s2|βt|
2 + δ1(t)

where δ1(t)→ 0 as t→ 0.
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Similarly, −ΛQ + µ(E) · IQ has all negative eigenvalues. And so for sufficiently
close operators, τ(·) = −tr(·). Also ∗tr(β∗t ∧ βt) = 2πi|βt|2, and so by formula (12)

τ(
∗(F t

Q − s
2β∗t ∧ βt)

2πi
+ µ(E) · IQ) = −tr(

∗F t
Q

2πi
+ µ(E) · IQ)− s2|βt|

2

= −tr(
∗F 0

Q

2πi
+ µ(E) · IQ)− s2|βt|

2 + δ2(t)

= rank(Q)(µ(Q)− µ(E))− s2|βt|
2 + δ2(t)

Putting this all together, we see that for small s and t,

τ(
∗Fst
2πi

+ µ(E) · IE ) = J1 − 2s2|βt|
2 + δ(t).

It follows that

J(Ast)
2 =

∫

X
(J1 − 2s2|βt|

2 + δ(t))2

= J2
1 + 4

∫

X
s4|βt|

4 − J1s
2|βt|

2 + δ′(t)

Since we have a uniform bound on ‖βt‖Co, we can choose s small enough so that

J1s
2 = J1s

2
∫

X
|β2
t | > s4

∫

X
|βt|

4.

Then by choosing t so that δ(t) is negligible, then J(Ast) < J1 as required.
We are now ready to prove (⇐) of theorem 5.1. Suppose that E is stable and

that the theorem has been proved for bundles of lower rank. Let A′ be a unitary
connection in E. Then

Claim: inf{J(A)|A ∈ GC

orb(A
′)} is attained in GC

orb(A
′).

For if not, then by Lemma 5.3, we have a connection B and parabolic bundle F
def
= EB

with same rank, degree, parabolic structure as E so that J(B) < inf{J(A)|A ∈
GC

orb(A
′)} and ParHom(E,F) 6= 0. Choosing α 6= 0 ∈ ParHom(E ,F), by Proposi-

tion 3.8 we have the canonical factorization of α

0→ P → E
π
→ Q → 0

↓β

0←N ← F
ı
← M ← 0

where α = ı ◦ β ◦ π, rank(M) = rank(Q) and pardeg(M) ≥ pardeg(Q). Notice that

µ(M) ≥ µ(Q) > µ(E) = µ(F).

¿From Lemma 5.4 applied to the bottom row we get that

J(B) ≥ J0.
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Moreover, applying Lemma 5.5 to the top row we get a connection A on E with

J(A) < J1.

But since µ(Q) ≤ µ(M), µ(E) = µ(F) and µ(P) ≥ µ(N ), we see J0 ≥ J1 and so

J(B) ≥ J0 ≥ J1 > J(A),

a contradiction. This proves the claim.

Now we must show that J(A) = 0 for this minimizing connection A ∈ GC

orb(A
′).

Suppose not. Then, because E is indecomposable, ker d∗AdA = constant scalars, for
if s ∈ ker d∗AdA is a self-adjoint section of End(E), then the eigenspaces of s give a
holomorphic splitting of E. Projecting ∗FA/2πi onto ker d∗AdA, we get

Proj(
∗FA
2πi

) = −µ(E) · I.

Using the Inverse Function Theorem (working⊥ ker d∗AdA) we get a self-adjoint section
of h ∈ Ω0(End(E)) with id∗AdA(h) = ∗FA +2πiµ · I. Set gt = 1− th. Then for t small,
gt ∈ GC

orb. If At = gt(A), then

At = A+ gtd
′
Ag

−1
t + g−1

t d′′Agt.

and

FAt
= FA + d′′A(gtd

′
Ag

−1
t ) + d′A(g−1

t d′′Agt) + gt(d
′
Ag

−1
t )g−1

t (d′′Agt) + g−1
t (d′′Agt)gt(d

′
Ag

−1
t )

= FA + t(d′′Ad
′
A − d

′
Ad

′′
A)h+ q(t, h)

where ‖q(t, h)‖L2 ≤ c0t
2‖h‖. Using the fact that ∗(d′′Ad

′
A − d

′
Ad

′′
A) = −id∗AdA we see

∗FAt

2πi
+ µ · I =

∗FA − itd∗AdA(h)

2πi
+ µ · I + q(t, h)/2πi

=
(
∗FA
2πi

+ µ · I
)

(1− t) + q(t, h)/2πi

And it follows that
J(At) = J(A)(1− t) +O(t2).

So in order for J(A) to be a minimum, we must have J(A) = 0.
As for uniqueness, suppose A and B = g(A) are two connections so that FA =

FB = µ·I.Writing g = u·g′ where u ∈ Gorb and g′ is self-adjoint, by unitary invariance
of J(A), we can assume g = g′. We see that

FA = Fg(A) = g−1Fg(A)g ⇒ d′′Ad
′
Ag

∗g = d′′g∗gg−1g∗−1d′Ag
∗g.

Now, using the fact that g = g∗, we get

d′′Ad
′
Ag

2 = d′′g2g−2d′Ag
2 = −{(d′′g2)g−1}{(d′′g2)g−1}∗.

Taking the trace τ = tr(g2), it follows that ∆τ ≤ 0. Now by the maximum principle,
we get that ∆τ = 0 and so d′′Ag

2 = 0 = d′Ag
2. Thus, since the bundle is indecompos-

able, it follows that g is a constant scalar, and so A = B.
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6 Applications

Using the inductive procedure of Atiyah and Bott, adapted to parabolic bundles as
in [17], we compute H∗(S), where S is the moduli of stable parabolic bundles. For
simplicity, we assume the bundles are rank 2 and parabolically flat. In applications,
we often restrict further to the cases where the underlying Riemann surface X is
either the Riemann sphere or the torus. This is because by computing H∗(S), we can
deduce the cohomology of the SU(2) representation space of any torsion free Seifert
fibration over S2 or T 2 (see Theorem 6.4 and formula (20)) . This includes all the
Seifert fibered homology spheres, for example. As a consequence of this and [6], we
get information about Casson’s invariant and so also the Floer homology of these
homology spheres.

For starters observe that as a consequence of Grothendieck’s theorem [9], the
assumption genus = 0 gives a rather dull moduli space in the case of non-parabolic
bundles (this is because only line bundles are stable). In fact, the case of parabolic
bundles over S2 is only interesting when there are many (i.e. > 2) parabolic points.
In the rank 2 case, S is a smooth complex manifold of complex dimension n − 3,
where n = the number of parabolic points. Because the authors of [14] concentrate
on the n = 1 case, they assume genus ≥ 2, which is necessary for a nontrivial moduli
space. We developed Theorem 5.1, the natural generalization of [4] and [14], because
we wanted a representation theoretic interpretation for S for all genus (compare
Theorem 4.1 of [14]).

This section is divided into eight parts. The first section gives a brief account
of equivariant cohomology. The second describes the stratification on the space C
of holomorphic structures arising from the Harder-Narasimhan parabolic filtration.
The third introduces the gauge groups GC and P . In the fourth, using a fact (due
to Nitsure) that the filtration is equivariantly perfect, we derive a formula for the
equivariant homology of the semistable bundles. The fifth section shows how to
deduce the singular homology of the moduli space S of stable bundles in the case
when semistable = stable. The main issue is that H∗(S) is torsion free. In the sixth
section, we interpret these formulas in the case where X has genus 0 and 1. The
seventh section shows how this relates to the cohomology of the SU(2) representation
space of cerain Seifert-fibered spaces. And in the last section, we perform explicit
computations of H∗(S).

6.1 Equivariant cohomology

For a topological group G and any G-space Y, consider the universal bundle G →
EG→ BG. Let

YG = EG×G Y = EG× Y/ ∼ where (eg, y) ∼ (e, gy).

Then we have the fibration Y → YG → BG, and the equivariant cohomology of Y is
defined by H∗

G(Y ) = H∗(YG). If the G-action on Y is free, then YG ' Y/G. It follows
that

H∗
G(Y ) = H∗(Y/G).
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On the other hand, if the action is trivial, then YG ' BG× Y and so

H∗
G(Y ) = H∗(BG× Y ).

Also, if Y is contractible, then YG ' BG and so

H∗
G(Y ) = H∗(BG).

In the course of the argument, we will need the following

Proposition 6.1 Suppose H is a normal subgroup of G which acts trivially on Y
so that the quotient Ḡ = G/H acts freely. Suppose further that the fibration BH →
BG → BḠ is trivial. Then, YG = BH × Y/G. If, in addition, BH and YG are
torsion-free, then Y/G is torsion-free and H∗

G(Y ) = H∗(BH)⊗ H∗(Y/G).

Proof : Since BG = BH ×BḠ, we see that EG = EH × EḠ. So

YG = EG×G Y = (EH × EḠ)×G Y = BH × (EḠ×Ḡ Y )

because the action of H is trivial on both Y and EḠ. So, YG = BH × YḠ. Now since
Ḡ acts freely, YḠ = Y/Ḡ = Y/G. The rest now follows from the Kunneth theorem.

6.2 The filtration on C

Fix E a rank 2, C∞ bundle over a Riemann surface X of genus g. Suppose that E
has a topological parabolic structure, i.e. over the finite set {pi}n1 ⊂ X of parabolic
points, we have weighted flags

Epi
= F i

1 ⊃ F i
2

0 ≤ αi1 < αi2 < 1.

Further assume that E is parabolically flat i.e.

pardeg(E)
def
= deg(E) +

n∑

i=1

(αi1 + αi2) = 0.

Remark : Temporarily ignore the possibility of trivial flags, which are ones of the
form Ep = F1 with one weight of multiplicity 2 because trivial flags impose no restic-
tions on parabolic automorphisms of E, and in fact, their sole effect is that they
contribute to the parabolic degree when the weight is nontrivial.

Consider all holomorphic structures d′′ on E, namely C−linear operators

d′′ : Ω0(E)→ Ω0,1(E)

satisfying d′′(fs) = (∂f)s + f(d′′s) for f ∈ C∞(X) and s ∈ Ω0(E). Because X is a
complex curve, the integrability condition d′′ ◦ d′′ = 0 is automatically satisfied, thus
by the Newlander-Nirenberg theorem, each d′′ determines a holomorphic bundle (with
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parabolic structure) which is denoted by E . Let C be the space of all holomorphic
structures. Then C is an ∞-dimensional affine space modeled on Ω0,1(EndE). To see
this, consider two operators d′′1, d

′′
2 ∈ C. Then the difference d′′1−d

′′
2 : Ω0(E)→ Ω0,1(E)

is linear over C∞(X), thus d′′1 − d
′′
2 ∈ Ω0,1(End E).

Recalling Definition 3.9, let Cs and Css be the subspaces of C of parabolic stable
and semistable structures. For any bundle E ∈ C \ Css, there is a unique destabilizing
line subbundle L of E, where

0→ L→ E → Q→ 0

is a short exact sequence of parabolic bundles and

pardeg(L) > 0 (⇔ pardeg(Q) < 0).

Set λ = deg(L) and ei = dim(Lpi
∩F i

2) for each parabolic point pi. Then the parabolic
degree is determined by λ and e = (e1, . . . , en) by the formula

pardeg(L) = λ+
∑

i

[(1− ei)α
i
1 + eiα

i
2]. (13)

We say that E is of type (λ, e). Bundles of type (λ, e) form a locally closed, connected
submanifold Cλ,e of finite codimension in C. Note further that each Cλ,e is nonempty.
This is because given (λ, e), we can build a bundle of this type by taking a direct
sum. The argument given in [17] carries over to show that the stratification

C = Css ∪
⋃

λ,e

Cλ,e

is equivariantly perfect (in a sense we shall explain shortly).
Remark : Nitsure restricts attention to the case where the genus g ≥ 2. The only
reason for this is that for higher rank and genus 0, it is not clear (in fact not true!) that
each strata is nonempty. In fact, we shall see that for certain parabolic structures,
there are no semistable rank 2 bundles. Keeping track of “empty” strata is one of
the difficulties in generalizing this procedure to rank 3 and higher.

6.3 The gauge groups GC and P

We now define the two “gauge groups” with natural actions on C. The complexified
gauge group

GC = Aut E = {g : E → E over X with gx ∈ GL(2,C) for all x ∈ X},

and the parabolic gauge group

P = ParAut E = {g ∈ GC with gpi
(F i

2) = F i
2 for 1 ≤ i ≤ n}.

These act on C by
g(d′′) = g−1 ◦ d′′ ◦ g = d′′ + g−1d′′g.
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The GC orbits are isomorphism classes of holomorphic structures on E, and the P
orbits are parabolic isomorphism classes of parabolic holomorphic structures on E.
We use the method to identify the tangent and normal spaces to the gauge orbits.
Suppose gt is a curve in GC with g0 = 1. Then gt(d

′′) = d′′ + g−1
t d′′gt. Taking the

derivative and evaluating at 0, we get d′′g′, where g′ ∈ Ω0(EndE) is the derivative of
gt at 0. Thus, the tangents to the gauge orbits at d′′ are elements of im d′′, where

d′′ : Ω0(End E)→ Ω0,1(End E).

Also, the normal bundle at d′′ is just coker d′′ and we identify the tangent space
of C/GC at [d′′] with H1(X,End E). Similarly, the tangent space to C/P at [d′′] is
H1(X,ParEnd E) where ParEnd E is the sheaf of parabolic endomorphisms of E.

Remark : This is actually quite tricky, requiring Sobolev completions and all. To
treat this right, we must descend into the nether-world of sheaf theory. We refer the
adventuresome to [17].

Atiyah and Bott prove that the stratification on C induced by the Harder-Narasimhan
filtration is GC perfect, and Nitsure proves that the stratification on C induced by
the parabolic filtration is P perfect. In either case, you can deduce the equivariant
cohomology of the top stratum (Css) from that of the unstable strata (Cλ,e) along
with the equivariant cohomology of the whole space.

6.4 The equivariant cohomology of Css

Because the stratification on C is perfect, we have the formula for the equivariant
Poincare polynomials (where we use P̃ for equivariant H∗)

P̃t(C) = P̃t(Css) +
∑

(λ,e)

t2dλ,eP̃t(Cλ,e) (14)

where dλ,e = codim(Cλ,e). We calculate the various pieces of the above formula. First,
since C ' ∗,

H∗
P (C) = H∗(BP).

To calculate this, we use the fibration

P → GC → F

where F is the flag variety, which in this case is CP1×
n
· · · ×CP1 (n is the number

of nontrivial flags).

Remark : For rank 2, a (nontrivial) flag is just a point in CP1. Thus, a choice

of parabolic structure is an element of F = CP1×
n
· · · ×CP1. A partition of unity

argument shows that the action of GC is transitive on parabolic structures, giving a
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surjection GC → F with fiber the subgroup P of parabolic gauge transformations.

On the level of classifying spaces, we get a fibration

F → BP → BGC. (15)

This is a sequence of pull backs of the following fibration

F → BP → BG,

where G = U(n), P is a parabolic subgroup, and F is the corresponding flag. Both F
and BP are torsion free with cohomology in only even dimensions. It follows that the
Leray-Serre spectral sequence collapses at the E2 term (since d : even → odd), and
therefore this fibration is cohomologically trivial. Consequently, the fibration (15) is
also cohomologically trivial. Now, by Theorem 2.15 of [1], BGC is torsion free with
homology given by

Pt(BGC) =
(1 + t)2g(1 + t3)2g

(1− t2)2(1− t4)
.

So BP has no torsion and

Pt(BP) = Pt(BGC)⊗ Pt(F)

=
(1 + t)2g(1 + t3)2g(1 + t2)n−1

(1− t2)3
.

Having computed H∗
P (C), we turn our attention to the other terms in formula (14).

We compute dλ,e in terms of λ and e. This, with P̃t(Cλ,e), will yield the equivariant
cohomology of Css.

Now each strata Cλ,e is a union of orbits, thus the normal to Cλ,e is a quotient
of H1(X,ParEnd E). Given E ∈ Cλ,e, let ParEnd′E denote those endomorphisms
which preserve the filtration 0 ⊂ L ⊂ E . Then the tangent space to Cλ,e contains
H1(X,ParEnd′E). Letting ParEnd′′E be the quotient

ParEnd′E ↪→ ParEnd E → ParEnd′′E,

we can identify the normal to Cλ,e with H1(X,ParEnd′′E). ¿From the exact sequence

0→ L→ E → Q→ 0

and the fact that pardeg(L) > pardeg(Q) ⇒ ParHom(L,Q) = 0, it follows that
H0(X,ParEnd′′E) = 0.

We may now calculate the precise value of dλ,e = −χ(ParEnd′′E) by Riemann-
Roch. Let End′E be the endomorphisms (not necessarily parabolic) which preserve
the filtration and End′′E the quotient

End′E ↪→ End E → End′′E.

Then we have a short exact sequence of sheaves

0→ ParEnd′′E → End′′E → S → 0
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where S is a skyscraper sheaf with a one dimensional stalk over each parabolic point
pi with ei = 1. Thus,

dλ,e = h1(X,ParEnd′′E)

= −χ(ParEnd′′E)

= −χ(End′′E) + χ(S)

But we calculate χ(End′′E) = k − 2λ+ 1− g by Riemann-Roch, where k = deg(E).
Since S is a skyscraper sheaf, χ(S) = h0(X,S) =

∑
i ei. Thus,

dλ,e = 2λ− k + (g − 1) +
∑

i

ei (16)

To complete the calculation, we find P̃t(Cλ,e) for all the unstable strata. It is
shown in 3.4 of [17] (or see 7.12 of [1]) that

H∗
P (Cλ,e) = H∗

P (L)
(Css(L))⊗ H∗

P(Q)
(Css(Q))

But, P(L) = P(Q) = C∗, and Css(L) = Css(Q) = J(X), the Jacobian. Since C∗

acts trivially, H∗
C∗

(J(X)) = H∗(BU(1))⊗ H∗(J(X)). Thus H∗
P (Cλ,e) = H∗

C∗
(J(X))⊗

H∗
C∗

(J(X)) and so

P̃t(Cλ,e) =
(1 + t)4g

(1− t2)2
.

Putting it all together, equation (14) implies

P̃t(Css) =
(1 + t)4g

(1− t2)3


(1− t + t2)2g(1 + t2)n−1 − (1− t2)

∑

λ,e

t2dλ,e


 (17)

6.5 The cohomology of S in the case Css = Cs

Now, because we are interested in H∗(S), we assume that semistable bundles are in
fact stable. This assumption holds for our application (torsion free Seifert fibrations)
and boils down to an arithmetic requirement on the weights (for example, that the
nontrivial denominators are relatively prime). In order to compare the parabolic and
the nonparabolic cases, we first give an outline for (regular) stable bundles. In [1]
it is proved that Css = Cs whenever the rank and degree of the bundle are coprime.
Another consequence of (rank, deg) = 1 is that H∗(S) is torsion free. This follows by
considering the sequence

1→ U(1)→ G → Ḡ → 1.

If (rank, deg) = 1, then the corresponding fibration

BU(1)→ BG → BḠ

is trivial. Moreover, H∗(BU(1)) and H∗
G(Css) are torsion-free. It now follows from

Proposition 6.1 that
H∗
G(Css) = H∗(BU(1))⊗ H∗(S)
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taken with Z coefficients.
For general parabolic bundles, it is observed in [17] that H∗(S) is torsion free

provided (rank, deg) = 1. Now we prove the stronger result that for rank 2 parabolic
bundles with at least one nontrivial flag, H∗(S) is torsion free. ¿From the short exact
sequence

1→ C∗ → P → P̄ → 1

we get the fibration of classifying spaces

BU(1)→ BP → BP̄.

In order to prove H∗(S) is torsion free, we need to show that this bundle is trivial.
Because the fiber is a K(Z, 2), this bundle is classified by an element of

Map(BP̄, K(Z, 3)) = H3(BP̄,Z).

We want to see that the bundle is trivial; it is enough to show that the map

H2(BP,Z)
ı∗
→ H2(BU(1),Z)

is onto. But since BP and BU(1) are torsion free,

H2(BP ,Z) ∼= H2(BP ,Z)
h
∼= π2BP ∼= π1P

and similarly, H2(BU(1),Z) ∼= π1U(1). Thus, it suffices to show that the map π1U(1)→
π1P coming from the inclusion C∗ ↪→ P induces a direct sum. The fibration P →
GC → F gives the long exact sequence in homotopy

· · ·
0
→ π2F → π1P → π1GC → 0.

Both π2F ∼= Z⊕
n
· · · ⊕Z and π1G

C ∼= Z ⊕ Z are free abelian, and because π1P

is abelian, we have π1P ∼= Z⊕
n+2
· · · ⊕Z. Composing with the inclusion gives the

commutative triangle

C∗

ı↓ ↘ 

P ↪→ GC,

which, on the level of homotopy, gives

π1U(1)

ı∗ ↓ ↘ ∗

0→ π2F → π1P → π1GC → 0,

Atiyah and Bott prove that im(∗) is a direct summand of π1GC in case (rank, deg) =
1. But it is possible (in fact likely) that im(ı∗) is a direct summand of π1P even though
im(∗) is not. This is the content of
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Proposition 6.2 Suppose that E is a rank 2, parabolic bundle with at least one non-
trivial flag. Then the image of the map π1U(1)→ π1P is a direct summand.

Proof : The general statement follows easily from the case where there is exactly one
nontrivial flag so that F = CP1. Let r be the map which restricts an automorphism
to the nontrivial parabolic point p. Then on the level of homotopy, since we may
replace the groups with their maximal compact subgroups, r∗ maps the sequence

0→ π2CP1 → π1P → π1GC → 0 (18)

⇓ r∗

0→ π2CP1 → π1U(1)⊕ π1U(1)
φ∗→ π1U(2)→ 0. (19)

Here φ∗ is induced by the natural inclusion φ of the maximal torus of U(2), i.e.

φ(z1, z2) =

(
z1 0
0 z2

)
for z1, z2 ∈ U(1).

In U(2), the curves φ(eiθ, 1) and φ(1, eiθ) are homotopic to the generator for π1U(2),
so kerφ∗ is generated by (1,−1), where we have identified (19) with

0→ Z→ Z⊕ Z→ Z→ 0.

Now, a splitting σ′ of (19) determines a splitting σ of (18) by σ(x) = σ′ ◦ r∗(x) for
x ∈ π1P . We check that the map σ′(1, 0) = 1, σ′(0, 1) = 0 is a splitting. Further,
since r ◦ ı(z) = (z, z) for z ∈ U(1), we see that r∗ ◦ ı∗(1) = (1, 1) ∈ π1U(1)⊕ π1U(1).
It follows that σ ◦ ı∗(1) = 1 ∈ π2CP1. Thus im(ı∗) is indeed a direct sum. This
argument carries over to more parabolic points without difficulty.

In the previous section, we saw that H∗
P(Css) is torsion free. Further, if Css = Cs,

since C∗ ⊂ P acts acts trivially and P̄ acts freely, we may apply Proposition 6.1 to
conclude that H∗

P(Css) = H∗(BU(1))⊗H∗(S). It follows from Pt(S) = (1− t2)P̃t(Css)
and formula (17) that

Pt(S) =
(1 + t)4g

(1− t2)2


(1− t+ t2)2g(1 + t2)n−1 − (1− t2)

∑

λ,e

t2dλ,e


 . (20)

In the cases of genus 0 and 1, this equation gives the cohomology of any torsion free
Seifert fibered three manifold over S2 and T 2, which will follow from the next two
sections.

6.6 Results for genus 0 and 1

a: Genus 0
Assuming that X has genus 0 and rewriting equation (20), we get

Pt(S) =
1

(1− t2)2


(1 + t2)n−1 − (1− t2)

∑

λ,e

t2dλ,e


 . (21)
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It follows that Hi(S) = 0 for i odd. In the next section we shall see how S is related
to R(Σ), the representation space of Seifert fibered homology spheres Σ. Thus, we
conclude that R(Σ) has only cohomology in the even dimensions, which we expect
based on a conjecture of Fintushel and Stern. This conjecture was proved by Kirk
and Klassen in [11] (see also [3] and [7]). With additional results about π1(S), we
would have an independent proof of that conjecture (based on the work of Smale).
Unfortunately, our method is homological in nature. For example, we could conclude
(as was done in [1]) that π1(S) = 0 if we knew that all the codimensions dλ,e ≥ 2.
Unfortunately, this is not the case. Another way around this is to prove that S is a
rational variety as in [3] and [7]. Anyway, formula (21) is a useful and fairly simple
tool for computation. For example, one can calculate the possible codimensions and
their multiplicities to deduce the cohomology of S. First, consider the case when S
is empty, so that (1− t2)

∑
λ,e t

2dλ,e = (1 + t2)n−1. For a given n, we can solve this to
find

∑
λ,e t

2dλ,e . For example, if n = 3, we get

∑

λ,e

t2dλ,e = 1 + 3t2 + 4t4 + · · · ⇒ Pt(S) = 0.

Since (1− t2)
∑
λ,e t

2dλ,e is the polynomial (1+ t2)n−1− (1− t2)Pt(S), the power series
must be of the form q(t) +

∑∞
i=n at

2i where q(t) is some polynomial. In fact, for each
n, there is a finite list of possibilities for this power series.

For n = 3, then the only nontrivial case is

∑

λ,e

t2dλ,e = 4t2 + 4t4 + · · · ⇒ Pt(S) = 1.

This reflects the fact that S is either empty or a point [6]. If n = 4, then

∑

λ,e

t2dλ,e = 4t2 + 8t4 + · · · ⇒ Pt(S) = 1 + t2.

This reflects the fact that S is either empty or an S2 [6]. If n = 5, then

∑

λ,e

t2dλ,e = (6− b)t2 + (10 + b)t4 + 16t6 + · · · ⇒ Pt(S) = 1 + bt2 + t4.

It follows immediately that 0 ≤ b ≤ 6. In fact, b 6= 0. This is observed by Kirk and
Klassen [11], where they prove that these four dimensional components are either

S2 × S2 or CP2#hCP
2

where 0 ≤ h ≤ 5. We now list the possibilities for n = 6
where we have

∑

λ,e

t2dλ,e = (7− b)t2 + 16t4 + (25 + b)t6 + 32t8 · · · ⇒ Pt(S) = 1 + bt2 + bt4 + t8.

Again, it is immediate that b ≤ 7, but it is not clear (although true because S is
Kähler) that b = 0 is not realized. In the last section, we will explicitely compute
an n = 5 and n = 6 example, showing that the bound on b, in these cases, is sharp.
These bounds on the second Betti number b2 generalize as follows. Since S is a
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2n − 6 manifold, set Pt(S) =
∑n−3
i=0 b

2it2i and solve for the power series
∑
λ,e t

2dλ,e .
For instance, if n = 7 , then dim S = 8, and so Pt(S) = 1 + t8 + b2(t2 + t6) + b4t4.
Solving (21), we get
∑

λ,e

t2dλ,e = (8− b2)t2 + (22 + b2 − b4)t4 + (42 + b4 − b2)t6 + (56 + b2)t8 + 64t10 + · · · .

But of course, the coefficients must all be nonnegative and we conclude that b2 ≤ 8
and b4 ≤ 22 + b2 ≤ 30. This process extends to the general case of n nontrivial flags
to give that b2 ≤ n+ 1. Moreover, we get the recursive relation

b2i − b2i−2 ≤
i∑

r=0

(
n
r

)

among the Betti numbers b2i. This, in turn, yields bounds on the Euler characteristic
χ(S). For instance,

1. χ(S) ≤ 8 for n = 5,

2. χ(S) ≤ 16 for n = 6,

3. χ(S) ≤ 48 for n = 7.

These give bounds for Casson’s invariant of Seifert-fibered homology spheres, which
follows from the next section. Before we address the genus 1 case, we comment that
this information for genus 0 gives us much information for the higher genus cases. In
fact, fixing the weights and parabolic structure of the bundle, but allowing the genus
of the underlying surface to increase, we notice that by knowing the series

∑
λ,e t

2dλ,e

for genus 0, we know the corresponding series for genus g; it is obtained by simply
multiplying the genus 0 series by t2g. This is because the same unstable strata occur
but their codimensions dλ,e have increased by g (see formula (16)).

b: Genus 1

Assuming now that X has genus 1 we rewrite equation (20) to get

Pt(S) =
(1 + t)2

(1− t)2


(1− t+ t2)2(1 + t2)n−1 − (1− t2)

∑

λ,e

t2dλ,e


 . (22)

We introduce the notation S0 for the stable bundles of fixed determinant. While S
corresponds to U(n) representations, S0 corresponds to SU(n) representations. It is
easy to show, using the fibration SU(n)→ U(n)→ U(1), that S = S0×J(X), where
J(X) denotes the Jacobian. Thus, in the genus 0 case, S and S0 coincide. In general,
we have

Pt(S) = (1 + t)2gPt(S
0).

Using (22), we get

Pt(S
0) =

1

(1− t)2


(1− t+ t2)2(1 + t2)n−1 − (1− t2)

∑

λ,e

t2dλ,e


 . (23)
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The series
∑
λ,e t

2dλ,e differs from that of the previous (genus 0) case by a factor of t2,
coming from the fact that the codimensions dλ,e have increased by 1. So, for example,
the trivial case in genus 0 (when (1− t2)

∑
λ,e t

2dλ,e = (1 + t2)n−1) now gives

∑

λ,e

t2dλ,e = t2(1 + t2)n−1.

Using formula (23) we get
Pt(S

0) = (1 + t2)n.

In fact, S0 ≈ S2×
n
· · · ×S2. This follows by considering SU(2) representations of the

following group presentation:

πorb1 (X) = 〈a, b, x1, . . . , xn | x
ai

i = 1, [a, b]x1 · · ·xn = 1〉.

We use capital letters for the images of the corresponding elements in SU(2). Thus,
in SU(2), Xi is required to lie in the set of athi roots of unity. The set of ath roots of
unity is a disjoint union of S2’s. Picking a connected component of the representation
space means choosing a specific copy of S2 for each Xi. Because the corresponding
component of the genus 0 representation space is trivial, it follows that X1 · · ·Xn 6= 1.
Thus, applying Corollary 1 of [16], we see that A and B, the images of the other two
generators, are determined up to conjugation. We conclude that this component of
the genus 1 representation space is in fact S2×

n
· · · ×S2.

Just as in the previous case, there is a finite list of possibilities for
∑
λ,e t

2dλ,e for
each n. For example, if n = 3, then the only other case besides that already mentioned
is ∑

λ,e

t2dλ,e = 4t4 + 4t6 + · · · ⇒ Pt(S) = 1 + 4t2 + 2t3 + 4t4 + t6.

Likewise, for n = 4, the only other possibility is

∑

λ,e

t2dλ,e = 4t4 + 8t6 + · · · ⇒ Pt(S) = 1 + 5t2 + 2t3 + 8t4 + 2t5 + 5t6 + t8.

We now show that S0 is simply connected. In the genus zero case, S nonempty ⇒
all dλ,e ≥ 1. In this case, either S0 ≈ S2×

n
· · · ×S2, or all dλ,e ≥ 2. In the second case

we argue just as in Theorem 9.12 of [1] to show that S0 is simply connected. For
higher genus, namely g ≥ 2, this argument carries over immediately to give simple
connectivity of S0.

6.7 Relationship between S and R(Σ).

We explain what this all has to do with representation spaces of Seifert-fibered spaces
Σ following the ideas of [6] and [3]. First, we introduce the notation for the SU(2)-
representation space. In particular, recall that

R(Σ) = Hom∗(π1Σ, SU(2))/SO(3) for manifolds Σ

and R(X) = Hom∗(πorb1 (X), SU(2))/SO(3) for orbifolds X.
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Here, Hom∗ indicates the nontrivial representations. We prove that if Σ is a torsion
free Seifert fibration, then there is a two dimensional orbifold X so thatR(Σ) ∼= R(X).
Although there is no well-defined homomorphism π1Σ → πorb1 (X), π1Σ and πorb1 (X)
have a common quotient Γ.

So suppose Σ is the a torsion free Seifert fibration over Fg, the genus g sur-
face. Then Σ has the Seifert invariants {b0, (a1, b1), . . . , (an, bn)}, where the bi are not
unique, but, because H1(Σ) is torsion free, must satisfy

a(−b0 +
n∑

i=1

bi
ai

) = 1 (24)

where a = a1 · · ·an. We use Σ(g; a1, . . . , an) to denote this Seifert fibration. It follows
from (24) that the {a1, . . . , an} are pairwise relatively prime, and so we may order
them so that the only possibly even ai is a1.

The following argument shows that we may assume that bi is even for i 6= 1 and
that b1 is odd. Because we can change each bi by a multiple of ai at the expense of
changing b0, and because each ai is odd for i > 1, we have bi even for i > 1. Further,
we may assume b0 is even by adding a1 to b1, which, though it may not affect b1’s
parity, certainly affects b0’s. Finally, if b1 is even, then each term in equation (24) is
even, which is a contradiction.

In the following group presentations, we adopt the convention that i = 1, . . . , n
and j = 1, . . . , g. Then π = π1(Σ) has the presentation

π = 〈Aj, Bj, xi, h | h central, xai
i = h−bi ,

∏
[Aj, Bj]

∏
xi = h−b0〉.

Now consider the orbifold X = X(g; 2a1, . . . , an) and the presentation of its fun-
damental group πorb1 = πorb1 (X) (see §2)

πorb1 = 〈Aj, Bj, yi | y
2a1
1 = 1, yai

i = 1 for i > 1,
∏

[Aj, Bj]
∏
yi = 1〉.

The groups π and πorb1 , have the common quotient group Γ defined by

Γ = 〈Aj, Bj, zi | z
a1 central, z2a1

1 = 1, zai
i = 1 for i > 1,

∏
[Ai, Bi]

∏
zi = 1〉.

There is an obvious map φ : πorb1 −→ Γ. Define the map ψ : π −→ Γ by making the
following assignments:

ψ(Ai) = Ai and ψ(Bi) = Bi

ψ(xi) = zi and ψ(h) = za11 .

To check that ψ is well-defined, use the fact that ψ(h)2n = 1 and ψ(h)2n+1 = za11 .
Then it follows that

ψ(xi)
ai = zai

i = 1 = ψ(h)−bi for i > 1 since bi is even,

ψ(x1)
a1 = za11 = ψ(h)−b1 since b1 is odd, and

ψ(
∏

[Aj, Bj]
∏
xi) = 1 = ψ(h)−b0 since b0 is even.
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Clearly both φ and ψ are onto. Consider the maps

φ∗ : Hom(Γ, SU(2)) −→ Hom(πorb1 , SU(2)) and

ψ∗ : Hom(Γ, SU(2)) −→ Hom(π, SU(2))

defined by precomposition. Then φ∗ and ψ∗ are one-to-one because φ and ψ are onto.
In fact, both φ∗ and ψ∗ are onto. This is obvious for φ∗, the reason being that if
ρ ∈ Hom(πorb1 , SU(2)) then since ρ(x1)

2a1 = 1 we must have ρ(x1)
a1 = ±1, which

is central in SU(2). As for ψ∗, notice that for any element ρ ∈ Hom(π, SU(2)), we
have ρ(h) = ±1. This follows by considering the two cases: ρ is either reducible or
irreducible. First, if ρ is irreducible, then h central ⇒ ρ(h) = ±1. On the other hand,
if ρ is reducible, then

ρ(
g∏

i=1

[Ai, Bi]) = 1.

This shows that the last relation in the presentation of π gives that

ρ(
n∏

i=1

xi) = ρ(h)−b0 .

Raising this relation to the power a = a1 · · ·an, and noticing that

xai = (xai
i )a/ai = (h−bi)a/ai ,

we get

1 = ρ(h)
a(−b0+

∑n

i=1

bi
ai

)
.

By equation (24), it follows that ρ(h) = 1. Now consider ρ ∈ Hom(π, SU(2)). We can
define γ ∈ Hom(Γ, SU(2)) by setting γ(Aj) = ρ(Aj), γ(Bj) = ρ(Bj), and γ(zi) =
ρ(xi). Then γ is well-defined because ρ(h) = ±1 and bi is even for i 6= 1. Clearly the
assignment ρ 7−→ γ gives an inverse to ψ∗. We conclude

Hom(πorb1 , SU(2))
φ∗
∼= Hom(Γ, SU(2))

ψ∗
∼= Hom(π, SU(2))

Since conjugation commutes with the above isomorphisms, we see

Theorem 6.3 R(Σ(g; a1, . . . , an)) ∼= R(X(g; 2a1, . . . , an))

We now investigate the method for computing H∗(R(X)). SupposeX = X(g; 2a1, . . . , an).
We decompose the representation space into its connected components

R(X) =
∐

ᾱ
Rᾱ(X)

where ᾱ = (α1, . . . , αn) are the rotation numbers. More precisely,

ρ ∈ Rᾱ(X) if ρ(xj) = Mj

(
e2πiαj 0

0 e−2πiαj

)
M−1

j for all j,
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where xj refers to the generator in the presentation of πorb1 (X). It is obvious that these
components are in fact disjoint. Each αi is a fraction with denominator ai (for i = 1,
α1 has denominator 2a1). Further we can assume that 0 ≤ αi ≤ 1/2 by conjugating,
if necessary. The sequence ᾱ = (α1, . . . , αn) determines n pairs of weights by setting
the weight at pi equal to (αi, 1 − αi) if αi 6= 0 and (0, 0) if αi = 0. By abuse of
notation, we denote the weights again by ᾱ. Let S(2, k, 0, ᾱ) denote the moduli of
stable parabolic bundles over the genus g surface Xs of rank 2, degree k, parabolic
degree 0, and weights ᾱ. The degree k is equal to the number of nontrivial weights,
i.e. the order of the set {j | αj 6= 0}. This justifies shortening S(2, k, 0, ᾱ) to Sᾱ.
We further introduce S0

ᾱ as the corresponding moduli of stable bundles with fixed
determinant. A consequence of the main theorem is

Corollary 6.4
Rᾱ(X) ∼= S0

ᾱ

Remark : For ᾱ nontrivial, dim(S0
ᾱ) = 2n+6(g−1), where n is equal to the number

of nontrivial flags, i.e. the order of the set {j | αj 6= 0 and αj 6= 1/2}.
The idea is to use formula (20) to compute H∗(Sᾱ) which computes H∗(R(Σ)) one

component at a time. In order to do this, we need to check that Cs = Css. This is
equivalent to requiring that there are no reducibles in Rᾱ(X). This holds provided ᾱ
is nontrivial. Since the weights are fractions with denominators ai which are relatively
prime and at least one of them is nonzero, for any line subbundle L, pardeg(L) is not
an integer. In particular, pardeg(L) 6= 0. This verifies that Cs = Css for ᾱ nontrivial.
On the other hand, if ᾱ = 0̄, then S 0̄ = R(Fg), representations of the surface of
genus g. If g = 0, then this component consists soley of the trivial representation.
If g = 1, then this component consists entirely of reducibles and is a quotient of
S1 × S1 by a BZ

2 action, just S2. If g ≥ 2, then the reducibles form a subvariety of
R(Fg), which is no longer smooth. This component is the only one of R(X) where
our technique fails and is the only reason we restrict to the cases where g = 0 or 1. In
fact, Kirwan explicitely computes the intersection Betti numbers of this component
for higher genus (see Proposition 5.9 of [12]), giving a complete answer modulo 2-
torsion. For genus 2, this component turns out (by accident) to be smooth with
Poincare polynomial

Pt(S 0̄) = (1 + t)4(1 + 2t2 + 2t4 + t6).

Our work, along with the results contained in [12], give a complete description of
the cohomology of the SU(2) representation space of any torsion free Seifert fibred
3-manifold.

A computer is helpful because there are potentially so many components. For ex-
ample, the easiest example of a homology sphere with five fibers is Σ(2, 3, 5, 7, 11). To
calculate R(Σ), we have to check over 150 components. Luckily, computers are more
patient than graduate students. We have a program that performs this calculation
for n ≤ 7, and theoretically we could do it for any number of fibers.
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6.8 Explicit computations

Assuming g = 0, consider the orbifold X = X(4, 3, 5, 7, 11). We first compute the
cohomology ofRᾱ(X) = Sᾱ where ᾱ = (1

4
, 1

3
, 1

5
, 2

7
, 2

11
). Listing all possible destabilizing

line bundles L → E with pardeg(L) > 0, we compute the codimensions d = dλ,e
of their strata. Because there may be several different strata Cλ,e with the same
codimension d, we introduce the multiplicity md of d, which is the number of times a
strata with dλ,e = d occurs. In terms of the power series

∑

λ,e

t2dλ,e =
∑

d≥0

mdt
2d.

Each md =
∑
λmλ,d where mλ,d is the number of times a strata with deg(L) = λ and

dλ,e = d occurs.
In order to keep track of all the fractions, we will use the notation β̄ = (β1, . . . , β5)

for the larger weights, i.e. βi = 1 − αi. So the flag at pi has the two weights αi, βi.
Notice that in this case, 1 <

∑
αi < 2 and 3 <

∑
βi < 4. Setting ē = (e1, . . . , e5)

equal to the intersection numbers of L, we can check the condition pardeg(L) > 0
with formula (13) and compute dλ,e with formula (16). Notice that the different ways
for L to intersect the flags are enumerated by the 25 = 32 ways of choosing a five bit
word ē. Since ē contributes

∑
ei to the codimension, we partition the set of all five

bit words W into the subsets Wh = {ē |
∑
ei = h} for h = 0, . . . , 5.

Because pardeg(E) = 0, we must have deg(E) = −5. Now, E could have destabi-
lizing subbundles L only if λ = deg(L) ≥ −3. (If λ ≤ −4, then the parabolic degree
of L is at most −4 +

∑
βi < 0 which is not destabilizing). On the other hand, if

λ ≥ −1, then the parabolic degree of L is at least −1 +
∑
αi > 0, so no matter what

the intersection numbers ē are, L is destabilizing. So we just check the two cases
λ = −3,−2.

For λ = −3, the following intersection numbers give pardeg(L) > 0 :

• any ē ∈ W4, giving dλ,e = 2,

• and also ē = (1, 1, 1, 1, 1), giving dλ,e = 3.

We can list this in the table
λ = −3

d m−3,d

2 5
3 1

For λ = −2, the following intersection numbers give pardeg(L) > 0 :

• any ē ∈ W2, giving dλ,e = 2,

• any ē ∈ W3, giving dλ,e = 3,

• any ē ∈ W4, giving dλ,e = 4,
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• and ē = (1, 1, 1, 1, 1), giving dλ,e = 5.

Summarizing this in the table
λ = −2

d m−2,d

2 10
3 10
4 5
5 1

Likewise, for each λ ≥ −1, we get a table of the form

d mλ,d

2λ+ 4 1
2λ+ 5 5
2λ+ 6 10
2λ+ 7 10
2λ+ 8 5
2λ+ 9 1

Computing md =
∑
λmλ,d, we find that

∑

d≥0

mdt
2d = 16t4 + 16t6 + · · ·

and conclude
Pt(Sᾱ) = 1 + 6t2 + t4.

Now consider the six-dimensional component where n = 6 and ᾱ = ( 1
4
, 1

3
, 2

5
, 2

7
, 3

11
, 4

13
).

Here, there are 26 = 64 possible ways for a line bundle to intersect the flags, and we
keep track of them all with the six bit word ē. Again, we partition the set of all words
W into the subsets Wh = {ē |

∑
ei = h} for h = 0, . . . , 6.

Using the same notation, we see β̄ = (3
4
, 2

3
, 3

5
, 5

7
, 8

11
, 9

13
). We have deg(E) = −6, and

because
∑
βi < 5, a destabilizing line bundle L must have deg(L) ≥ −4. Furthermore,

since
∑
αi > 1, if deg(L) ≥ −1, then no matter what the intersection numbers are,

L is destabilizing. Thus, we need to check the cases deg(L) = λ = -2, -3, and -4.
For λ = −4, only ē = (1, 1, 1, 1, 1, 1) is destabilizing, contributing one term

d m−4,d

3 1

For λ = −3, L is destabilizing for the following intersection numbers:

• 10 of the 20 ē ∈ W3, giving dλ,e = 2,

• any ē ∈ W4, giving dλ,e = 3,

• any ē ∈ W5, giving dλ,e = 4,
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• and ē = (1, 1, 1, 1, 1), giving dλ,e = 5.

Summarizing this in the table
λ = −3

d m−3,d

2 10
3 15
4 6
5 1

For λ = −2, L is destabilizing for the following intersection numbers:

• any ē ∈ W1, giving dλ,e = 2,

• any ē ∈ W2, giving dλ,e = 3,

• any ē ∈ W3, giving dλ,e = 4,

• any ē ∈ W4, giving dλ,e = 5,

• any ē ∈ W5, giving dλ,e = 6,

• and ē = (1, 1, 1, 1, 1), giving dλ,e = 7.

Summarizing this in the table
λ = −2

d m−2,d

2 6
3 15
4 20
5 15
6 6
7 1

For any λ ≥ −1 we have the table

d mλ,d

2λ+ 5 1
2λ+ 6 6
2λ+ 7 15
2λ+ 8 20
2λ+ 9 15
2λ+ 10 6
2λ+ 11 1

Computing md =
∑
λmλ,d, we find that

∑

d≥0

mdt
2d = 16t4 + 32t6 + · · ·

and conclude
Pt(Sᾱ) = 1 + 7t2 + 7t4 + t6.
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